• English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
    Communities & Collections
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • New user? Click here to register. Have you forgotten your password?
SUAIRE
  1. Home
  2. Browse by Author

Browsing by Author "Barron, J."

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Land cover transition in Northern Tanzania
    (2016-10-10) Tumbo, S. D.; Kahimba, F.C.; Ouedraogo, I.; Barron, J.
    Land conversion in sub-Saharan Africa has profound biophysical, ecological, political and social consequences for human well-being and ecosystem services. Understanding the process of land cover changes and transitions is essential for good ecosystem management policy that would lead to improved agricultural production, human well-being and ecosystems health. This study aimed to assess land cover transitions in a typical semi-arid degraded agro-ecosystems environment within the Pangani river basin in northern Tanzania. Three Landsat images spanning over 30 years were used to detect random and systematic patterns of land cover transition in a landscape dominated by crop and livestock farming. Results revealed that current land cover transition is driven by a systematic process of change dominated by the following: (i) transition from degraded land to sparse bushland (10·8%); (ii) conversion from sparse bushland to dense bushland in lowland areas (6·0%); (iii) conversion from bushland to forest (4·8%); and (iv) conversion from dense bushland to cropland in the highlands (4·5%). Agricultural lands under water harvesting technology adoption show a high degree of persistence (60–80%) between time slices. This suggests that there is a trend in land-use change towards vegetation improvement in the catchment with a continuous increase in the adoption of water harvesting technologies for crop and livestock farming. This can be interpreted as a sign of agricultural intensification and vegetation regrowth in the catchment.

Sokoine University of Agriculture | Copyright © 2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback