• English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
    Communities & Collections
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
SUAIRE
  1. Home
  2. Browse by Author

Browsing by Author "Mlebus, Festo Joseph"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    A simple convolutional neural network architecture for monitoring Tuta absoluta (Gelechiidae) infestation in tomato plants.
    (Sokoine University of Agriculture, 2021-05) Mourice, Sixbert K.; Mlebus, Festo Joseph; Fue, Kadeghe G.
    Tomato leaf miner (Tuta absoluta (Gelechiidae)) is a serious tomato insect pest in Tanzania, and its management or control still posess significant challenge. If left uncontrolled, the loss inflicted by the miner can be as high as 100%. Successful management of the pest may leverage on an integrated pest management (IPM) approach which, requires high throughput data on damage signs over space and time. This needs, in turn, a robust technique for pest monitoring. This study uses a deep learning technique to detect infestation symptoms of T. absoluta on tomato plants. The technique is rapid, automated and doesn’t require trained or experienced personnel. An experiment was carried out at Sokoine University of Agriculture (SUA), where two sets of tomato plants (cv. Asila F1) were planted in a screen house and in an open field. High-quality images of the tomato leaves were captured from both sets at seven days intervals for 70 days following transplanting. More images were collected from tomato gardens around Morogoro town. Collected images were labeled as being infested or non-infested. A simple convolution neural network (CNN) architecture with four convolution layers, three pooling layers, one flat layer and one dense layer, powered by Keras library and python’s Tensorflow backend, was developed in R-Software. The model accuracy was 90% on training and 82% on test data sets. This study suggests that the model can accurately identify T. absoluta infestation in tomato plants to a considerable extent. An in-depth discussion of the technique is provided in the paper.

Sokoine University of Agriculture | Copyright © 2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback