Hydrological response to land use and land cover change on the slopes of Kilimanjaro and Meru Mountains

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier B.V.

Abstract

Land use and cover change are closely linked to catchment hydrology characteristics. Land uses and cover determine the ability of the catchment to collect, store, and release water. The catchment water storage and flow ability affect the quantity and timing of runoff, soil erosion, and sediment transport downstream. Agriculture on of the major drivers for the changes in water flow pathways, which also causes a catastrophic shift of aquatic ecosys- tems. We assessed the impact of land-use changes on the water flow characteristics in the Upper Pangani Sub catchment using the hydrologic model Soil and Water Assessment Tool (SWAT). Land use and cover changes within the Upper Pangani Sub catchment were ana- lyzed between 1987 and 2017 using QGIS. The result shows that agriculture has expanded from 96,737 ha to 314,871 ha between 1987 and 2017. Bare land and built-up land have gained 14690 ha and 7083 ha respectively during this period. Land-use changes have af- fected the basin’s land cover. Forest has decreased from 196558 ha to 106839 ha between 1987 and 2017. Bush land cover has lost 83445 ha during this period. Bushland cover fall victim to agricultural activities, whereas forest is cleared for logging and fire incidences. Consequently, surface runoff has increased from 60.84 to 73.02 (20.6% increase) between 1987 and 2017. Sediment yield has increase from 6.9 to 12.74 ton/ha (46% increase), and groundwater recharge has decreased from 106.53 to 99.56 (6.5% decrease). It concluded that land cover transformation alters hydrology characteristics of the catchment, resulting to fast surface flow, high rate of soil erosion and low infiltration rate. It is recommended that agro-forestry should be emphasized in the catchment.

Description

Ecohydrology & Hydrobiology 22 (2022) pp.609–626

Keywords

GIS, SWAT, Sedimentation, Surface runoff, Hydrology model

Citation

www.elsevier.com/locate/ecohyd