• English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
    Communities & Collections
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
SUAIRE
  1. Home
  2. Browse by Author

Browsing by Author "Chamuya, N."

Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Combining airborne laser scanning and Landsat data for statistical modeling of soil carbon and tree biomass in Tanzanian Miombo woodlands
    (Springer Open, 2017-04-17) Egberth, M.; Nyberg, G.; Næsset, E.; Gobakken, T.; Mauya, E; Malimbwi, R.; Katani, J.; Chamuya, N.; Bulenga, G.; Olsson, H.
    Background: Soil carbon and biomass depletion can be used to identify and quantify degraded soils, and by using remote sensing, there is potential to map soil conditions over large areas. Landsat 8 Operational Land Imager satellite data and airborne laser scanning data were evaluated separately and in combination for modeling soil organic carbon, above ground tree biomass and below ground tree biomass. The test site is situated in the Liwale district in southeastern Tanzania and is dominated by Miombo woodlands. Tree data from 15 m radius field-surveyed plots and samples of soil carbon down to a depth of 30 cm were used as reference data for tree biomass and soil carbon estimations. Results: Cross-validated plot level error (RMSE) for predicting soil organic carbon was 28% using only Landsat 8, 26% using laser only, and 23% for the combination of the two. The plot level error for above ground tree biomass was 66% when using only Landsat 8, 50% for laser and 49% for the combination of Landsat 8 and laser data. Results for below ground tree biomass were similar to above ground biomass. Additionally it was found that an early dry season satellite image was preferable for modelling biomass while images from later in the dry season were better for modelling soil carbon. Conclusion: The results show that laser data is superior to Landsat 8 when predicting both soil carbon and biomass above and below ground in landscapes dominated by Miombo woodlands. Furthermore, the combination of laser data and Landsat data were marginally better than using laser data only.
  • Loading...
    Thumbnail Image
    Item
    A national forestry resources monitoring and assessment of Tanzania (NAFORMA)
    (FAO, 2010) Vesa, L.; Malimbwi, R. E.; Tomppo, E.; Zahabu, E.; Maliondo, S.; Chamuya, N.; Maliondo, S.; Nsokko, E.; Otieno, J.; Dalsgaard, S.
    In Tanzania, the state and trends of the forestry resources are largely unknown. The existing information is fragmented and outdated. Reliable information on Tanzanian forest resources is mainly constrained by the lack of institutional capacity. Under the National Forest Programme of Tanzania, the National Forestry Resources Monitoring and Assessment (NAFORMA) was identified as a priority activity for the Forest and Beekeeping Division (FBD). The results of NAFORMA are needed to support the national policy processes for the enhancement of sustainable forest management (SFM) while at the same time addressing issues of Reduced Emissions from Deforestation and Forest Degradation (REDD) and Green House Gas (GHG) as international reporting obligations. Yet, the demand of the stakeholders in Tanzania for data and information on the state of the forestry resources is continuously expanding. This project is planned to develop complete and sound baseline information on the forest and tree resources, assist the FBD to set up a specialized structure and put in place a long term monitoring system of the forestry ecosystems. The inventory will eventually yield information about vegetation cover, forest resources, forest utilization, and importance of forests and forest product for communities in Tanzania. When the inventory exercise is based on statistically sound sampling design, careful field work, and advanced data analysis, the final inventory report will provide estimates for biomass and carbon in Tanzanian forest lands. This information will serve emerging demands when building up forest monitoring system and international carbon trade schemes. Proper planning is crucial for the project to meet its goals. This includes preparation of field manual to enable field crews to collect relevant data for the project. The purpose of this field manual is to provide the FBD inventory staff with structured information on the inventory techniques that will lead to the achievement of the intended output.

Sokoine University of Agriculture | Copyright © 2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback