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ABSTRACT

PM2.5 prediction plays an important role for governments in establishing policies to control the emission of excessive atmospheric

pollutants to protect the health of citizens. However, traditional machine learning methods that use data collected from ground-

level monitoring stations have reached their limit with poor model generalization and insufficient data. We propose a composite

neural network trained with aerosol optical depth (AOD) and weather data collected from satellites, as well as interpolated

ocean wind features. We investigate the model outputs of different components of the composite neural network, concluding

that the proposed composite neural network architecture yields significant improvements in overall performance compared to

each component and the ensemble model benchmarks. The monthly analysis also demonstrates the overall superiority of

the proposed architecture for the southern and central Taiwan stations in the months when land-sea breeze events frequently

occur.

1 Introduction

Particulate matter (PM) is composed of air pollutants emitted into the atmosphere through human activities, urban development,

and industrialization. PM with an aerodynamic diameter less than or equal to 2.5 micrometers (µm) (PM2.5) has been linked

with cerebrovascular, cardiovascular, and pulmonary diseases1–5. In the Global Burden of Diseases study, PM2.5 was ranked

the sixth leading cause of human death6. One measure against PM2.5 harm is to predict precise PM2.5 concentrations; many

governments have established ground monitoring stations to record PM2.5 concentration to enact policies to control excessive

atmospheric pollutants.

Taiwan’s Environmental Protection Administration (EPA) has divided Taiwan into seven air quality zones according to

geographical and meteorological conditions. Of these air quality zones, the middle and southern air quality zones suffer the

most serious air pollution, which is associated with local air pollution emission, unfavorable atmospheric diffusion conditions,

and another important reason: land-sea breezes7, 8. We propose a neural network architecture to improve PM2.5 prediction in

southern and central Taiwan with wind data merged from monitoring stations on land and sea. The literature shows that the

characteristics of weather and air pollution are widely considered and play important roles in PM2.5 prediction. However, the

low spatial coverage of air pollution monitoring stations presents a challenge that limits the performance of common air quality

prediction models trained using known factors9 (remotely transported PM2.5 and other air pollutants).

In addition to PM2.5 events caused by local emission, poor atmospheric diffusion conditions, and remote transport, PM2.5

concentrations in central and southern Taiwan often reach the national warning threshold due to land-sea breezes10. Simulations

from the literature have shown that land-sea breeze events occur with a northwest wind onshore formed during the day and

east winds offshore at night8. However, this land-sea breeze effect is difficult to detect merely by monitoring station data. We

further introduce large-coverage wind features which enable our models to detect land-sea breezes by interpolating monitoring

data collected from Central Weather Bureau (CWB) stations on land and on sea.

The literature shows that the introduction of machine learning (ML) methods such as feedforward neural networks

(FNNs)11, 12, convolutional neural networks (CNNs)13, convolutional long short-term memory (ConvLSTM)9, 14 and random

forests15–17 improve the performance of PM2.5 prediction. Recently, the development of deep neural network (DNN) approaches

has overcome the weakness of other ML methods with their ability to capture complex interactions between datasets from

different domains. In our case, the introduction of DNN techniques facilitates the learning of spatiotemporal variation and the



distribution of air pollutants from massive datasets. The presence of unknown factors also affects PM2.5 prediction, especially

for long-term prediction18. For better prediction, the ensemble models (EMs) produce the softmax-weighted average of

several ML model outputs to outperform DNNs19. AdaBoost (AD)20, generalized additive models (GAM)21, 22, random forests

(RF)20, 22, and extreme gradient boosting (XGBoost)20, 21, 23 are popular EMs for PM2.5 prediction. Recently, the composite

neural network24 has outperformed the EM methods in PM2.5 prediction9. A composite neural network consists of individually

pre-trained DNN components, each of which utilizes knowledge from datasets; component outputs are then connected as an

acyclic tree. The leaf outputs are weighted by trained variables and collectively taken as an ensemble node, instead of being

softmax weighted as in EM. In this work, we build a remotely transported pollutants (RTP) model9, a composite neural network

consisting of two DNN components pre-trained by heterogeneous datasets from multiple sources to improve PM2.5 prediction

in southern and central Taiwan.

We not only train the PM2.5 prediction model using local meteorological and air pollution monitoring data, but we also

introduce large-scale satellite images of East Asia and large-scale weather data to aid our model in capturing the spatiotemporal

distribution of remotely transported PM2.5. Composite neural network models that include multiple factors are also introduced

to improve PM2.5 prediction in southern and central Taiwan. We present the results of the model performance analysis in

different dimensions and scales and interpret the effect of the proposed input features and architecture for PM2.5 prediction for

37 monitoring stations in southern and central Taiwan.

2 Materials

2.1 Study region and air quality data

The study region is located in the south and central part of Taiwan between 21°25′ south and longitude 120°18′ and 120°97′

east. We created a grid area of 234×80 = 18720 km2 that covers the study area, where each individual grid cell has a spatial

resolution of 1 km. The air pollutants from gas include PM10 with a diameter of 10 µm, nitrogen dioxide (NO2), other nitrogen

oxides (NOx), ozone (O3), carbon monoxide (CO), and sulfur dioxide (SO2), all of which strongly influence the formation and

future status of PM2.5
25. In this work, we used hourly air pollutant data for three years (2014, 2015, 2016) from the Taiwan

EPA (https://opendata.epa.gov.tw).

2.2 Aerosol optical depth data from MAIAC algorithm
Aerosol optical depth (AOD) products are typically generated by dark target (DT) and deep blue (DB) algorithms at spatial

resolutions of 3 to 10 km. However, AOD retrieval is challenging, especially when thick smoke is observed by satellite-based

monitoring devices, which view the smoke as clouds. This makes retrieved AOD data unreliable.

Multiangle atmospheric correlation implementation (MAIAC) is an advanced AOD retrieval algorithm based on time

series analysis that has been proven reliable for predicting PM2.5
26. The accuracy of MAIAC AOD in China and East Asia

has been validated by the AErosol RObotic NETwork (AERONET) ground measurement network27. Given MAIAC’s strong

performance and global coverage, we use these data to capture information on remote PM2.5 transported long distances, for

example, from one country to another9.

In this work, we collected three years (2014, 2015, and 2016) of MAIAC AOD data at a 1×1 km2 spatial resolution from

NASA (https://ladsweb.modaps.eosdis.nasa.gov). The AOD products cover two tiles of the investigation area.

AOD preprocessing is described in Section 3.2.

2.3 Remote meteorological data

PM2.5 can float in the air for 4 to 7 days28 and can be transported from one place to another with the help of meteorological

features. Meteorological features are also involved in the formation of PM2.5
28.

We used three years (2014, 2015, and 2016) of meteorological data from two different sources available in the remote

area to capture more remote pollutants. The first source is data on temperature, pressure, vertical velocity (VVEL), absolute

vorticity (ABSV), lifted index (LFTX), wind speed (ws) and wind direction (θ ) at pressure levels from 10 mb (millibars)

to 1000 mb from the National Center for Environmental Prediction Final (NCEP FNL) Operational Global Analysis data

(https://rda.ucar.edu/datasets/). NCEP FNL data is provided in grids of 28×28 km2 at six-hour intervals. We

pre-processed the data and converted them to hourly intervals, as explained in Section 3.2.

The second source is buoy monitoring stations that record the hourly wind speed and direction over the oceans. The ocean

wind (OW) influences the transportation of remote PM2.5 across the East China Sea to Taiwan. Therefore, we created a grid

area that covers the remote area where each individual grid cell has a spatial coverage of 1×1 km2. We constructed feature

maps by filling nonobserved grid cells using kriging interpolation, based on windcos, windsin, and wind speed calculated from

Center Weather Bureau (CWB) stations and buoy weather monitoring devices. Other preprocessing is described in Section 3.2.

By interpolating non-observed grid cells with CWB stations on land and buoy weather monitoring devices on the ocean, we

assemble wind feature maps which are reliable within our research area, which is encircled by buoy monitoring devices.
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2.4 Local meteorological data

The dispersion and transportation of PM2.5 is strongly influenced by meteorological features (rainfall, pressure, temperature,

humidity, wind speed, and wind direction)26. In this work we downloaded these features from the CWB website (http:

//opendata.cwb.gov.tw/index), which included hourly data from 337 monitoring stations. We preprocessed the data

as explained in Section 3.2 using spatial interpolation to populate all nonobserved grid cells and vectorize wind speed and wind

direction data as described in Section 3.1.

3 Methods

3.1 Wind feature vectorization

Our wind feature maps derive from wind features composed of speed and direction. Wind direction data are usually represented

in polar coordinates, which must be converted to vector form. We vectorized the wind feature from wind speed at a particular

angle into meridional (v-wind) and zonal (u-wind) components. To isolate the wind speed feature from the direction features,

we then normalized u-wind and v-wind by dividing them by the wind speed to yield the u-wind (windcos) and v-wind (windsin)

direction, which represent the meridional and zonal components of the unit wind vector.

3.2 Data preprocessing

Data preprocessing includes conversion from the monitoring station-based areas to a grid, linear interpolation, spatial interpola-

tion to populate empty grid cells, data cleaning, and spatial downscaling. For the hourly prediction task, we vectorized the wind

direction into zonal (windcos) and meridian (windsin) components of the meteorological dataset (NCEP) as described above.

We also used linear interpolation to convert the meteorological dataset (NCEP) to hourly intervals from a six-hour interval.

We cleaned the MAIAC AOD data at 550 nm by filtering out poor quality grid values, after which we interpolated using the

remaining grid cells. We also downscaled the spatial dimension of each remote tile (h28v06 and h29v06) to 300×300 km2

from 1200×1200 km2 using maximum pooling14 to fit the available memory of the GPU. Then, for the hourly predictions, we

repeated the daily reading of each grid cell 24 times to match the hourly interval of other datasets.

To capture the spatiotemporal characteristics of the speed and direction of the ocean wind over the sea, we created a grid

area (492×396 = 194,832 km2) inside the remote area with each grid cell covering 1×1 km2. We created a feature map by

populating the dataset in the grid area according to the latitude and longitude coordinates of the monitoring stations (CWB and

buoys). We used kriging interpolation to populate the remaining grid cells that did not match the station coordinates. Shown in

Fig. 1 is an example of the results after kriging interpolation on the CWB and buoy dataset. Maximum pooling was applied to

the grid area to reduce the spatial dimensions to 246×198 km2 to match the memory of the computing resource.

Similarly, we converted the study regions to the grid area (234×80 cells) and created the feature map by populating the grid

cells with the observed air quality and meteorology data according to the coordinates of the monitoring stations (37 EPA, 174

CWB) and using four nearest neighbors (4-NN) to populate grid cells outside of these coordinates.

3.3 Modeling methods

The proposed composite neural network models —- RTP with DNN components (base, STRI) —- were trained over two years

(2014, 2015) of data and tested on one year (2016). All models were constructed using Keras with a TensorFlow backend and

trained on an NVIDIA GPU with 11 GB of memory.

3.3.1 STRI component

The spatiotemporal remote information neural network (STRI)9 is a component of the RTP model that captures remotely

transported PM2.5 and predicts local PM2.5 concentration. We added ML layers (CNN, ConvLSTM) to the STRI model to

capture the spatiotemporal characteristics of the new heterogeneous dataset (ocean wind). We included the ocean wind data to

capture more spatial-temporal data on long-range PM2.5 transported towards Taiwan.

In this work, the large STRI model with multiple ML layers predicts local PM2.5 concentration of 37 EPA stations from the

next 4 hours (+4hr) to the next 72 hours (+72hr). The model uses large and heterogeneous datasets from remote areas (AOD,

meteorology, ocean wind) with local PM2.5 as input. The idea is to capture spatiotemporal characteristics of individual features

of the remote area, concatenate these, and then merge them with local features (PM2.5) to predict local PM2.5 concentration.

Furthermore, to fit the large STRI model into the GPU memory, we divided the model into two components, as shown in

Fig. 2. STRI_fe, the first component9, is used for the extraction of remote pollutants (ERP) given the AOD input from two tiles

with their meteorology dataset. STRI_p, the second component, is used for prediction given the ERP input, local features, and

spatiotemporal ocean wind features (Fig. 2). The detailed configuration of STRI model is described in detail in Supplementary

Table 1.

After dividing the model into two components, we borrowed techniques from previous work9 to fine-tune the individual

components with fewer training parameters to improve the final prediction results.
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Figure 1. Left side: CWB and buoy monitoring stations. Right side: distribution of ocean wind dataset after kriging

interpolation.

Figure 2. STRI model components STRI_fe (a) and STRI_p (b) with modifications indicated by red dashed line
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3.3.2 Base component

The base model9 is a component of the RTP model that predicts local +4hr to +72hr PM2.5 concentration using local features

only. The input to the base model is the air quality features (EPA), the weather features (CWB), the weather forecast covering

the study area, and the time to predict PM2.5 of 37 EPA stations. The base model predicts PM2.5 concentration using a single

dataset as input. The model is described in detail in Supplementary Fig. 1.

3.3.3 RTP model

Given the prediction output of its pre-trained components (STRI and the base model), the RTP model outputs the final PM2.5

predictions for the 37 EPA stations by hour. The RTP model is described in detail in Supplementary Fig. 1.

4 Evaluation

4.1 Metrics

We evaluated the proposed models using the root mean square error (RMSE), which measures the difference between the hourly

predicted PM2.5 and its true value. In this work, the RMSE is the squared mean of the error between the ground truth and the

predicted value at every hour among the monitoring stations of interest:

RMSE =

√

1

n
∑

T

t=1∑
n

i=1
(yt,i − ŷt,i)2

, (1)

where yt,i and ˆyt,i are the true and predicted value of monitoring station i at hour t respectively, T is the length of the prediction

sequence and n is the total number of monitoring stations.

4.2 Evaluation of proposed architecture

We conducted experiments to show the PM2.5 hourly prediction performance of the proposed architecture by comparing them

with benchmarks and also to evaluate the contribution of each input feature to the prediction performance. In our architecture,

each model was trained with the corresponding data from 2014 and 2015 and evaluated with the data from 2016.

1. We first compared the prediction performance of RTP_ow with its components (STRI pre-trained with ocean wind and the

base model) to evaluate the improvement of the composite neural network architecture with respect to PM2.5 prediction.

2. We compared the PM2.5 prediction performance of RTP models composed of the STRI pre-trained with ocean wind

(RTP_ow) and RTP models composed of the STRI pre-trained without ocean wind (RTP_no_ow) components respectively

to evaluate the effect of pre-training with ocean wind data on hourly PM2.5 prediction.

3. We further compared the PM2.5 prediction performance of the RTP model with its components, after which we compared

the RTP model with other ensemble models (ADA, GAM, RF, XGB). RTP and the ensemble models use the same

inputs: the prediction output of STRI and the base model. The main objective of these comparisons is to show that RTP

outperforms its pre-trained components and other ensemble techniques.

4. Finally, we present the monthly PM2.5 prediction performance of models trained under the proposed architecture

to compare the model performance during months when land-sea breezes affect southern and central Taiwan to the

performance during the rest of the year.

4.3 Grouping of monitoring stations

To accurately analyze the effect of ocean wind on PM2.5 prediction with land-sea breezes, we selected the 28 stations most

affected by land-sea breezes and annotated these as LS stations, as listed in Supplementary Table 2. The remaining nine stations

(Xianxi, Lunbei, Mailiao, Taixi, Xingang, Puzi, Xinying, Annan, and Hengchun) are annotated as normal stations.

5 Results

5.1 RTP and its components

Fig. 3 (top left) shows that RTP and STRI both significantly outperform the base model for short-term prediction (+4hr to

+32hr). However, for long-term prediction, STRI is worse than the base model, while RTP exhibits the best PM2.5 prediction

performance. Fig. 3 (top right) shows the relative improvement in the average RMSE over the base model by prediction hour

for both RTP and STRI for the LS and normal stations: the proposed composite neural network architecture greatly improves

the LS stations.
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Figure 3. Top left: average RMSE for RTP and components. Top right: relative improvement (%) in average RMSE over base

model for RTP and components. Bottom: average RMSE of RTP and other ensemble models.

5.2 Effect of pre-trained components on RTP model

To evaluate the effect of ocean wind data on pre-trained STRI components with respect to hourly PM2.5 prediction, we compared

RTP composed of two different pre-trained STRI models: STRI pre-trained with PM2.5 and AOD data (RTP_no_ow), and

STRI pre-trained with PM2.5, AOD, and ocean wind data (RTP_ow). In Fig. 4, comparing RTP_ow to RTP_no_ow shows that

ocean wind features do not help long-term PM2.5 prediction; however, Table 1 shows that in terms of average RMSE over the

prediction hours, RTP_ow outperforms RTP_no_ow. This shows that ocean wind helps pre-trained components of composite

neural network models to improve the overall PM2.5 prediction performance.

5.3 RTP model and other ensemble models

As ensemble models such as AdaBoost, generalized additive models, random forests, and XGBoost have been widely used

for PM2.5 prediction, we further compared the RTP model trained under the proposed architecture with these models. In this

experiment, we input the prediction output from both the STRI and the base model components into RTP and the ensemble

models. In Fig. 3 (bottom), the RTP model outperforms the ensemble models (ADA, GAM, RF, XGBoost) at every prediction

hour. This shows that the proposed composite neural network architecture has the best overall PM2.5 prediction performance in

southern and central Taiwan with components pre-trained using large-scale AOD, weather and ocean wind data.
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Table 1. Average RMSE for land-sea (LS) and normal stations for RTP pre-trained with (RTP_ow) and without (RTP_no_ow)

ocean wind

RTP_no_ow RTP_ow

LS stations 13.4834 13.4037

Normal stations 13.2319 13.2190

All stations 13.4222 13.3588

Figure 4. Average RMSE in every prediction hour for RTP and STRI pre-trained with (_ow) or without (_no_ow) ocean wind

5.4 Monthly analysis

Above, we show that RTP_ow significantly improves the PM2.5 prediction performance in the overall time sequence. However,

land-sea breeze events do not occur throughout the year. Since the purpose of our work is to improve the PM2.5 prediction

performance for stations in southern and central Taiwan using the proposed model trained with ocean wind features, which

we expect to allow the recognition of land-sea breeze events, we separated the PM2.5 prediction performance of RTP_ow in

all of 2016 into one-month intervals for both LS and normal stations, as shown in Fig. 5. Previous studies show that land-sea

breezes occur frequently in spring and early summer. These monthly prediction results show that, in terms of average RMSE,

LS stations outperform both normal stations and all stations for every prediction horizon in March, April, and May. In June

and August, when PM2.5 pollution is the lowest in the year, it is difficult to distinguish RMSEs of LS and normal stations. In

Supplementary Fig. 2, we present the monthly prediction results for autumn and winter: clearly, RTP_ow exhibits superior

prediction performance for normal stations in September, October, December, and January. In summary, the proposed model

produces an improved PM2.5 prediction performance for stations in southern and central Taiwan, especially LS stations, in

months when land-sea breezes occur frequently.

6 Conclusion

We propose a composite neural network architecture that uses components pre-trained with large-scale weather features and

ocean wind to improve PM2.5 prediction in southern and central Taiwan. The neural network RTP_ow, which uses STRI,

pre-trained with PM2.5, AOD, large-scale weather features, and ocean wind features as components, achieved the best overall

PM2.5 prediction performance compared to its individual components and other ensemble models. Monthly analysis reveals

that the proposed model yields improved PM2.5 prediction for stations in southern and central Taiwan in months when land-sea

breeze events occur frequently.

7 Data availability

Te data that support the fndings of this study are available from the corresponding author upon reasonable request.
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Figure 5. Monthly average RMSE
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