• English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
    Communities & Collections
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
SUAIRE
  1. Home
  2. Browse by Author

Browsing by Author "Lolila, Nandera Juma"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Modelling and mapping forest above-ground biomass using earth observation data
    (Science Publishing Group, 2022) Madundo, Sami Dawood; Mauya, Ernest William; Lolila, Nandera Juma; Mchelu, Hadija Ahmed
    Accurate information on above-ground biomass (AGB) is important for sustainable forest management as well as for global initiatives aimed at combating climate change in the Tropics. In this study, AGB was estimated using a combination of field and Sentinel-2 earth observation data. The study was conducted at Magamba Nature Reserve in Lushoto district, Tanzania. Field plot-based AGB values were regressed against eighteen Sentinel-2 remote sensing variables (bands and vegetation indices) using Random Forest (RF) models based on centroid and weighted approaches. Results showed that the weighted model had the highest fit and precision (pseudo-R 2 = 0.21, rRMSE = 68.23%). A prediction map was produced with a mean AGB of 223.47 Mg ha -1 which was close to that of the field (225.19 Mg ha -1 ). Furthermore, the standard deviation of the AGB obtained from the map (i.e 174.04 Mg ha -1 ) was relatively lower as compared to the one obtained from the field-based measurements (i.e 97.42 Mg ha -1 ). This study demonstrated that Sentinel-2 imagery and RF-based regression techniques have potential to effectively support large scale estimation of forest AGB in the tropical rainforests.

Sokoine University of Agriculture | Copyright © 2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback