• English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
    Communities & Collections
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
SUAIRE
  1. Home
  2. Browse by Author

Browsing by Author "Sandvik, H. E."

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Identification of microcystins in a Lake Victoria cyanobacterial bloom using LC–MS with thiol derivatization
    (Elsevier, 2013-04-06) Miles, C. O.; Sandvik, H. E.; Rundberget, T.; Wilkins, A. L.; Rise, F.; Ballot, A.
    Microcystins are cyclic heptapeptides from cyanobacteria which are responsible for poisonings of livestock and humans. Cyanobacteria also produce a range of peptides and other compounds that can result in complex chromatograms when samples are analysed by LC– MS. Thiol derivatization of the a,b-unsaturated amide present in most microcystins was recently shown to simplify analysis of LC–MS chromatograms of a Microcystis culture, making it easier to identify peaks corresponding to microcystins in complex mixtures. This method was applied to analysis of extracts taken from a natural cyanobacteria bloom in Mwanza Gulf, Lake Victoria, Tanzania, in 2010, revealing the presence of numerous putative microcystin analogues in the sample. Results were verified using LC–MS2, LC–MS/MS with precursor-ion scanning, and LC–HRMS, leading to identification of 8 major and 17 minor microcystins in the sample, including analogues of microcystin-RY, -RL and -RA. Microcystin-YR (2), -RR (3), and -RY (9) were isolated from bloom material from Lake Victoria, and the structure of 9 was confirmed by NMR spectroscopic analysis and NMR spectral comparison with 2 and 3. Confirmation of the structure of MC-RY (9) facilitated detailed analysis of its MS2 spectrum, thereby supporting the structures of related analogues tentatively established on the basis of MS analyses

Sokoine University of Agriculture | Copyright © 2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback