Reproduction of East-African bats may guide risk mitigation for coronavirus spillover

dc.contributor.authorMontecino-Latorre, Diego
dc.contributor.authorGoldstein, Tracey
dc.contributor.authorGilardi, Kirsten
dc.contributor.authorWolking, David
dc.contributor.authorVan Wormer, Elizabeth
dc.contributor.authorKazwala, Rudovick
dc.contributor.authorSsebide, Benard
dc.contributor.authorNziza, Julius
dc.contributor.authorSijali, Zikankuba
dc.contributor.authorCranfield, Michael
dc.contributor.authorPREDICT Consortium
dc.contributor.authorMazet, Jonna A. K.
dc.date.accessioned2023-04-17T12:20:01Z
dc.date.available2023-04-17T12:20:01Z
dc.date.issued2020-02-07
dc.descriptionArticleen_US
dc.description.abstractBackground: Bats provide important ecosystem services; however, current evidence supports that they host several zoonotic viruses, including species of the Coronaviridae family. If bats in close interaction with humans host and shed coronaviruses with zoonotic potential, such as the Severe Acute Respiratory Syndrome virus, spillover may occur. Therefore, strategies aiming to mitigate potential spillover and disease emergence, while supporting the conservation of bats and their important ecological roles are needed. Past research suggests that coronavirus shedding in bats varies seasonally following their reproductive cycle; however, shedding dynamics have been assessed in only a few species, which does not allow for generalization of findings across bat taxa and geographic regions. Methods: To assess the generalizability of coronavirus shedding seasonality, we sampled hundreds of bats belonging to several species with different life history traits across East Africa at different times of the year. We assessed, via Bayesian modeling, the hypothesis that chiropterans, across species and spatial domains, experience seasonal trends in coronavirus shedding as a function of the reproductive cycle. Results: We found that, beyond spatial, taxonomic, and life history differences, coronavirus shedding is more expected when pups are becoming independent from the dam and that juvenile bats are prone to shed these viruses. Conclusions: These findings could guide policy aimed at the prevention of spillover in limited-resource settings, where longitudinal surveillance is not feasible, by identifying high-risk periods for coronavirus shedding. In these periods, contact with bats should be avoided (for example, by impeding or forbidding people access to caves). Our proposed strategy provides an alternative to culling – an ethically questionable practice that may result in higher pathogen levels – and supports the conservation of bats and the delivery of their key ecosystem services.en_US
dc.description.sponsorshipUnited States Agency for International Developmenten_US
dc.identifier.urihttp://www.suaire.sua.ac.tz/handle/123456789/5197
dc.language.isoenen_US
dc.publisherBMCen_US
dc.subjectBatsen_US
dc.subjectCoronavirusen_US
dc.subjectSheddingen_US
dc.subjectSeasonalen_US
dc.subjectReproductive cycleen_US
dc.subjectWeaningen_US
dc.subjectEast-Africaen_US
dc.titleReproduction of East-African bats may guide risk mitigation for coronavirus spilloveren_US
dc.typeArticleen_US
dc.urlhttps://doi.org/10.1186/s42522-019-0008-8en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kazwala.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format
Description:
Main article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.67 KB
Format:
Item-specific license agreed upon to submission
Description: