• English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
    Communities & Collections
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
SUAIRE
  1. Home
  2. Browse by Author

Browsing by Author "Hyandye, Canute"

Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Evaluation and prediction of the impacts of land cover changes on hydrological processes in data constrained southern slopes of Kilimanjaro, Tanzania
    (MDPI, 2021) Said, Mateso; Hyandye, Canute; Mjemah, Ibrahimu Chikira; Komakech, Hans Charles; Munishi, Linus Kasian
    This study provides a detailed assessment of land cover (LC) changes on the water balance components on data constrained Kikafu-Weruweru-Karanga (KWK) watershed, using the integrated approaches of hydrologic modeling and partial least squares regression (PLSR). The soil and water assessment tool (SWAT) model was validated and used to simulate hydrologic responses of water balance components response to changes in LC in spatial and temporal scale. PLSR was further used to assess the influence of individual LC classes on hydrologic components. PLSR results revealed that expansion in cultivation land and built-up area are the main attributes in the changes in water yield, surface runoff, evapotranspiration (ET), and groundwater flow. The study findings suggest that improving the vegetation cover on the hillside and abandoned land area could help to reduce the direct surface runoff in the KWK watershed, thus, reducing flooding recurring in the area, and that with the ongoing expansion in agricultural land and built-up areas, there will be profound negative impacts in the water balance of the watershed in the near future (2030). This study provides a forecast of the future hydrological parameters in the study area based on changes in land cover if the current land cover changes go unattended. This study provides useful information for the advancement of our policies and practices essential for sustainable water management planning
  • Loading...
    Thumbnail Image
    Item
    Predicting land use/cover changes and its association to agricultural production on the slopes of Mount Kilimanjaro, Tanzania
    (Taylor & Francis Group, 2021) Said, Mateso; Hyandye, Canute; Komakech, Hans C.; Mjemah, Ibrahimu C.; Munishi, Linus K.
    Increasing demand for food production results in Land use and land cover (LULC) changes, which afflicts the provision of ecosystem services in high mountain areas. This work used time-series LULC and selected spatial metrics to predict the LULC changes for Kikafu-Weruweru-Karanga (KWK) watershed (on the southern slopes of Mt. Kilimanjaro) for the next decade. LULC maps were generated by classifying time-series satellite images. We further predicted the implications for selected staple crop production over the next decade. The simulated LULC shows expansion in built-up (by 32.55%/27.04 km2) and agriculture (by 39.52%/52.0 km2) areas from 2018 to 2030. These results suggest that urbanization is likely the next biggest threat to water availability and food production. Grasslands and wetlands are expected to decrease by 57.24% and 39.29%, respectively. The forest area is likely to shrink by 6.37%, about 9.82 km2, and 1.26 km2 being converted to agriculture and built-up areas, respectively. However, expansion in agricultural land shows very little increase in staple food crop production records, suggesting that farm size plays a minor role in increasing crop production. Predicting the near future LULC around KWK is useful for evaluating the likelihood of achieving development and conservation targets that are set locally, nationally and internationally.

Sokoine University of Agriculture | Copyright © 2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback