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EXTENDED ABSTRACT 

 

Rodent pest outbreaks are major concern for agriculture in Africa and Tanzania in 

particular, especially in drier areas such as arid and semi-arid agro ecosystems.                       

This is due to the fact that, if the problem cannot be treated with seriousness it deserves, 

80% of the potential harvest may be lost. Crop losses occur at all stages (i.e. field to 

market). However, higher losses occur at the field/harvest and storage where rodents play 

a major role. Severe rodent outbreaks have been reported in many areas in Tanzania e.g. 

the recent outbreak reported by farmers in Isimani division, Iringa, Tanzania. Based on 

literature, it is estimated that rodents cause 15% of the total crop pre and post-harvest 

losses. The problem is compounded by unpredictable rodent pest outbreaks, late control 

actions, and lack of adequate interventions guided by ecologically based rodent 

management strategies. Recently, efforts have been taken to develop an ecologically 

based rodent management strategy which requires knowledge about the pest species' 

ecology in order to reduce the damage experienced by farmers. However, this is 

constrained by the limited knowledge about rodent populations on individual farms to 

allow smarter approaches for control of rodent outbreaks. 

 

Structural characterization and mapping of vegetation habitats could contribute 

knowledge about rodent populations on individual farms. Such studies may include 

describing and measuring vegetation and habitat structural component using geo spatial 

and statistical approaches (i.e. life form and cover types, terrain, soil and management 

practices) across various landscapes in different seasons and their influence to small 

mammal abundance. Recently, it has been reported that remote sensing derived vegetation 

indices could be used to explain rodent pest abundance at fine scale. Vegetation indices 

such as the Normalized Difference Vegetation Index (NDVI) have been reported to 

correlate well with vegetation productivity (i.e. biomass), forage quality and quantity             
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(i.e. food) at moderate resolutions over a range of spatial-temporal scales. Such indices 

have been reported to be vital tools for studying vegetation habitat characteristics                   

(i.e. vegetation cover) and their association with rodents in space and time. Therefore, the 

current study was envisaged to evaluate the potential of NDVI of common vegetation 

habitats derived from satellite remote sensing data for monitoring rodent population 

dynamics and outbreaks in order to contribute knowledge for refining ecologically based 

rodent management strategies. More specifically, the study was carried out to i) 

characterise and spatially map the vegetation habitats associated with small mammal 

abundance in smallholder farming agro-ecosystem; ii) determine the Normalised 

Difference Vegetation Index (NDVI) of common vegetation habitats and rainfall patterns 

in the study area; and iii) establish a relationship between NDVI of the common 

vegetation habitats and small mammals distribution and abundance in space and time.  

 

The study was conducted between September 2015 and June 2016 in Isimani Division, 

Iringa Tanzania. A combination of field survey and Geospatial approach including the use 

of Multi temporal Landsat 8 (Operational Land Imager (OLI)) images were applied to 

identify and map the vegetation habitats and estimation of NDVI. The NDVI of common 

vegetation habitats and rainfall patterns were also explored. Small mammals were trapped 

in the mapped vegetation habitat units, and counted for abundances. In total, nine main 

types of vegetation habitats were investigated. A total of 597 small mammals, potentially 

related to major rodent pests were trapped. Different levels of scales and resolutions were 

considered. Linear regression analysis was employed to establish the important habitat 

characteristics (predictor variables) for relating rodent abundance with rainfall and NDVI. 

Linear regression analysis was also used to clarify the relationships between ground 

measured rodents and predicted rodent abundance from rainfall and NDVI across seasons, 

and calculation of the Pearson correlation coefficient (r) at P ≤ 0.05.  
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Results show that, vegetation habitats identified based on land use/cover types were 

largely dominated by agriculture covering about 60% of the plateau landscape with 

intensive maize cultivation and frequent reported rodent outbreaks. The findings show 

further that, the plateau habitats support a large number of small mammals (80%) than the 

rest of the habitats in the other landscapes. A strong correlation (r=0.96) was obtained 

between ground measured point rainfall data and the real time Tropical Rainfall 

Measuring Mission (TRMM) Precipitation Analysis rainfall data across the identified 

vegetation habitats. Spatial variability of mean NDVI values with seasonal pattern across 

the studied vegetation habitat units were obtained whereby, higher values (0.2 to 0.6) 

were observed in wet season and lower values (0.0 to 0.2) in the dry season. The findings 

have demonstrated a good positive correlation between rainfall and NDVI along the 

elevation gradient of the studied landscape units with escarpment having higher 

correlation (r=0.688) than the plateau (r=0.653) and the valley floor (r =0.652).                      

This relationship suggests that rainfall patterns could be easily predicted from a link 

between NDVI and elevation as predictor variables.  

 

Results also show that, NDVI and rainfall derived from satellite data (Landsat 8 (OLI) 

images) have positive influence on the rodent abundance over the studied seasons. It was 

observed that 98% of the predicted rodent abundance was explained by NDVI while 

rainfall explained only 85%. NDVI predicted rodent abundance showed a strong positive 

correlation (r=0.99) with the field measured rodent abundance. The obtained NDVI 

values provide a robust measure of the presence and abundance of vegetation across the 

studied vegetation habitats which could be very useful in monitoring rainfall dynamics 

and as a proxy for predicting rodent pest abundance. The findings have revealed that 

rainfall, NDVI, and elevation were important predictor variables that could be considered 

for predicting small mammals or rodent pest abundance in the study area.  
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These results support the hypotheses that NDVI of common vegetation habitats has the 

potential for monitoring rodent population dynamics under smallholder farming                  

agro-ecosystems. Hence, NDVI could be used to model rodent outbreaks within a 

reasonable short time compared to the sparse and not readily available rainfall data. 

Further research is required to explore the existing relationship between vegetation 

habitats with their associated microclimate and rodent pests in the hotspot areas.             

In addition, relationship between NDVI and rodent pest species composition and 

community structure in different habitats and seasonal rainfall patterns should be 

explored. 
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CHAPTER ONE 

 

1.0 GENERAL INTRODUCTION 

1.1 Agro Ecosystem Patterns and Small Mammal Dynamics 

Rodent pest outbreaks are a major concern for agriculture in Africa and Tanzania in 

particular, especially in drier areas such as arid and semi-arid agro ecosystems (Table 1.1) 

(Mwanjabe and Leirs, 1997; FAO, 2006; Dabien et al., 2010; Byrom et al., 2014; 

Hieronimo et al., 2014a, b; Mulungu et al., 2015). The problem is compounded by 

unpredictable rodent pest outbreaks, late control actions and lack of adequate interventions 

guided by ecologically based rodent management strategies (Makundi and Massawe, 

2011). Generally, integrated rodent pest management (IRPM) and biological control of 

rodent for most countries in Africa are almost unexplored phenomena (Leirs, 1999; 

Mulungu et al., 2015). Hence more interventions are required to evaluate the problem of 

rodent pests especially in the smallholder agro ecosystems.  

 

Rodent outbreaks and their effects on agriculture can be traced back to 19
th

 century for 

most countries in Africa (Fiedler, 1988; Neerinckx et al., 2010). It has been reported that 

about 5% of the 400 existing rodent species in the African continent cause damage to 

agricultural crops (Mwanjabe and Leirs, 1997; Makundi and Massawe, 2011).                      

In sub-Saharan Africa (SSA) including Tanzania rodents are an integral part of 

biodiversity and agro-ecosystems (Leirs et al., 2010; Mulungu et al., 2008). Certain 

species of rodent have widely been reported as pests for crops and clearly exhibit habitat 

preference (Mulungu et al., 2015). For example, Mastomys natalensis (the shamba rat), 

Tatera-GB and Graphiurus commonly found in agricultural areas, grass/shrubs and 

forest/woodlands respectively are reported to be major crop pests (Massawe et al., 2011).   

 

http://scialert.net/fulltext/?doi=jbs.2010.333.340&org=11#529315_ja
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Table 1.1: Rodent outbreaks cases reported from various studies conducted in some 

selected agro ecosystems in Tanzania  

Location Description Source 

Isimani division in 

Iringa Tanzania 

Pre and Post harvesting damages that 

resulted in food insecurity 

Tewele,  (2015); personal 

communication 

Hembeti village in 

Mvomero district, 

Morogoro, 

Tanzania. 
 

About 20-60% crop losses both in 

fields and stores yearly. 

Mulungu et al. (2015) 

Chunya district in 

Mbeya, Tanzania 

Loss of about 40 – 80 % of planted 

maize seeds in the season of 

outbreaks 
 

Mwanjabe and Leirs 

(1997) 

Lindi region 

Tanzania 

Rodent outbreaks about 1400 rats per 

hectare, causing yield loss of up to 

48% in maize fields over the season 
 

FAO (2006) 

Serengeti National 

Park, Arusha region 

Reported positive relationship 

between rainfall and rodent 

outbreaks 
 

Byrom et al. (2014) 

Lushoto district in 

Tanga Region 

Rodents reported as vector for plague 

endemic disease  

Dabien et al. (2010) 

Hieronimo et al. (2014, ) 

 
Rodent pest outbreaks threaten agriculture in Tanzania that currently contributes 24% of 

Gross Domestic Product (GDP) (Leirs et al., 2010).  Rodents cause a wide range of 

damage and losses to crops such as cereals, legumes, vegetables, root crops, cotton and 

sugar cane (Fig. 1.1) (Abass et al., 2014; Suleiman and Rosentrater, 2015). Based on 

literature, it is estimated that rodent pests cause 15% of the total crop pre- and post-harvest 

losses (Mulungu et al., 2015). A major concern is, if the problem cannot be treated with 

the seriousness it deserves, 80% of the potential harvest may be lost (Neerinckx et al., 

2010; Makundi and Massawe, 2011).  

 

In Tanzania, the major constraints to maize production include pre- and post-harvest 

losses largely attributed to insect pests, diseases, weeds, rodents, fungi, pathogens, and 

viruses (Suleiman and Rosentrater, 2015). The post-harvest losses (PHL) of maize can be 

described by leaky food-pipeline (Fig. 1.1) (Abass et al., 2014; Suleiman and Rosentrater, 

2015). 
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Figure 1.1: Postharvest losses pipeline for maize  

(Source: Abass et al., 2014; Suleiman and Rosentrater, 2015).  

 

As indicated in the pipeline, losses occur at all stages (field to market). However, higher 

losses occur at the field/harvest and storage where rodents play a major role. Severe rodent 

outbreaks have been reported in many areas in Tanzania e.g. the recent outbreak reported 

by farmers in Isimani division, Iringa, Tanzania (Myllymaki, 1989).   

 

Rodent crop damage is generally compounded by unpredictable outbreaks, late control 

actions, and lack of inadequate interventions guided by ecologically based rodent 

management strategies (Makundi and Massawe, 2011).  

 

Detailed modelling and understanding of complex specie-environmental relationship 

require continuous habitats tracking in ecological settings for successful outbreak 

predictions and control (Leirs, 1999; Taheri, 2010). Therefore fine-tuned ecologically 

based rodent management strategies including models that consider common vegetation 

habitat characteristics are vital. 
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1.2 Vegetation and Rodents Dynamics 

Vegetation patterns and abundance of rodents have been related at coarse spatial scales i.e. 

macro and meso scale in ecological studies (Makundi and Massawe, 2011;               

Petorelli et al., 2011; Sun et al., 2015). For example, in the Usambara Mountains, 

Tanzania, Ralaizafisoloarivony et al. (2014) demonstrated that natural forest, cultivated 

lands and shrubs were the most favoured habitats by rodents.   

 

Contrasts in vegetation and land use particularly in the agro-ecosystem of smallholder 

farmers and its influence on the abundance of rodents in a complex landscape are not well 

understood. Existing predictive models designed to provide early warning of potential 

rodent damage are mainly based on the amount and distribution of short rains hence are 

still insufficient to guide rodent pest management strategies (Marstona et al., 2007; 

Makundi and Massawe, 2011). For example, the logistic regression models developed to 

demonstrate the relationship between rodent outbreaks and rainfall amount during short 

(vuli) rainy season in Tanzania (Leirs, 1999; Mulungu et al., 2010), were site specific and 

scattered over a wide geographical and ecological areas hence insufficient for predicting 

rodent dynamics under smallholder farming agro-ecosystems.  

 

Although most of these models form an integral part of rodent control strategies, they still 

require biological information particularly on vegetation dynamics that will make them 

effective in responding to rodent outbreaks.  Recently, it has been reported that vegetation 

variables such as plant vigor, vegetation density and canopy cover including patterns 

could be used to explain rodent abundance at micro-ecological scale in a geographical 

gradient (Bannar-Martin, 2014; Hieronimo et al., 2014b). Other vegetation characteristics 

that have been used to explain the abundance of rodents include biomass, greenness and 

litter (Williams, 1998; Hieronimo et al., 2014a). Vegetation indices such as Normalized 
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Difference Vegetation Index (NDVI) have been used as tools for studying vegetation 

habitat characteristics and their association with rodents (Pettorelli et al., 2011;                

Hurley et al., 2014) hence, vital to be considered in this study. 

 

1.3 Models for Predicting Rodents Dynamics and Outbreaks 

Models for predicting rodent population and dynamics have involved complex interactions 

of factors ranging from direct environmental factors (i.e. vegetation, rainfall and terrain 

patterns) to indirect factors such as NDVI (Stenseth et al., 1975; Dabien et al., 2010; 

Pettorelli et al., 2011; Pirotti et al., 2014). For example, the population dynamic model by 

Stenseth et al. (1975) was developed in Alaska to evaluate rodents’ abundance (including 

birth and death rate), habitats heterogeneity and dispersal by considering environmental 

and genetic patchiness (Fig. 1.2). The maximum activity budget of rodents in their natural 

habitats as evaluated by the model, influence utilization of energy through grazing as a 

function of vegetation, rodent size and its energy needs. The suitability of this model in 

prediction and dependency on the external environmental factors such as vegetation and 

rainfall pattern were not well evaluated. Hence, multi environment factors (i.e. vegetation, 

rainfall, geomorphology, soil, and terrain) considered in the current study along with 

NDVI to develop rodents’ probabilistic predictive models for dominant vegetation habitats 

in small holder farming agro ecosystem to ensure food security by reducing rodent 

outbreaks.  

 

Rainfall pattern has also been used as a key parameter for the prediction of abundance and 

distribution of rodents (Fig. 1.3) (Mulungu et al., 2010). Fiedler (1988) observed that 

many rodent outbreaks were preceded by abundant rainfall at the end of a dry spell. 

However, predictions based on rainfall pattern remained to be theoretical and in most 

cases have been proven to be site specific and even more difficult in areas where rainfall 
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data are not available. Hence in this study the relationship between rainfall and NDVI 

were established as a proxy for predicting rodent abundance and outbreaks.   

 

 
Figure 1.2: A typical basic structure Model for rodent population dynamics (Source: 

Stenseth et al., 1975) 
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Figure 1.3:  Probabilistic model for prediction of rodent outbreaks based on rainfall 

pattern (source: Mulungu et al., 2010). 

 

Leirs et al. (1996) on the other hand, developed a conceptual rodent outbreaks prediction 

model to forecast occurrence of rodent outbreaks. The key factor was rainfall during the 

short rainy (Vuli) season. Since rainfall during the long rainy (Masika) season, was less 

important, the conceptual model was not sufficient to guide an ecologically based rodent 

management strategy (Fig. 1.4). Therefore, in this study, vegetation characteristics                 

(i.e. life form and cover), seasonal rainfall pattern, management practices, soil and terrain 

characteristics (i.e. slope gradient, slope shape, slope aspect and Topographical Position 

Index (TPI)) are used to describe rodents’ habitats in order to improve rodent pest 

prediction ability for the available models. 

 

Leirs et al. (1996) developed a demographic model to predict M. natalensis outbreaks in 

Morogoro, Tanzania using trends of vegetation and rainfall pattern. In all these studies 

heterogeneity of habitats was reported to be a key challenge for understanding complex 

environmental trends towards prediction of rodent dynamics (Pettorelli et al., 2011; 

Ralaizafisoloarivony et al., 2014).    
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Figure 1.4: Schematic diagram for conceptual rodent outbreaks prediction model 

based on vuli rainfall season  

Source: Leirs et al. (1996)    
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Recently, it has been reported that remote sensing derived vegetation indices could be 

used to explain rodents’ abundance at fine scale (Dabien et al., 2010; Pettorelli et al., 

2011; Bannar-Martin, 2014). Data from Advanced Very High Resolution Radiometer 

(AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS) and the 

Satellite Pour l’Observation de la Terre (SPOT) have been used to derive metrics for 

analysing ecological processes including vegetation structural characteristics (i.e. plant 

height, life form, vegetation cover and type) for prediction of rodents’ distribution and 

abundance (Pettorelli et al., 2011; Ralaizafisoloarivony et al., 2014).  

 

Indices such as the Normalized Difference Vegetation Index (NDVI) have been reported 

to correlate well with vegetation productivity (i.e. biomass), forage quality and quantity 

(i.e. food), track crops growing season dynamics and different land cover types (i.e. forest, 

woodland and agriculture) at moderate resolutions over a range of spatial-temporal scales 

(Hurley et al., 2014; Pirotti et al., 2014; Kimaro, 2015). Such indices have been reported 

to be vital tools for studying vegetation habitat characteristics (i.e. vegetation cover) and 

their association with rodents in space and time (Pettorelli et al., 2011).  

 

Studies conducted in Central Argentina to investigate the relationships between climate 

and NDVI in an agricultural ecosystem were able to demonstrate the dynamics exhibited 

by rodent population in the area (Andreo et al., 2009). Other studies have been conducted 

to relate NDVI and small mammal’s abundance in Crete, Greece (Taheri, 2010), 

monitoring responses of biodiversity to environmental change at global scale worldwide 

(Marstona et al., 2007), rodent population in agro-ecosystems of Kilombero valley 

Tanzania (STARS personal communication, 2015) and disease vectors in agro ecosystem 

of Lushoto district Tanzania  (Dabien et al., 2010).  
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These studies have demonstrated that integration of NDVI in models to predict rodent 

outbreaks has not been done adequately (Pettorelli et al., 2011; Pirotti et al., 2014).              

The current readily and freely available remotely sensed data (i.e. satellite images, google 

earth images and SRTM) has made it possible to derive indices such as NDVI for 

incorporation in the models that could be used to explain rodent outbreaks. In this study 

NDVI was evaluated to establish vegetation indices of common vegetation habitats for 

predicting rodent dynamics in semi-arid areas of Tanzania. Evaluation of common 

vegetation habitats using NDVI is vital for elucidating ecological processes in rodent 

communities (Pettorelli et al., 2011).  NDVI provides important biological information on 

vegetation dynamics that can be used to model rodent outbreaks within a reasonable short 

time when compared to the sparse weather and not readily available weather data.  

  

1.4 Justification 

In Tanzania, the average annual yield loss of maize and rice due to rodent damage is 

estimated to be around 5 to 15% (Makundi et al., 2010). Predictive models developed as 

an integral part of rodent control strategy for early warning of rodent damage in areas with 

frequent rodent outbreaks are still inadequate (Leirs et al., 1996; Mwanjabe and                   

Leirs, 1997). 

 

To some extent these models (i.e. logistic and demographic models) have not considered 

adequately the relationship between vegetation, land use and small mammals particularly 

rodents in smallholder farming agro-ecosystems. Biological information that considers the 

effect of vegetation patterns on rodent populations and outbreaks under smallholder 

farming conditions is of paramount importance for refining ecologically based rodent 

management strategies.  
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Therefore, the current study is envisaged to use NDVI of common vegetation habitats 

derived from satellite remote sensed data in smallholder farming landscapes to provide 

information on vegetation indices for refining probabilistic models for early prediction of 

rodent population and outbreaks. The knowledge gained from this study is aimed to be 

used by rodent ecologists and agricultural extension staff to develop field rodent 

management strategies for reducing crop damage. Therefore, the study contributes 

knowledge towards sustainable rodent management strategies to small scale farmers for 

improved livelihood and poverty reduction.  

 

1.5 Objectives 

1.5.1 Overall objective 

The overall objective of the study was to establish the potential of NDVI of common 

vegetation habitats derived from satellite remote sensed data for monitoring rodent 

population dynamics and outbreaks under smallholder farming agro-ecosystems.    

 

1.5.2 Specific objectives  

i. To map and characterize vegetation habitat patterns associated with rodents. 

ii. To determine Normalised Difference Vegetation Index (NDVI) of common 

vegetation habitats and rainfall pattern. 

iii. To establish a relationship between NDVI of common vegetation habitats and 

rodent distribution and abundance in space and time.  
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CHAPTER TWO 

 

PAPER ONE 

 

2.0 CHARACTERIZATION AND MAPPING OF VEGETATION HABITATS 

ASSOCIATED WITH SMALL MAMMALS ACROSS ISIMANI 

LANDSCAPE IN IRINGA, TANZANIA 

 

ABSTRACT 

Structural characterization and mapping of vegetation habitats is vital for early warning 

probabilistic prediction of rodent pest outbreaks. Such knowledge in sub-Saharan Africa is 

poorly understood. The current study was carried out to characterise and spatially map the 

vegetation habitats associated with small mammal abundance in smallholder farming agro-

ecosystems. The Normalised Difference Vegetation Index (NDVI) of common vegetation 

habitats and rainfall patterns were also explored. A combination of field survey and Multi 

temporal Landsat 8 (Operational Land Imager (OLI)) images were used to identify the 

vegetation habitats and estimation of NDVI. Small mammals were trapped in the mapped 

vegetation habitat units, and counted for abundances. In total, nine main types of 

vegetation habitats were investigated. A total of 597 small mammals, potentially related to 

major rodent pests were trapped. Geospatial and linear regression analysis were employed 

to establish the important habitat characteristics (predictor variables) for relating rodent 

abundance with rainfall and NDVI. Results show that vegetation habitats identified based 

on land use/cover types were largely dominated by agriculture covering about 60% of the 

plateau landscape with intensive maize cultivation and frequently reported rodent 

outbreaks. The findings show further that the plateau habitats support large number of 

small mammals (80%) than the rest of the habitats in the other landscapes. A strong 
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correlation (r=0.96) was obtained between ground measured point rainfall data and the 

real time Tropical Rainfall Measuring Mission (TRMM) Precipitation Analysis              

(TMPA-RT) rainfall data across the identified vegetation habitats. Spatial variability of 

mean NDVI values with seasonal pattern across the studied vegetation habitat units were 

obtained whereby, higher values (0.2 to 0.6) were observed in wet season and lower 

values (0.0 to 0.2) in the dry season. The obtained NDVI values provide a robust measure 

of the presence and abundance of vegetation across the studied vegetation habitats which 

could be very useful in monitoring rainfall dynamics and as a proxy for predicting rodent 

pest abundance. The findings have revealed that rainfall, NDVI, and elevation were 

important predictor variables that could be considered for predicting small mammals or 

rodent pest abundance in the study area. Further research is required to explore the 

existing relationship between vegetation habitats with their associated microclimate and 

rodent pests in the hotspot areas. 

 

Keywords: vegetation habitats, terrain characteristics, NDVI, small mammals  
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2.1 Introduction 

Habitats characterization in space and time require a thorough understanding of the 

vegetation patterns, land use and physical environment including topography, and hydro-

geomorphological parameters for which abundance of small mammals can be modelled 

(Debinski et al., 1999; Orrock et al., 2000; Komyakova, 2009). Such integrative 

evaluation describes additional habitat attributes of physical environment or human 

disturbance at fine scales than that evaluated by the field assessment alone (Kaufmann et 

al., 1999).  

 

Habitat characteristics and mapping in most ecological models incorporate field data of 

limited spatial extent and/or remote sensing data (i.e. Landsat images) that do not 

characterize the vertical structure (i.e. vegetation composition) of the habitats pattern 

(Vierling et al., 2008). Such barrier require integrative information framework presented 

for spatially explicit GIS based ecological modelling such as the land cover classification 

system (Di Gregorio, 2005; Morris and Kokhan, 2007). This integrative niche based 

techniques can provide potential physical habitat attributes (i.e. vegetation cover and 

structure) to describe and model species’ geographic distribution in a remote sensing and 

Geographic Information Systems (GIS) framework (Ofulla et al., 2013). For example 

Multi spectral (Landsat 8 (OLI), Radar (SRTM) and LIDAR derived habitat metrics 

combined with field data can characterize well three dimensional habitat structure and 

composition of terrestrial or aquatic environments at fine scale across broad landscapes 

(Robinson et al., 2009; Pettorelli et al., 2011). This can be achieved through measured and 

derived habitat variables associated with small mammal presence or absence (Robinson et 

al., 2009; Pettorelli et al., 2011; Pirotti et al., 2014; Ralaizafisoloarivony et al., 2014a).  
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Small mammal pest outbreaks is still a major problem in most smallholder farming agro-

ecosystem in Tanzania (Mulunngu et al., 2015). A major constraint is diversification in 

habitat preferences by various small mammal species (Hackley et al., 2010; Taylor et al., 

2012). Although habitat selection by small mammals is known to be influenced by trends 

and patterns in vegetation, little has been done to evaluate the use of habitat metrics and 

characterisation of habitat conditions as predictive variables (Orrock et al., 2000; 

Jorgensen, 2004; Hamrick, 2007). This requires fine-tuned studies on vegetation across 

various landscapes in space and time, to understand habitat characteristics and identify 

specific variables that may contribute in depiction of habitats features that influence small 

mammal pest abundance (Mulungu et al., 2015). In this study, habitat characterisation and 

identification for specific variables were carried out as a step to overcome barriers for 

establishing the link between habitat uses, preference, selection and, ultimately fitness by 

various small mammal pest species in smallholder farming agro-ecosystem (Baltensperger 

and Huettmann, 2015).  

 

Change in physical habitat attributes and ecological conditions can influence suitability of 

models for predicting small mammal pest outbreaks (Baltensperger and Huettmann, 2015). 

Such influence could be attributed to the new resulting drivers and interactions of the 

changes that can occur in the physical habitat attributes and ecological conditions              

(Vesey-Fitzgerald, 1966; Baltensperger and Huettmann, 2015).  

 

Despite available studies on the effects of plant diversity on small mammals, predicting 

the direction and magnitude of these effects remains elusive (Guisan and Thuiller, 2005; 

Makundi et al., 2010; Makundi and Massawe, 2011; Meredith et al., 2013). The major 

challenge could be attributed to scale and limited predictors for modelling rodent 

distribution and abundance (Pettorelli et al., 2011; Taheri, 2010). Quantitative species 
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distribution and diversity pattern of rodents is influenced by habitats complexity and 

heterogeneity (Mulungu et al., 2008). Therefore, integration of multi landscape variables 

and Spectral Signature Analysis (SSA) for vegetation habitats to predict small mammal 

outbreaks is vital.  

 

In the west Usambara Mountains Tanzania, Ralaizafisoloarivony et al. (2014a) and 

Hieronimo et al. (2014b) explored vegetation and various landform characteristics 

respectively that influence small mammal dynamics. Although significant work was done, 

additional studies are required in other agro-ecological zones of Tanzania to clearly 

exhibit mapped vegetation habitats and landform metrics and conditions as predictive 

variables for small mammal dynamics particularly in agro-ecosystems of smallholder 

farmers (Hieronimo et al., 2014a). Such studies may include; to describe and measure 

vegetation and habitat structural component using geo-spatial and statistical approaches 

(i.e. life form and cover types, terrain, soil and management practices) across various 

landscapes in different seasons and their influence to small mammal abundance                   

(James and Shugart, 1970; Petorelli et al., 2011; Hieronimo et al., 2014b).  

 

Therefore, the objectives of the study were to i) characterise and spatially map the 

vegetation habitats associated with small mammal abundance in smallholder farming agro-

ecosystems and ii) determine the Normalised Difference Vegetation Index (NDVI) of 

common vegetation habitats and rainfall patterns in the study area. This intervention was 

explored in order to provide key vegetation habitat variables that can be modelled to 

predict small mammal pest outbreaks in most smallholder farming agro-ecosystems of 

semi-arid Tanzania. 
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2.2 Materials and Methods 

2.2.1 Description of the study area 

This study was carried out in Isimani division located in the north-eastern part of Iringa 

district, Tanzania. The area is located between Universal Transverse Mercator (UTM) 

coordinates, 640 000 m E and 840 000 m E and 9 100 000 m N and 9 240 000 m N, Zone 

36 M covering an area of about 12 66.7 km
2 

(Fig. 2.1). Generally the study area is divided 

into three major zones based on landform characteristics (i.e. elevation and topography) as 

Plateau (1073 –1590m a.s.l), Escarpment (851 –999m a.s.l), and rift valley floor           

(704 -777 m a.s.l)). Landscape characteristics including vegetation, landforms and soils 

are described in Table 2.1.  

 

Rainfall in the study area is influenced by topography (Mbilinyi, 2000). The rainy seasons 

are associated with the seasonal movement of the Intertropical Convergence Zone (ITCZ). 

The area has mean annual precipitation ranging from 200 to 750 mm/year. It is 

characterised by low erratic rainfall and periodic droughts giving it a characteristic of a 

semi-arid nature where precipitation is below potential evapotranspiration.                         

Mean minimum and maximum temperature are between 12
0
C in July and 29

0
C in 

November respectively and has a unimodal rainfall pattern. Due to low and unevenly 

distributed rainfall, agricultural production is low (poor harvest) and irregular (Mbilinyi, 

2000). The study area shows large differences in relief dissection and intensity, vegetation 

and land use patterns, and human activities.  
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Figure 2.5: Location map of the study area  
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Table 2.1:  Landscape characteristics of the studied sites 

Landscape units                  Landscape characteristics 

Plateau 

Elevation: 1295 

– 1590 m asl. 

 Undulating hills (convex low ridge summits alternating with 

linear slopes grading to concave bottomlands) 

 The convex low ridges summits - red soils with intensive 

maize cultivation, scattered acacia trees, grasses and shrubs 

 The concave bottom lands - black soils with dense acacia 

trees and shrubs  

 The linear ridge slopes; transition between convex and 

concave bottomlands - largely cultivated with maize 

  
The escarpment 

Elevation: 926 - 

1295 m asl. 

 A long, steep slope at the edge of the plateau descending to 

the rift valley floor of the central rift valley in Tanzania 

 Consist of rocky hills, boulder with pockets of red soils 

 Large part is a conserved forest of miombo nature with 

grasses and shrubs underneath 

  
The Low lying 

rift valley floor 

Elevation: 700 

– 925 m asl. 

 Rift valley floor - part of the central rift valley system 

bounded by central plateau (Dodoma-Singida system) and 

the southern highlands 

 Dominantly grazing lands with scattered sorghum cultivation 

and settlement 

 Crop cultivation and livestock keeping - practices                    

(semi nomadic type) 

 Cultivation - rainfed and irrigated agriculture along Ruaha 

Mkuu River which is feeding to Mtera dam 

 Dominant vegetation -  acacia wood land with baobab 

(Adansonia digitata) 

 

Land use is dominated by agriculture and off-farm activities including livestock keeping 

(Mbilinyi, 2000). These land uses are surrounded by patches of natural vegetation and 

utility woodlots adjoining the plateau on the southern side and rift valley floor in the 

northern part. Isimani division was purposively selected for this study due to recently 

reported rodent outbreaks (Tewele, C. personal communication, 2016). Six sampling sites 

namely Uyole, Mkungugu, Nyang’oro (in the plateau), Upper escarpment, Lower 

escarpment (escarpment) and Izazi (rift valley floor) were selected for detailed study and 

characterisation on landform, vegetation pattern and management practices (Fig. 2.1). 
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2.2.2 Acquisition of remote sensing data 

Multi temporal Landsat 8 (Operational Land Imager (OLI)) images were obtained to map 

vegetation habitat characteristics such as land use and land cover for various periods of 

dry and wet seasons (Tables 2.2 and 2.3). All the obtained images were already terrain 

corrected, orthorectified and geo-referenced. Shutter Radar Topographic Mission Digital 

Elevation Model (SRTM DEM) image of 1 arc-second for global coverage product      

(Table 2.4) and Google earth images of the area were also acquired. SRTM-DEM was 

used to rectify the Google earth images and to derive the landform attributes such as 

elevation ranges, slope gradient, slope aspect, slope shape, relief and Topographical 

Position Index (TPI). The Orthorectified Google earth satellite images were used for 

interpretation of land use and land cover (LULC) and to develop training datasets for 

supervised classification of vegetation habitat characteristics. 

 

Table 2.2:  Temporal characteristics of Landsat 8 (OLI) data acquisition 

Seasonal Required period  L 8 (OLI 30 m) date SRTM DEM 

(30 m) 

 

Dry 

season 

SD May, June and July 14
th

 Jun-16  

 

23
rd

 Sept-14 

 

MD August and September 1
st
 Aug and 18

th
 Sept-15 

ED October and November 20
th

 Oct and 21
st
 Nov-15 

    

Wet 

season 

SW December and January 7
th

 Dec-15 and 8
th

 Jan-16 

MW February 11
th

 Feb-16 

EW March and April  10
th

 March-16 

Key:  SD = start dry, MD = mid dry, ED = end dry season, SW = start wet, MW = mid 

wet, EW = end wet season. 
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Table 2.3:  Spectral characteristics of Landsat 8 (OLI) remote sensing data  

Band Name Band width 

Spectral resolution 

(μm) 

Spatial 

resolution 

Sensor Radiometric 

Resolution 

1 Coastal/Aerosol 0.435 - 0.451 30m OLI 8-bits 

2 Blue 0.452 – 0.512 30m OLI 8-bits 

3 Green 0.533 - 0.590 30m OLI 8-bits 

4 Red 0.636- 0.673 30m OLI 8-bits 

5 Near Infrared 0.851 - 0.879 30m OLI 8-bits 

6 SWIR-l 1.566 - 1.651 30m OLI 8-bits 

7 SWIR-2 2.107 - 2.294 30m OLI 8-bits 

8 Pan 0.503 - 0.676 15m OLI 8-bits 

9 Cirrus 1.363 - 1.384 30m OLI 8-bits 

Key:  OLI = operational land imager, SWIR-1 = Short wave infra-red one 

and SWIR-2 = Short wave infra-red two. (Source: USGS archives, 

www.usgs.com)  

 

Table 2.4: SRTM Digital Elevation Model image of 1 arc-second for global coverage 

product  

s/n Criteria Description 

1 Spatial resolution 30m 

2 Spectral resolution C-band (l = 5.6 cm) 

3 Data type 1 arc-second data (30 m, 

SRTM-1) 

Key:  SRTM = Shuttle Radar Topographic Mission                             

(Source: USGS archives, www.usgs.com)  

 

2.2.3 Characterisation and mapping of the vegetation habitats  

Field survey, remote sensing and Geographic Information System (GIS) were used for 

characterisation and mapping of the vegetation habitats and their associated characteristics 

(Weih and Riggan, 2010; Ralaizafisoloarivony et al., 2014a). Vegetation habitats 

characteristics (i.e. cover, life form, management practices and land use and land cover 

(LULC)) were described and estimated using sample square quadrats (i.e. 100 m × 100 m) 

placed randomly along zones of each studied site. Spatial location of the vegetation 

habitats were recorded using Etrex 10 Garmin Global Position System (GPS) receiver with 

http://www.usgs.com)/
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accuracy of less than 5 m. Land Cover Classification System (LCCS) and Earth Cover 

Classification System (ECCS) guidelines by FAO and Open Foris Initiative (OFI) 

respectively, were used to identify vegetation types to obtain General Habitat Classes 

(GHC) (Di-Gregorio, 2005, Adia et al., 2015).   

 

2.2.3.1 Generation of general vegetation classes from land use and land cover 

Landsat 8 (OLI) satellite images captured in mid dry season, free from clouds with 30 m 

spatial resolution were used for mapping land use and land cover as described by a set of 

classifier (i.e. life form, cover, soil texture, crop type, and land use and management 

practices) for each studied site (Table 2.5). Landsat 8 (OLI) satellite images from other 

seasons as described in Table 2.2 were used to verify and improve the classification 

obtained from the satellite image of the mid dry season. Spatial referenced field data 

allowed to define characteristic tone, texture and pattern of the land cover classes on the 

display of the Landsat 8 (OLI) colour composite image (Hieronimo et al., 2014b).              

These attributes were described at macro and micro spatial scales to obtain sample data 

sets for classification of the image into land use/land cover attributes (Table 2.5) for 

predicting small mammals’ distribution and abundance in space and time 
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Table 2.5: Macro and Micro vegetation habitats characteristics based on land 

use/land cover classes  

Macro Class Micro Class Description 

Bare  1. Bare Areas ≥ 60%/ALULCc without crop  

Forest  2. Forest 

3. Woodland 

≥ 60%/ ALULCc without crop 

≥ 60%/ ALULCc without crop 

Herbaceous  4. Grassland 

5. Brush land 

≥ 60%/bare and tree < 40%, 

without crop 

Shrub 6. Shrubs land 

7. Thicket 

≥ 80% without crop and tree. 

Agriculture  8. Cultivated 

9. Fallow 

10. Agroforestry 

≥ 5%/ ALULCc it can be fallow 

(uncultivated) or cultivated.  

Built up 11. Settlement 

12. Structures 

Manmade structures e.g. buildings 

and roads 

Water bodies 13. Dam 

14. River 

15. Wetland 

≥ 20%/ ALULCc includes 

seasonal and permanent rivers, 

stream, lakes dam and wetlands 

Key:  ALULCc = Any Land Use or Land Cover class  

 

2.2.3.2 Classification 

Supervised classification was performed to cluster pixels in the Landsat 8 (OLI) satellite 

images into twelve classes namely: bare, woodland with patches of shrubs, woodland, 

forest patches, shrubland, built up areas, agricultural areas, wetlands with riverine 

vegetation, mixed land uses, wetlands/grassland, grassland and grassland with patches of 

shrubs. This was done by defining region of interest (ROI) that represented each of the 

twelve land cover classes in the output image. The maximum likelihood classification was 

performed to assign each pixel in the image to the class that has the highest probability to 

obtain vegetation habitat map for each studied landscape site at a spatial resolution of 30 

m by 30 m (i.e. Uyole, Mkungugu, Nyangoro (for the plateau), upper and lower 

escarpment (for the escarpment) and Izazi (for the rift valley floor). Sample data sets 

created for each vegetation habitat class was used for categorisation of the spectral classes 

into general vegetation habitat classes (land use/land cover classes) in IDRIS selva version 

17.01 and Semi-Automatic Classification Plugin (SCP) in QGIS software. 
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2.2.4 Terrain characteristics 

Digital Elevation Model (DEM) was used to obtain various landform characteristics for 

various vegetation habitats. Terrain analysis module in QGIS and IDRIS selva were used 

to obtain landform attributes namely slope gradient, slope aspect, slope shape and relief 

across the studied landscapes. Topographical Position Index (TPI) was also determined to 

obtain various landforms characteristics as described by De Reu et al., 2013 and refined to 

match the terminology of the FAO Guidelines for soil profile Description                      

(Jahn et al., 2006).  

 

Landform characteristics which includes; elevation, slope gradient (percentage), slope 

aspect (radians), slope length (m), slope shapes (straight, convexity and concavity) and 

Topographical Position Indices (TPI) obtained from SRTM-DEM using landform analysis 

tools in IDRIS selva software version 17.01. These attributes were used to extract point 

values at each data collection site for modelling rodent outbreaks.  

 

Field observed soil physical properties i.e. texture, organic matter, gravel, salinity, and 

compaction were analysed to estimates soil water tension, conductivity and water holding 

capability using the Soil and Water characteristics model by USDA (Saxton and Willey, 

2005). The technique is a set of generalized equations which describe soil tension and 

conductivity relationships versus moisture content as a function of sand and clay textures 

and organic matter (Saxton and Rawls, 2004). The soil water characteristic equations are 

valid within a range of soil textures approximately 0-60% clay content and 0-95% sand 

content. Also bulk density, gravel and salinity are estimated in the model.                                  

This information are vital for detailed evaluation of small mammal distributions with 

respect to the habitats characteristics. 
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2.2.5 Field survey  

Based on landscape characteristics, 24 quadrats (1ha or 100 X 100 m) in each sampling 

site (i.e. making a total of 144 quadrants) were geographically located for ground truthing 

and further detailed spatial landscape characterization on land use and land cover types 

(i.e. farming and management practices), landform characteristics (i.e. concavities and 

convexities, slope gradient, slope aspects, elevation), vegetation characteristics and soil 

characteristics. Additional parameters that were measured in the field include species of 

vegetation, their number, height, growth stages and crop calendar of the agricultural crops 

and related management practices. 

 

2.2.6 Compilation of climatic data 

Only one rainfall station namely Nduli Meteorological Station is available near Iringa 

Airport in the plateau landscape of the study area. This station has long-term daily rainfall 

records covering the period from 1960 to 2016. Mean daily rainfall data from this weather 

station were compiled to get an idea of rainfall distribution pattern for the study area.               

The analysis of rainfall characteristics (i.e. rainfall profile and seasonal patterns) was done 

using INSTAT software version 3.33 and the corresponding graphs were plotted using 

EXCEL computer software.  

 

Generally available rainfall data are localized to source point data and do not cover the 

whole study area neither consider spatial landscape variation hence inadequate to 

represent the dominant habitats characteristics of the study area. Therefore, to complement 

and improve this situation, monthly rainfall data derived from 3B42RT version 7 product 

data real time of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation 

Analysis (TMPA-RT) available from USGS archives (www.usgs.com) at 0.25
0
 by 0.25

0
 

grid accessed on March, 2016 were used (Huffman and Bolvin, 2015).  TMPA-RT 

http://www.usgs.com/
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monthly rainfall data were used as proxy for ground measured rainfall data from March 

2015 to March 2016 for determination of spatial rainfall across the landscape in the study 

area (Table 2.6).   

 

Table 2.6: Description of the TMPA-RT rainfall data  

Character Description 

Algorithm TRMM Multi-satellite Precipitation Analysis 

data sets  3B42RT V7 

spatial grid coverage 0.25°x0.25° lat/lon; 50°N-S 

time interval span monthly; Jan 1998-to date 

Key: TRMM = Tropical Rainfall Measuring Mission, RT = Real Time,  

         Lat/Lon = Latitude/Longitudes 

 

2.2.7 Determination of NDVI across vegetation habitats of the studied landscapes 

NDVI was determined from Landsat 8 (Operational Land Imager (OLI) sensor) satellite 

images covering the periods corresponding to start, mid and end of each dry and wet 

season (Table 2.2). It was calculated as the normalized difference in reflectance band 

between Red channel (0.636- 0.673 μm) and Near Infrared (NIR) channel (0.851 - 0.879 

μm) of electromagnetic spectrum using Equation 2.1 (Knight and Kvaran, 2014;                    

Pirotti et al., 2014).   

 

  ……….………………………………………………………………. 2.1 

 

Where by: NDVI = Normalized Difference Vegetation Index 

 R = Surface reflectance in the red portion of the 

electromagnetic spectrum 

 NIR = Reflectance in the Near Infra-Red band of the    

Electromagnetic spectrum 

 

The images were geo-referenced to EPSG: 21036 for uniform coordinate system.                            

To eliminate the effect of clouds, the Maximum Value Composite (MVC) algorithm in 

QGIS was used during NDVI data processing (Mingjun, 2007). In MVC procedure, the 



33 

 

 

multi-temporal geo-referenced NDVI data were evaluated on a pixel basis, to retain the 

highest NDVI value for each pixel location. Trends of NDVI variation for each season 

were evaluated for each vegetation habitat class across the landscape. An overall map 

showing annual mean NDVI categories was created and correlated with vegetation 

habitats classes in ArcGIS version 10.2.2. 

 

2.2.8 Data Collection on small mammals 

Trapping sites for small mammals were randomly allocated based on the reconstructed 

vegetation habitats map. A total of 144 trap sites (quadrats) were located for the six 

established sample study sites (i.e. Uyole, Mkungugu, Nyang’oro (for the plateau), upper 

and lower positions of the escarpment (for the escarpment) and Izazi village area for the 

Rift valley floor). For each sample site, 24 quadrats each measuring 100 m x 100 m were 

randomly located for detailed characterisation of vegetation habitats and small mammal 

trapping. In each quadrant 49 Sherman live traps were set, making a total of 1,176 traps in 

all 24 spatial located quadrants (Hieronimo et al., 2014a).  

 

Sherman LFA live traps (7.5 x 9.0 x 23 cm; HB Sherman Traps, Tallahassee, USA) baited 

with peanut butter and maize flour were used (Hieronimo et al., 2014b). Number of 

animals captured for each quadrat were counted and the trap success was calculated based 

on the number of small mammals trapped divided by the product of the number of traps 

used and number of trapping nights (Ralaizafisoloarivony et al., 2014a), without 

considering their species within one or different vegetation habitats over a certain period 

of time (Equation 2.2). 

 ………………………………………………………. 2.2 
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Where by: N = Number of small mammals trapped 

 Nt = Number of traps used 

 Nn = Duration in terms of nights during which the trap was set 

 

2.2.9 Data analysis 

Quantitative and qualitative assessments were employed in the exploratory analysis of 

vegetation habitats characteristics associated with small mammal abundance.                           

This includes estimation of the average and percentage cover of vegetation types, 

elevation, slope, slope shape, slope length, slope shape, soil and landform profiles. 

Wherever it was applicable the degree of association between variables was measured by 

linear regression, scatter plot analysis and the Pearson correlation coefficient (R) at                           

P ≤ 0.05.  

 

Analysis of variance (ANOVA) and Boosted Regression Trees (BRT) modelling 

technique in STATISTICA software version 13.0 and R software version 2.11 respectively 

were used to establish the important habitat characteristics (predictor variables) for 

predicting small mammal abundance and distribution. Significant variations (P ≤ 0.05) of 

the vegetation habitat and terrain characteristics among vegetation habitat types were 

identified. Geo-statistical analysis technique (i.e. maximum likelihood and surface tools) 

in ArcGIS version 10.3 were used to characterize spatially vegetation habitats along the 

Isimani landscape. 

 

2.3 Results and Discussion 

2.3.1 Vegetation habitat characteristics identified based on land use/cover types 

Land use and land cover (LULC) maps at a scale of 1: 10,000 of the studied sites (plateau, 

escarpment, and rift valley floor) are presented in Figures 2.2, 2.3 and 2.4 respectively. 

The total area of the studied sites was 534 km
2
. The plateau occupies about 267 km

2
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(50%), escarpment 178 km
2
 (33%), and rift valley floor 89 km

2
 (17%). Agriculture is the 

most important land use/cover in the plateau area where rodent pests have been reported. 

In terms of coverage, agricultural areas cover 59.2% of the plateau area, 3.3% of the 

escarpment area and 0.8% for the rift valley floor area (Fig. 2.5). As for the other land 

use/cover, forest and woodland vegetation dominated the escarpment area by 71.1% while 

sparse vegetation of acacia and baobab tree with grassland and shrubs, occupies about 

51% of the rift valley floor area (Fig. 2.5).  

 

Land use and land cover patterns can influence the biotic and abiotic characteristics with 

significant implications to small mammals (Hieronimo et al., 2014a). For example, in the 

west Usambara Mountains Tanzania, Hieronimo et al. (2014a,b) and Ralaizafisoloarivony 

et al. (2014a) observed that there was a significant variation (P<0.05) in small mammal 

abundance among Land Use and Land Cover (LULC) types. The study in the west 

Usambara Mountains, Tanzania by Ralaizafisoloarivony et al. (2014a) showed that annual 

cultivated crops habitat accounted for 80% of Mastomys natalensis while natural forest 

accounted for 60% of Praomys delectorum. Vegetation habitats and their associated 

characteristics are important indicators of the composition and abundance of small 

mammals (Mulungu et al., 2008). Any change in vegetation through human activities such 

as cultivation and cropping patterns could induce changes in the small mammal 

communities in an area.  
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Figure 2.6:  Land use/land cover (LULC) maps of the Plateau studied sites  

 (Uyole,  Mkungugu and Nyang’oro)  
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Figure 2.7: Land use/land cover (LULC) maps of the escarpment studied sites 

(Upper and Lower escarpment) 

 

 
 

Figure 2.8: Land use/land cover (LULC) map representative of the rift valley floor 

(Izazi area)  
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Figure 2.9: Proportions of vegetation habitat types based on land use/cover 

identified on different studied sites across Isimani landscape in Iringa, 

Tanzania.  
 

 

2.3.2 Terrain characteristics across Isimani landscape 

Terrain characteristics across Isimani landscape are presented in Figure 2.6 and Table 2.7. 

In the plateau area (1295 – 1590 m a.s.l.) a series of undulating hills were observed, that 

give rise to convex low ridge summits and concave valley bottoms (Fig. 2.6) mainly 

characterised by red and black soils respectively (Table 2.7).  
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The undulating hills are also characterised by the linear ridge slopes with very deep sand 

clay loam soils commonly occurring on the transition between convex and concave 

landscapes. This land unit is largely cultivated with maize where severe and frequent 

rodent outbreaks have been reported. 

 

The escarpment area (926 - 1295 m a.s.l.) forms a long stretch of about 3 km of very steep 

slopes at the edge of the plateau descending sharply to the rift valley floor (Fig. 2.6).              

The escarpment is characterised by rocky hills and boulders with pockets of red shallow 

clay loam soils (Table 2.7). A large part of the escarpment is a conserved forest dominated 

by miombo woodlands in nature with grasses and shrubs underneath. This land unit is not 

inhabited and hence no rodent outbreaks have been reported, neither have rodent 

ecological studies been carried out in the escarpment. It comprises of high small 

mammal’s diversity including Mystomys Natalensis (At the edges near the plateau), 

Graphurus, shrews and Avicansis (at the edges near valley floor). This observation 

resembles that of a study conducted in the west Usambara Mountains, Tanzania which 

indicated that, the escarpment habitat had higher rodent species diversity than other 

habitats with A. chrysophlilus and P. delectorum comprising 60% of the trapped small 

mammals (Ralaizafisoloarivony et al., 2014b).  
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Figure 2.10: Cross section of terrain characteristics depicting variation in elevation 

and slopes of the studied landscapes as captured from Digital Elevation 

Model (DEM)   

 

Table 2.7:  Selected soil physical properties in the study area determined using the 

USDA Soil Water characteristic (SPAW model) 

Key:  WP = wilting point, FC = field capacity, AW = available water,  

        SHC = saturation hydraulic conductivity, BD = bulk density  

 

 

 

Landscapes 

units 

 Means of soil properties  Textural 

class 

Soil 

colour 
 Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

WP 

(%Vol) 

FC 

(%Vol) 

AW 

(mm/m) 

SHC 

(cm/hr) 

BD 

(kg/m
3
) 

Plateau  60 12 28 18.3 28.3 93.3 0.79
 

1.5 Sandy 

clay 

loam 

Reddish, 

Black 

and 

brownish 

Escarpment  33 33 34 21.3 35 137.5 0.47 1.4 Clay 

loam 

Brownish 

and black 

Rift valley 

floor 

 52 6 42 26 37.1 110 0.76 1.5 Sandy 

clay 

Whitish 

and black 
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The rift valley floor is a low lying terrain with altitude ranging from 700 to 925 m a.s.l. 

The soils are dominantly very deep sandy clay with clayey soils in some places along the 

Ruaha Mkuu floodplain where flooded rice is grown especially during wet season (Fig. 2.6 

and Table 2.7). This land unit is predominantly grazing land (semi nomadic type) with 

scattered sorghum cultivation and settlements. Rainfed and irrigated agriculture is 

practiced along Ruaha Mkuu River which is feeding into Mtera dam. The dominant 

vegetation is acacia woodland with scattered baobab (Adansonia digitata) in some places. 

Rodent outbreaks observed not to be common in this land unit. 

 

Distinctive landscape characteristics can influence the abundance and distribution of small 

mammals (Ralaizafisoloarivony et al., 2014a). In this study it was observed that landform 

including Plateau, Escarpment and valley floor differing in altitude, slope gradient and 

slope aspect demonstrated distinctive abundance and distribution of small mammals as 

discussed in section 2.3.5. In the west Usambara Mountains, Landform and soil 

characteristics are the key factors that were reported to be associated with rodent 

abundance and rodent burrowing (Meliyo et al., 2014).  Field observations show that, 

there were many rodent burrows including wide and deep surface cracks in areas with 

heavy clay soils in the plateau landscape (predominantly maize growing area), while the 

escarpment had many surface stones and rock outcrops and boulders. These features could 

provide safe shelter for rodents from predators. Also in the plateau landscape positions 

there were food crops intercropped with trees and scattered settlements which are terrain 

features that may provide good places on which rodents could live. 

 

2.3.3  Climate, rainfall regime and seasonal cropping patterns 

Figures 2.7 and 2.8 present the cumulative mean daily rainfall and water balance for the 

study area respectively. Using rainfall data from Nduli Meteorological Station located in 
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the plateau landscape, it was observed that, Isimani area has a unimodal rainfall pattern 

with two seasons namely dry and wet season (Fig. 2.7). Dry season starts in May and ends 

in November and wet season starts at the end of November (or early December) and ends 

in April. The site has short growing period (i.e. 60 to 64 number of rainy days) attributed 

to relatively long dry season (Fig. 2.7). Based on the rainfall and evapotranspiration 

characteristics, the studied site was further divided into six seasonal periods namely Start 

Dry (June and July), Mid Dry (August and September), End Dry (October and November), 

Start Wet (December and January), Mid Wet (February/March) and End Wet (March, 

April and partly May) (Fig. 2.8).  

 

Temporal patterns of rainfall have been a key factor for determining spatial patterns of 

vegetation habitats and for predicting small mammal population dynamics in most agro 

ecosystems (Mulungu et al., 2010; Dabien et al., 2010). Vegetation production in dry 

lands is often assumed to be closely related to inter-annual rainfall variability (Herrmann 

et al., 2005). Moderate to strong linear relationships between rainfall and vegetation 

production have been noted in the drier parts (<800 mm) of South Africa and the Sahel 

(Nicholson et al., 1990; Wessels et al., 2007). However, lack of a network of accurately 

recorded rainfall time series data in the tropics and Tanzania in particular, is a problem 

faced in many studies (Grist et al., 1997).  
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Figure 2.11: Cumulative mean daily annual rainfall for Isimani area, Tanzania with 

points of maximum curvature representing mean onset and cessation of 

rainy season (day one is equal to 1
st
 of July)  

 

 

 
Key:  SD = Start of dry season, MD = mid of dry season, ED = End of dry season, SW = Start of wet 

season, MW = mid of wet season and EW = End of wet season   

 

Figure 2.12: Water balance typical for Isimani area in Iringa, Tanzania (day one is 

equal to 1
st
 of July) 
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To minimize the problem of rainfall data availability, satellite data at a resolution of 1 km 

(MODIS NDVI), and TRMM data have been used widely instead of point measurements 

of rainfall (Dabien et al., 2010; Rishmawi et al., 2016). Also, land cover and elevation 

have been integrated in the analysis to obtain NDVI-rainfall relationships in homogeneous 

areas (Grist et al., 1997; Dabien et al., 2010). In the study area only one point 

measurement of rainfall is available which is not adequate for predicting spatial 

distribution of small mammals, hence the real time Tropical Measuring Rainfall Mission 

Precipitation Analysis (TMPA-RT) was used in this study to describe rainfall pattern 

across various landscapes (http://trmm.gsfc.nasa.gov). 

 

Despite the fact that TMPA-RT provides accurate spatial and temporal measurements of 

rainfall over the tropics, it only gives information at coarse resolutions (0.25° × 0.25° 

resolution) (http://trmm.gsfc.nasa.gov), often not suited for studies at finer resolutions.                       

To describe its usefulness in the current study, a relationship was obtained between 

TMPA-RT rainfall and point rainfall measurement available in the study area as illustrated 

in Figure 2.9.  Temporal pattern of field measured rainfall resembled well with TMPA-RT 

rainfall. Since Infra-Red (IR) band depict well vegetation dynamics and used to obtain 

TMPA-RT rainfall data, hence at the escarpment presence of forest resulted to field 

measured rainfall pattern to resemble well with TMPA-RT rainfall patter.  

 

A strong positive correlation (r = 0.96) was depicted between ground measured rainfall 

data (Nduli Meteorological Station) available in the study area and real time Tropical 

Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA-RT) rainfall 

data (TRMM version 7) (Fig 2.10). In this study the influence of rainfall pattern on NDVI 

was considered as a proxy for spatial prediction of small mammals. Previous research 

showed that the reconstruction of (historical) rainfall patterns based on established 

http://trmm.gsfc.nasa.gov/
http://trmm.gsfc.nasa.gov/
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relationships between rainfall and NDVI can give satisfactory results (Grist et al., 1997; 

Immerzeel et al., 2009).  

 
Key:  SD = Start of dry season, MD = mid of dry season, ED = End of dry season,  

SW = Start of wet season, MW = mid of wet season and EW = End of wet 

season.  

Figure 2.13: Seasonal comparison for Nduli meteorological station measured rainfall 

and satellite measured TMPA-RT rainfall data for valley floor, 

escarpment and plateau respectively  

 

 

Figure 2.14:  Relationship between field measured and TMPA-RT average seasonal 

rainfall  
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2.3.4 Seasonal NDVI of different vegetation habitats across the Isimani landscape 

The mean annual Normalised Difference Vegetation Index (NDVI) across the studied 

landscape is presented in Figure 2.11. Derived mean annual NDVI values range between -

1 and +1 NDVI units, with values less than zero indicating absence of vegetation and 

values greater than 0 showing increasing amounts of green vegetation. Low values of 

mean annual NDVI were observed in the plateau landscape dominated by farmlands and 

largely in the low lying rift valley floor where the dominant land use is grazing of semi 

nomadic type with scattered sorghum cultivation and settlement (-0.06 – 0.197)                      

(Fig. 2.11). The escarpment had relatively higher values of mean annual NDVI ranging 

from 0.246 to 0.346. This landscape unit is dominantly a conserved forest characterised by 

miombo woodlands with grasses and shrubs underneath.  

 

On the other hand, Figure 2.12 describes the spatial variability of mean seasonal NDVI 

across the landscapes in different seasons. The mean seasonal pattern of NDVI for the 

landscape units (plateau, escarpment and rift valley floor) had both similarities and 

differences. The major similarity was the general spatial variability of mean NDVI value 

with seasonal pattern across the landscape units, whereby, higher values (0.2 to 0.6) were 

observed in the start, mid and end of wet season  and lower values (0.0 to 0.2) at the start, 

mid and end of dry season. In the northern flooding Pampa grasslands in Argentina, Di 

Bella et al. (2009), demonstrated the utility of coarse resolution NDVI in identifying 

patterns in seasonal and inter-annual canopy characteristics of different landscape types. 

Multiple regressions from that study showed that, NDVI values of the studied landscapes 

were positively associated with precipitation. Relationships of this nature could be used to 

predict forage production rates for animals. 
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Figure 2.15: Annual Mean NDVI of vegetation habitats across the Isimani 

landscape in Iringa, Tanzania 
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         Figure 2.16: Spatial average seasonal NDVI derived from Landsat 8 (OLI) 
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Several studies have reported the strength of the vegetation-precipitation relationship 

yielding converging results to this study that NDVI is positively correlated with 

precipitation. For example, In South Asia, seasonality of rotavirus was assessed by 

considering the association between rate of rotavirus and vegetation index, a remote 

sensing measure of the combined effects of temperature and precipitation (Jagai et al., 

2012). In a study conducted in the north-east part of Italy, NDVI from Landsat 8 

vegetation indices was used to study movement dynamics of Capra ibex (mountain goat) 

in mountain areas (Pirroti et al., 2014). In that study a correlation was obtained between 

the spatial positions of Capra ibex with respect to its movements in different periods of the 

year following in some way the phenological stage of vegetation (Pirroti et al., 2014).  

 

NDVI provides a robust measure of the presence and abundance of vegetation in a wide 

range of environmental conditions (Prince, 1991). The NDVI has been found to be very 

useful in monitoring rainfall dynamics in semi-arid and arid areas where grasslands and 

savannah bushlands are the dominant vegetation types (Hiernaux and Justice, 1986; Prince 

and Tucker, 1986), primarily because semi-arid vegetation is very sensitive to variations in 

precipitation. For example, comparative data show an approximate linear relationship 

between NDVI and precipitation in a range of semi-arid lands of Africa (Nicholson et al., 

1990). Precipitation and green vegetation dynamics are major determinants of life cycle of 

animals and insects in semi-arid lands in many parts of the world (Nicholson et al., 1990; 

Rishmawi et al., 2016). 

 

2.3.5 Habitat types and their associated characteristics and small mammal 

abundance 

Important habitat characteristics for prediction of small mammals are presented in Figure 

2.13. The predictor values range between 0 and 1 with values approaching 0 indicating 

less importance while values approaching 1 showing an increasing strength or importance 
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of a predictor variable. It was observed that rainfall, NDVI, soil texture, elevation, slope 

aspect, slope gradient, slope shape and landform were important predictor variables (in 

order of importance) that could be considered for predicting small mammals or rodent pest 

outbreaks in the smallholder farming agro-ecosystems in the study area.  

 

These results are similar with previous studies which postulated that rainfall (Mulungu et 

al., 2010) and NDVI (Taheri, 2010) are relevant variables for predicting small mammal 

abundance as illustrated in Figure 2.14. In a study conducted in the west Usambara 

Mountains, Tanzania, Meliyo et al. (2014) reported that available phosphorus, slope 

aspect and elevation were statistically significant (P<0.05) predictors for explaining 

richness and abundance of small mammals. In this study small mammal’s abundance and 

species richness also increased with increase in elevation. 

 

A study conducted by Hieronimo et al. (2014b) in the Usambara Mountains Tanzania, 

depicted that elevation was the most important predictor which contributed more than two 

thirds (80.1%) of the total predictor level of importance and showed a strong positive 

effect. In that study, elevation of 1,700 m appeared to be the threshold for a sharp increase 

in trap success. The second important predictor was the slope aspect which contributed 

11.4% of the total predictor level of importance and showed a moderate positive effect.                

In terms of elevation and slope aspect, results in that study resembles well with findings 

this study.  
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Figure 2.17: Relative ranking of small mammal predictor variables identified by   

Boosted Regression Trees (BRT) model at P < 0.05  
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Figure 2.18:  Partial dependence plots showing the effect of landscape and remote 

sensing attributes on small mammal abundance in space and time. The 

predictor becomes more significant when scatter points are fitted well 

within upper and lower limit of the confidence band at 95% confidence 

interval 



53 

 

 

The overall vegetation habitat characteristics associated with small mammal abundance 

are well presented in Table 2.8. In the plateau, agricultural areas that include cultivated 

land, mixed farming and seasonal fallow and woodland with scattered cultivation depicted 

high rodent population abundance (Mean habitat trap success (MhTs) = 25.8). Both the 

escarpment and valley floor had lower rodent abundance (MhTs ≤ 4). Primarily 

fragmentation of the vegetation habitats as influenced by terrain features appears to be key 

determinants for assessing the abundance and distribution of small mammals. For example 

the number of rodents trapped (Trn) were higher in the plateau landscape (Trn = 579) with 

higher elevation ranges (1073m – 1590m a.s.l) than in the rest of the landscapes.                                  

This agrees with findings of Meliyo et al. (2014) in the west Usambara Mountains who 

observed that, the abundance of small mammals increased with increase in elevation.  



54 

 

 

 

Table 2.8: Distribution of small mammals in various vegetation habitats across the landscape  

Landscape units Small Mammals Vegetation habitats 

Characteristics 

Av. SAR 

(mm) 
Av. S.NDVI St ER (m asl) Sa 

Slope G 

(%) 
S.shp Lf Trn 

Rp 

(%) 
MhTs 

  Agricultural areas 110.7 0.19 – 0.28 Sand clay loam 1296 – 1590  EN < 20 Straight  GUP 466 78 25.8 

Plateau Shrubland 110.7 0.26 Sand clay loam 1297 – 1590 EN  10 - 30 Straight  GUP 17 3 6.25 

  Riverine vegetation 110.7 0.346 Sand clay loam 1298 – 1590  EN < 40 Concave GUP 5 1 5 

  Mixed farming with built-up areas 110.7 0 – 0.2 Sand clay loam 1299 – 1590  EN < 10 Straight GUP 61 10 6.9 

  
Woodland with grasses and shrubs 

undergrowth 
110.7 0.25 Sand clay loam 1300 – 1590  EN < 30 Concave GUP 30 5 15   

Escarpment 

Forest and woodland 89.76 0.34 Clay loam 1200 – 900  NW < 100 Convex SRR 3 1 1 

Woodland with grasses and shrubs 

undergrowth  
89.76 0.3 Clay loam 1201 – 900  NW < 90 Convex  SRR 3 1 3 

Rift valley floor 

Woodland with grasses and shrubs 

undergrowth 
75.94 0.3 Sand clay 700 – 925  NW < 10 Straight FF 3 1 1 

Grassland with scattered cultivation and 

settlement 
75.94 0.2 Sand clay 701 – 925  NW < 10 Straight  FF 9 2 3.5 

                                                                                                                            Total 597 100   

         Key:  Av. SAR = Average seasonal annual rainfall, Av. SNDVI = Average Seasonal NDVI, St = Soil texture, ER = Elevation range, Sa = Slope aspect     

                   (NE = North east, NW = North west), slope G = Slope gradient, S.shp = Slope shape, Lf = Landform, GUP = Gently Undulating Plain,  

                   SRR = Steep Rock outcrops and rock cliffs, FF = Flat to almost flat valley flats, Trn = Number of rodents trapped, Rp = Proportion of rodent per 

                    habitat and MhTs = Mean habitat trap success.  
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2.4 Conclusions and Recommendations 

2.4.1 Conclusions  

Small mammal pest outbreaks is still a major problem in most smallholder farming agro-

ecosystems in Tanzania. The major constraint is diversification in habitat preferences by 

various small mammal species. Habitat characterization in space and time require a 

thorough understanding of the vegetation patterns, climate and terrain parameters for 

which abundance of small mammals can be predicted. Such knowledge in sub-Saharan 

Africa is poorly understood. The current study was carried out to characterize and 

spatially map the vegetation habitats associated with small mammal abundance in 

smallholder farming agro-ecosystems. The Normalized Difference Vegetation Index 

(NDVI) of common vegetation habitats and rainfall patterns were also explored.                   

The study was carried out as an intervention to provide key vegetation habitat variables 

that can be modelled to predict rodent pest abundance in smallholder farming agro-

ecosystems in Isimani division, Iringa, Tanzania. The following conclusions are made in 

the light of the findings revealed in this study: 

 

Generally, land use land cover types were observed to influence small mammal’s habitats 

fragmentation and heterogeneity in space and time. In the studied site, it was revealed that 

vegetation habitat characteristics identified based on land use land cover types are largely 

dominated by agriculture that account for about 60% of the plateau landscape with 

intensive annual and cereal crop cultivation. Forest and woodland vegetation dominated 

the escarpment while the majority of sparse vegetation of acacia type and baobab tree 

with grassland and shrubs were dominant in the rift valley floor.   

 

In the plateau area (1295 – 1590 m a.s.l.) a series of undulating hills were observed, that 

give rise to convex low ridge summits and concave valley bottoms characterised by the 

linear ridge slopes with very deep sandy clay loam soils commonly occurring on the 
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transition between convex and concave landscapes. Maize cultivation is the dominant 

land use with severe and frequently reported rodent outbreaks. 

 

A strong correlation (r=0.96) was obtained between ground measured point rainfall data 

and the real time Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite 

Precipitation Analysis (TMPA-RT) rainfall data across vegetation habitats. From this 

relationship it is suggested that rainfall pattern and NDVI could be related and used as a 

proxy for spatial prediction of small mammals. 

 

In this study, a general spatial variability of mean NDVI values with seasonal pattern 

across the studied landscape units was observed, whereby, higher values (0.2 to 0.6) were 

observed in the start, mid and end of wet season and lower values (0.0 to 0.2) at the start, 

mid and end of dry season. The results suggest that NDVI could be used as an index of 

vegetation and also as an index of food resources in the semi-arid areas of Tanzania for 

monitoring rodent pests. Also, the obtained NDVI values provide a robust measure of the 

presence and abundance of vegetation across the studied landscapes which could be very 

useful in monitoring rainfall dynamics and as a proxy for predicting rodent pest outbreaks 

in the study area. 

 

It has been demonstrated in the current study that the plateau habitats support more small 

mammals (80%) than the habitats in the other landscapes. The plateau landscape is 

largely dominated by agriculture with intensive maize cultivation, scattered acacia trees, 

grasses and shrubs, settlements in the upper and middle linear-convex slopes and dense 

acacia trees and shrubs in the concave bottom lands. This suggests that the land use/cover 

observed in this unit provides relatively "better" habitats for rodent pests in the study area. 
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Results show further that the escarpment landscape acts like an interface between the rift 

valley floor and the plateau, a place where small mammal species from both landforms 

intermix (Appendix I). For example Mystomys and Arvicanthis trapped in the 

escarpment, also were captured in the plateau and rift valley floor respectively. 

 

The study revealed that rainfall, NDVI, soil texture, elevation, slope aspect, slope 

gradient, slope shape and landform were important predictor variables that could be 

considered for predicting small mammals or rodent pest outbreaks in the smallholder 

farming agro-ecosystems in the study area 

 

2.4.2 Recommendations 

Temporal patterns of rainfall could be used to describe vegetation habitats and small 

mammal population dynamics in most agro ecosystems. However, lack of a network of 

accurately recorded rainfall time series data in the study area has posed a significant 

challenge. To minimize the problem of rainfall data availability, further research is 

recommended to explore the use of satellite data such as MODIS-NDVI, and TMPA-RT 

at fine resolution to generate rainfall data for use instead of relying on commonly not 

available point rainfall measurements. 

 

Further research to explore the existing relationship between vegetation habitats with their 

associated microclimate and small mammal particularly rodent pest’s hotspot areas is 

recommended.



58 

 

 

REFERENCES  

 

Adia B., Alfonso S. D., Anssi P., Chiara P., Danae M., Daniel W., Danilo M., Giulio M., 

Juho N., Marcelo R. and Stefano R. (2015). Collect Earth User Manual:A 

guide to monitoring land use change and deforestation with free and open. 

Forestry Department, Open Foris Initiative Food and Agriculture 

Organization of the United Nations. 129pp. 

 

Baltensperger, A. P. and Huettmann, F. (2015). Predictive spatial niche and biodiversity 

hotspot models for small mammal communities. In Alska: Applying machine 

learning to conservation planning. Landscape Ecology 30(4): 681 – 697.  

 

De Reu, J., Bourgeois, J., Bats, M., Zwertvaegher, A., Gelorini, V., De Smedt, P. and Van 

Meirvenne, M. (2013). Application of the topographic position index to 

heterogeneous landscapes. Geomorphology 186: 39 – 49. 

 

Debien, A., Neerinckx, S., Kimaro, D. and Gulinck, H. (2010). Influence of satellite-

derived rainfall patterns on plague occurrence in northeast Tanzania. 

Tanzania International Journal of Health Geographic 9(1): 1 – 10.  

 

Debinski, D. M., Kindscher, K. and Jakubauskas, M. E. (1999). A remote sensing and 

GIS-based model of habitats and biodiversity in the Greater Yellowstone 

Ecosystem. International Journal of Remote Sensing 20(17): 3281 – 3291.  

 

Di Bella, C. M., Negri, I. J., Posse, G., Jaimes, F. R., Jobbágy, E. G., Garbulsky, M. F. 

and Deregibus, V. A. (2009). Forage production of the Argentine Pampa 

Region based on land use and long-term normalized difference vegetation 

index data. Rangeland Ecology and Management 62(2): 163 – 170.  



59 

 

 

 

Di Gregorio, A. (2005). Classification Concepts and User Manual: Land Cover 

Classification System  No. 8 . Food and Agriculture Organization, Rome, 

Italy. 200pp. 

 

Grist, J., Nicholson S. E. and Mpolokang A. (1997). On the use of normalized difference 

vegetation index for estimating rainfall fields in the Kalahari of Botswana. 

Journal of Arid Environments 35: 195 – 214 . 

 

Guisan, A. and Thuiller, W. (2005). Predicting species distribution: offering more than 

simple habitat models. Ecology letters 8(9): 993 – 1009.  

 

Hackley, S. J., Novey, S.T. and Winegar, N.M. (2010). Habitat utilization patterns of deer 

mice (Peromyscus maniculatus) in Big Creek Reserve, Big Creek, California. 

Journal of Young Investigators 19(23): 1 – 6.  

 

Hamrick, W. W. (2007). Small mammal habitat associations in a fragmented agricultural 

landscape. [www.agris.fao.org] site visited on 02/12/2016.  

 

Herrmann, S. M., Anyamba, A. and Tucker, C.J. (2005). Recent trends in vegetation 

dynamics in the African Sahel and their relationship to climate. Global 

Environment Change 15: 394 – 404.  

 

Hiernaux P. H. Y. and Justice C. O. (1986). Follow-up of vegetal development during the 

summer of 1984 in the Mali Sahel. International Journal of Remote Sensing 

7: 515 – 531 . 

 

http://www.agris.fao.org/


60 

 

 

Hieronimo, P., Kimaro, D. N., Meliyo, J., Kihupi, N. I., Gulinck, H., Mulungu, L. S., 

Msanya, B. M., Leirs, H. and Deckers, J. A. (2014a). Land use determinants 

of small mammal abundance and distribution in a plague endemic area of 

Lushoto District, Tanzania, Tanzania Journal of Health Research 16(3):                

1–12. Doi: http://dx.doi.org/10.4314/thrb.v16i3.8. 

 

Hieronimo, P., Meliyo, J., Gulinck, H., Kimaro, D. N., Mulungu, L. S., Msanya B. M., 

Kihupi, N. I., Leirs, H. and Deckeis, J. A (2014b). Integrating land cover and 

terrain characteristics to explain plague risks in Western Usambara 

Mountains, Tanzania : a geospatial approach, Tanzania Journal of Health 

Research 16(3): 1–13. Doi: http://dx.doi.org/10.4314/thrb.v16i3.7. 

 

Huffman, G. J. and Bolvin, D. T. (2015). Real-Time Tropical Rainfall Measuring Mission 

Multi-Satellite Precipitation Analysis Data Set Documentation. National 

Aeronautics and space administration Technical Document, USA. 48pp. 

 

Immerzeel W. W., Rutten M. M. and Droogers P. (2009). Spatial downscaling of TRMM 

precipitation using vegetative response on Iberian peninsula. Remote Sensing 

of Environment 113: 362 – 370.  

 

Jagai, J. S., Sarkar, R., Castronovo, D., Kattula, D., McEntee, J., Ward, H. and Naumova, 

E. N. (2012). Seasonality of rotavirus in South Asia: A meta-analysis 

approach assessing associations with temperature, precipitation, and 

vegetation index. PloS one 7(5): 38 – 168.  

 

http://dx.doi.org/10.4314/thrb.v16i3.7
http://dx.doi.org/10.4314/thrb.v16i3.7


61 

 

 

Jahn, R., Blume, H. P., Asio, V. B., Spaargaren, O. and Schad, P. (2006). Guidelines for 

Soil Description. Food and Agriculture Organisation, Rome, Italy. 20pp. 

 

James, F. C. and Shugart Jr, H. H. (1970). A quantitative method of habitat description. 

Audubon Field Notes 24(6): 727 – 736. 

 

Jorgensen, E. E. (2004). Small mammal use of microhabitat reviewed. Journal of 

Mammalogy 85(3): 531 – 539.  

 

Kaufmann, P. R., Levine, P., Peck, D. V., Robison, E. G. and Seeliger, C. (1999). 

Quantifying Physical Habitat in Wadeable Streams. National Health and 

Environmental Effects Research Laboratory, USA. 149pp. 

 

Knight, E. J. and Kvaran, G. (2014). Landsat-8 operational land imager design, 

characterization and performance. Remote Sensing 6(11): 10286 – 10305. 

 

Komyakova, V. (2009). Habitat characteristics as determinants of the local diversity and 

structure of coral reef fish communities. Thesis for Award of PhD Degree at 

James Cook University, Australia, 107pp. 

 

Makundi, R. H. and Massawe, A. W. (2011). Ecologically based rodent management in 

Africa: potential and challenges. Wildlife Research 38: 588 – 595. 

 

Makundi, R. H., Massawe, A. W., Mulungu, L. S. and Katakweba, A. (2010). Species 

diversity and population dynamics of rodents in a farm‐fallow field mosaic 

system in Central Tanzania. African Journal of Ecology 48(2): 313 – 320. 



62 

 

 

Mbilinyi, B. P. (2000). Assessment of land degradation and its consequences: Use of 

remote sensing and geographical information system techniques: A Case 

Study in the Ismani Division, Iringa Region, Tanzania. Thesis for Award of 

PhD Degree at Mensch-und-Buch-Verlag, 64pp.  

 

Meliyo, J. L., Kimaro, D. N., Msanya, B. M., Mulungu, L. S., Hieronimo, P., Kihupi, N. 

I. and Deckers, J. A. (2014). Predicting small mammal and flea abundance 

using landform and soil properties in a plague endemic area in Lushoto 

District, Tanzania. Tanzania Journal Of Health Research 16(3): 1 – 10.  

 

Meredith N. P., Root‐bernstein, A. and Ebensperger, L. A. (2013). Meta‐analysis of the 

effects of small mammal disturbances on species diversity, richness and plant 

biomass. Australian Ecology 38(3): 289 – 299.  

 

Mingjun, W. (2007). Self-healing grid and distributed energy resource. Power System 

Technology-Beijing 31(6): 1 – 10.  

 

Morris, A. and Kokhan, S. (2007). Geographic uncertainty in environmental security. In:  

Advanced Research Workshop on Fuzziness and Uncertainty in Geographical 

Information System for Environmental Security and Protection. Springer 

Publisher, Ukraine 215pp. 

 

Mulungu, L. S., Kubala, M. T., Mhamphi, G. G., Misangu, R. and Mwatawala, M. W. 

(2010). Efficacy of protectants against maize weevils (Sitophilus zeamais 

Motschulsky) and the larger grain borer (Prostphanus truncatus Horn) for 

stored maize. International Journal of Plant Sciences 1: 150 – 154.  



63 

 

 

Mulungu, L. S., Makundi, R. H., Massawe, A. W., Machang’u, R. S. and Mbije, N. E. 

(2008). Diversity and distribution of rodent and shrew species associated with 

variations in altitude on Mount Kilimanjaro, Tanzania. Mammalia 72:                   

178 – 185.  

 

Mulungu, L. S., Sixbert, V., Ngowo, V., Mdangi, M., Katakweba, A. S., Tesha, P. and 

Belmain, S. R. (2015). Spatio-temporal patterns in the distribution of the 

multi-mammate mouse, Mastomys natalensis, in rice crop and fallow land 

habitats in Tanzania. Mammalia 79(2): 177 – 184. 

 

Nicholson, S. E., Davenport, M. L. and Malo, A. R. (1990). A comparison of the 

vegetation response to rainfall in the Sahel and East-Africa, using normalized 

difference vegetation index from NOAA AVHRR. Climate Change 17:           

209 – 241. 

 

Ofulla, A. V., Adoka, S. O., Anyona, D. N., Abuom, P. O., Karanja, D., Vulule, J. M., 

Okurut, T., Matano, A. S., Dida, G. O., Jembe, T. and Gichuki, J. (2013). 

Spatial distribution and habitat characterization of schistosomiasis host snails 

in lake and land habitats of western Kenya. Lakes Reservoirs Research 

Management 18: 197 – 215.  

 

Orrock, J. L., Pagels, J. F., McShea, W. J. and Harper, E. K. (2000). Predicting presence 

and abundance of a small mammal species: the effect of scale and resolution. 

Ecological Applications 10(5): 1356 – 1366. 

 

 

 



64 

 

 

Pettorelli, N., Ryan, S., Mueller, T., Bunnefeld, N., Jedrzejewska, B., Lima, M. and 

Kausrud, K. (2011). The normalized difference vegetation index: Unforeseen 

successes in animal ecology. Climate Research 46: 15–27.  

 

Pirotti, F., Parraga, M. A., Sturaro, E., Dubbini, M., Masiero, A. and Ramanzin, M. 

(2014). Normalized difference vegetation index from landsat 8 vegetation 

indices to study movement dynamics of capra ibex in mountain areas. The 

International Archives of Photogrammetry, Remote Sensing and Spatial 

Information Sciences 40(7): 130 – 147. 

 

Prince S. D. (1991). Satellite remote-sensing of primary production - comparison of 

results for Sahelian grasslands 1981-1988. International Journal of Remote 

Sensing 12: 1301 – 1311. 

 

Prince, S. D. and Tucker, C. J. (1986). Satellite remote sensing of rangelands in Botswana 

II. National Oceanic and atmospheric administration Advanced very high 

resolution radiometer and herbaceous vegetation. International Journal of 

Remote Sensing 7(11): 1555 – 1570. 

 

Ralaizafisoloarivony, N. A., Kimaro, D. N., Kihupi, N. I., Mulungu, L. S., Leirs, H., 

Msanya, B. M. Deckers, J. A. and Gulinck, H. (2014a). Vegetation habitats 

and small mammals in a plague endemic area in Western Usambara 

Mountains, Tanzania. Tanzania journal of health research 16(3): 1 – 12 Doi: 

http://dx.doi.org/10.4314/thrb.v16i3.6.  

 

http://dx.doi.org/10.4314/thrb.v16i3.6


65 

 

 

Ralaizafisoloarivony, N. A., Kimaro, D. N., Kihupi, N. I., Mulungu, L. S., Leirs, H., 

Msanya, B. M. and Gulinck, H. (2014b). Small mammals’ distribution and 

diversity in a plague endemic area in West Usambara Mountains, Tanzania. 

Tanzania Journal of Health Research 16(3): 1 – 10 Doi: http://dx.doi. 

org/10.4314/thrb.v16i3.4. 

 

Rishmawi K., Prince S. D. and Xue Y.  (2016). Vegetation responses to climate 

variability in the northern arid to sub-humid Zones of Sub-Saharan Africa. 

Remote Sensing, [www.mdpi.com/2072-4292/8/11/910/pdf] site visited on 

07/01/2017.  

 

Robinson, A. P., Smith, A. M., Falkowski, M. J., Hudak, A. T., Evans, J. S., and Steele, 

C. M. (2009). A cross-comparison of field, spectral, and lidar estimates of 

forest canopy cover. Canadian Journal of Remote Sensing 35(5): 447 – 459. 

 

Taheri, S. (2010). Hyper temporal normalized difference vegetation index images for 

modelling and prediction the habitat distribution of Balkan green lizard 

(Lacerta trilineata).  International Institute for Geo Information Science and 

Earth Observation 54: 1 – 10. 

 

Taylor, P. J., Downs, S., Monadjem, A., Eiseb, S. J., Mulungu, L. S., Massawe, A. W. and 

Makundi, R. H. (2012). Experimental treatment-control studies of 

ecologically based rodent management in Africa: balancing conservation and 

pest management. Wildlife Research 39(1): 51 – 61.  

 



66 

 

 

Vesey-Fitzgerald, D. F. (1966). The habits and habitats of small rodents in the Congo 

River catchment region of Zambia and Tanzania. African Zoology 2(1):                 

111 – 122.  

 

Vierling, K. T., Vierling, L. A., Gould, W. A., Martinuzzi, S. and Clawges, R. M. (2008). 

Lidar: shedding new light on habitat characterization and modelling. 

Frontiers in Ecology and the Environment 6(2): 90 – 98. 

 

Weih, R. C. and Riggan, N. D. (2010). Object-based classification vs. pixel-based 

classification: comparative importance of multi-resolution imagery. The 

International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences 38(4): 1 – 7.  

 

Wessels, K. J., Prince, S. D., Malherbe, J., Small, J., Frost, P. E. and VanZyl, D. (2007). 

Can human-induced land degradation be distinguished from the effects of 

rainfall variability? A case study in South Africa. Journal of Arid 

Environment 68: 271 – 297.  



67 

 

 

CHAPTER THREE 

 

PAPER TWO 

 

3.0   APPLICATION OF NORMALIZED DIFFERENCE VEGETATION INDEX 

(NDVI) TO FORECAST RODENT POPULATION IN SMALLHOLDER 

AGRO-ECOSYSTEMS OF ISIMANI LANDSCAPE, IRINGA, TANZANIA 

 

ABSTRACT 

Normalized Difference Vegetation Index (NDVI) of common vegetation habitats derived 

from satellite remote sensing can provide greater possibility for monitoring rodent 

population dynamics and outbreaks. Such information could be used to fine tune 

ecologically based rodent management strategies. However, these technologies have not 

widely been used in tropical sub-Saharan Africa. The objective of this study was to 

evaluate the potential of NDVI of common vegetation habitats derived from satellite 

remote sensing data for monitoring rodent pests in Isimani Division, Iringa, Tanzania. 

The study estimated NDVI across vegetation habitats and landscapes as the normalized 

difference in reflectance between Red channel (0.636- 0.673 mm) and near Infrared (NIR) 

channel (0.851 - 0.879 mm) of the electromagnetic spectrum from Landsat 8 (Operational 

Land Imager (OLI)) sensor. Geospatial approach was used to examine NDVI of 

vegetation habitats in a semi-arid area with unimodal rainfall pattern and established a 

relationship between NDVI and small mammals (rodents) distribution and abundance for 

each period covering the corresponding start, mid and end of dry and wet seasons. 

Different levels of scale and resolution were considered. Linear regression analysis was 

used to clarify the relationships between NDVI and predicted rodent abundance from 

rainfall and NDVI across seasons, and calculation of the Pearson correlation coefficient 

(r) at P ≤ 0.05. Results have demonstrated a good positive correlation between rainfall 
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and NDVI along the elevation gradient of landscape units with escarpment having higher 

correlation (r=0.688) than the plateau (r=0.653) and the valley floor (r =0.652).                     

This relationship suggests that rainfall patterns could be easily predicted from a link 

between NDVI and elevation as predictor variables. Results show that NDVI and rainfall 

derived from NDVI have positive influence on the rodent abundance over the studied 

seasons. It was observed that 98% of the predicted rodent abundance was explained by 

NDVI while rainfall explained only 85%. NDVI predicted rodent abundance showed a 

strong positive correlation (r=0.99) with the field measured rodent abundance.                      

These results support the hypotheses that NDVI of common vegetation habitats has the 

potential for monitoring rodent population dynamics under smallholder farming agro-

ecosystems. Hence, NDVI could be used to model rodent outbreaks within a reasonable 

short time when compared to the sparse and not readily available rainfall data.                    

Further research is required to establish the relationship between NDVI and rodent pest 

species composition and community structure in different habitats and seasonal rainfall 

patterns. 

 

Keywords: NDVI, vegetation habitats, rainfall, rodent abundance, Isimani Tanzania 
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3.1 Introduction 

The amount of energy reflected from a plant in the visible and near infrared (NIR) portion 

of the spectrum has commonly been applied for generation of vegetation indices (VIs), 

such as the Normalized Difference Vegetation Index (NDVI). NDVI is the sensor value 

displayed on optical sensors (Govaerts et al., 2007). It is calculated from reflectance 

measurement in the red (R) and Near Infrared (NIR) portion of the electromagnetic 

spectrum as shown in Figure 3.1 and Equation 3.1. NDVI has been correlated to plant 

growth characteristics including chlorophyll content, light use efficiency and canopy 

density (Verhulst et al., 2009). Also NDVI has been correlated to many variables such as 

crop nutrient efficiency, yield and long term water stress (verhulst et al., 2009).                   

The Normalised Difference Vegetation Index, is the most commonly used index of 

greenness derived from multispectral remote sensing data, and is used in several other 

studies on vegetation, where it has been proven to be positively correlated with density of 

green matter (Moran et al., 1994; Huete et al., 2002).  

 

The latest developments associated with the use of Normalized Difference Vegetation 

Index include the works that have demonstrated successes in animal ecology related 

studies (Pettorelli et al., 2011). Over the last decade, numerous studies have highlighted 

the potential role of satellite data in ecological studies (Kerr and Ostrovsky, 2003; Turner 

et al., 2003), in particular the use of Normalized Difference Vegetation Index (Pettorelli 

et al., 2005). In 2005, Pettorelli et al. (2005) highlighted examples of issues studied based 

on the use of NDVI, emphasizing on how NDVI-based indices could be linked to animal 

distribution and abundance (Table 3.1).  
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Figure 3.19: Idealized spectral reflectance of healthy vegetation (Source: Janssen 

and Huuenemen, 2001) 

 

 

………………………………………………………………………….3.1 

 

Where by: NDVI = Normalized Difference Vegetation Index 

 R = Surface reflectance in the red portion of the 

electromagnetic spectrum 

 NIR = Near Infra-Red band respectively  
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Table 3.1: Examples of issues studied based on NDVI which could be linked to 

animal distribution and abundance 

Issue  Group/species  Sub-discipline  Source 

Energy–abundance relationship  African 

ungulates  

Macroecology  Pettorelli et al. 

(2009)  

 

Energy–species richness 

relationship 

Birds  Macroecology  Ding et al. 

(2006) 

 

Energy–community composition 

relationship 

Beetles  Macroecology Lassau and 

Hochuli (2008) 

 

Resource distribution, resource 

dynamics and space use 

Brown bears  Habitat selection  Wiegand et al. 

(2008)  

 

Resource dynamics and 

population dynamics 

Rodents Population 

dynamics 

Andreo et al. 

(2009) 

 

Climate, vegetation dynamics 

and past ecological processes 

Plague 

outbreaks 

Paleoecology Kausrud et al. 

(2007) 

(Source: modified from Pettorelli et al., 2011) 

 

NDVI has provided significant opportunities in behavioural ecology, habitat selection 

studies, movement ecology, environmental conservation and paleo-ecology across sub-

disciplines, ranging from macro-ecology and species niche modelling to evolution            

(Table 3.1). It can also provide critical information about vegetation dynamics that allow 

the investigation of relationships between animal populations and environmental 

variability (Pirotti et al., 2014). For example, De la Maza et al. (2009) demonstrated that 

NDVI could be related to ground-truthed measurement of vegetation productivity, 

allowing exploration of the relationship between rainfall patterns and vegetation cover 

and productivity in semi-arid Chile. In that study, the authors were able to demonstrate 

that rainfall not only influences plant productivity, but also has a strong effect on plant 

phenology, determining the length of the growing season, which in turn contributes to 

increased plant biomass.  
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The NDVI was found to be very useful in monitoring rainfall dynamics in semi-arid and 

arid areas where grasslands and savannah bushlands are the dominant vegetation types 

primarily because semi-arid vegetation is very sensitive to variations in precipitation 

(Prince and Tucker, 1986). For example, a linear relationship between NDVI and 

precipitation was demonstrated in a range of semi-arid lands of Africa (Nicholson et al., 

1990). Precipitation and green vegetation dynamics are a major determinant of life cycles 

of animals and insects in semi-arid lands in many parts of the world (Wu, 2014; 

Masemola, 2015). 

 

In many other studies abundant precipitation has been well demonstrated to increase the 

population growth of rodents as reported in southern and eastern Australia (Singleton 

1989; Pech et al., 1999), western South America (Lima et al., 1999), and Inner Mongolia, 

China (Li and Zhang, 1993). The causal mechanism behind the impact of precipitation on 

rodent abundance appears to be an increased primary production, both as herbage 

production and seed-bank storage. The rodent distribution was modelled in relation to 

landscape characteristics in a study conducted in Shiqu County, China using (i) a Landsat 

ETM+ derived hard classification, (ii) single-image Landsat ETM+ derived NDVI, (iii) 

single-image MODIS 16-day composite NDVI and (iv) time-series MODIS 16-day 

composite NDVI imagery (Marston et al., 2007). The results of that study confirmed that 

time-series NDVI data can be used to model rodent distributions with success.                            

In the Wyoming Basin Eco-regional Assessment area, Western United States of America, 

deer mice were associated with areas having moderately productive habitat as measured 

by NDVI, increased grassland land cover, and proximity to intermittent water                  

(Hanser et al., 2011). 
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In the tropics, rainfall data are seldom accurately recorded, and are often discontinuous in 

time. In the scope of plague-research in northeast Tanzania, rainfall patterns were 

reconstructed, based on time series of NDVI (Debien et al., 2010). In that study satellite 

imagery in the form of MODIS NDVI, and rainfall data collected from the TRMM 

sensors were successfully used to reconstruct historic precipitation patterns over a 

mountainous area in north-eastern Tanzania. Rainfall promotes abundant primary 

productivity of particularly nutritious seeds and vegetation cover, which enable natural 

habitats to maintain large numbers of rodent species (Leirs, 1999). In Tanzania, it is 

widely accepted that rainfall plays an indirect role in the ecology of rodent species such as 

Mastomys natalensis by determining when, where and how much food will be available 

(Massawe et al., 2011). However, studies that relate rodent abundance, rainfall patterns 

and NDVI in smallholder agro-ecosystems in the tropics and Tanzania in particular are 

relatively few. The use of Vegetation Indices (VIs) such as NDVI to correlate with 

rainfall patterns and other landscape characteristics is likely to enhance the understanding 

on the diversity, breeding patterns and density fluctuations of rodents in rural farming 

communities, hence contributing important knowledge towards ecologically based 

management of rodent pests in East Africa.  

 

This study intended to provide insights into the use of NDVI in complementing efforts 

towards sustainable ecologically based management of rodent pests, which is as an 

important step to reduce rodent crop damage and losses experienced by farmers. 

Therefore, the main objective of the current study was to evaluate the potential of NDVI 

of common vegetation habitats derived from satellite remote sensed data for monitoring 

rodent population dynamics and outbreaks under smallholder farming agro-ecosystems. 

More specifically the study i) examined NDVI of vegetation habitats in a semi-arid area 

with unimodal rainfall pattern and ii) established a relationship between NDVI of the 
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common vegetation habitats and small mammals distribution and abundance in space and 

time. The study hypothesized that rainfall pattern, greenness of vegetation and terrain 

characteristics synchronize with rodent pest abundances in the semi-arid areas of Isimani 

in Iringa Tanzania.  

 

3.2 Materials and Methods 

3.2.1 Description of the study area 

The study was conducted between September 2015 and June 2016 in Isimani Division, 

Tanzania. The area is located between Universal Transverse Mercator (UTM) 

coordinates, 640 000 m and 840 000 m E and 9 100 000 m and 9 240 000 m N, Zone 36 

M (Fig. 3.2). It covers an area of about 1266.7 km
2
. The area is characterized by three 

geomorphic units, namely Plateau, Escarpment and rift valley floor.  

 

The plateau is situated on a gentle NE sloping terrain with minor depressions along river 

courses which are tributaries of Great Ruaha River. It is marked by a network of low 

ridges characterized by low relief with gentle to undulating slopes (2 to 10 %) and 

drainage patterns that follow fault-controlled troughs. The valleys which were originally 

V-shaped are now filled in with sediments, resulting in U-shaped, and/or flat valley 

bottoms. The escarpment rises abruptly from the surrounding rift valley floor (850 m 

a.s.l.) to about 1000 m a.s.l. It is characterised by steep slopes of over 100% and in some 

areas the escarpment forms a series of vertical rocky cliffs. A large part of the escarpment 

is conserved forest of miombo woodland type with grasses and shrubs underneath.            

The rift valley floor is located within the altitude range of 700 - 850 m a .s. l. It is part of 

the central rift valley system bounded by the central plateau (Dodoma-Singida system) 

and the southern highlands with a gently undulating topography.  
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     Figure 3.20:  Location map of the study area  

 

 



76 

 

 

The landscape of Isimani division is part of the southern highlands of Tanzania, which 

were tectonically uplifted with the formation of the East and Central African Rift valley 

system during the Tertiary Epoch. The main rock types consist of Precambrian 

metamorphic rocks including gneisses, amphibolites and lenses of granulites of the 

Isimani Suite. The area is in the dry part of the Iringa Region in the transition between 

Agro-ecological Zone (AEZ) 8 and 16 which is described as having harsh agricultural 

conditions (De Pauw, 1984). The soils of the study area are sandy clay loam in the 

plateau, sandy clay in the escarpment and clayey in the rift valley floor. The study area 

shows large differences in relief dissection and intensity, vegetation and land use patterns, 

and human activities. Due to low and unevenly distributed rainfall, agricultural 

production is low (characterised by poor harvest) and irregular (Mbilinyi, 2000). 

 

The study area receives a unimodal annual rainfall that ranges from 200 to 700 mm/year. 

The rainy season is associated with the seasonal movement of the Intertropical 

Convergence Zone (ITCZ) and is characterized by low erratic rainfall and periodic 

droughts giving it the characteristic of a semi-arid nature where precipitation consistently 

below potential evapotranspiration. The mean annual temperature and relative humidity 

are variable depending on the relief. The maximum temperature ranges from 27
o
C to over 

30
o
C, whereas the minimum temperature ranges from 15

o
C to 19

o 
C.  

  

Vegetation characteristics vary with topography, soil type and elevation. The plateau is 

intensively cultivated with maize and sunflower in association with patches of scattered 

acacia trees, grasses and shrubs while a large part of the escarpment is conserved forest of 

miombo woodland with grasses and shrubs underneath. The rift valley floor is covered by 

acacia trees, scattered baobab trees and grasses with patches of woodland. Land use in the 

rift valley is predominantly scattered cultivation (sorghum cropping system) and 

extensive grazing (Mbilinyi, 2000).  
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Isimani division was purposively selected for this study due to recently reported rodent 

outbreaks (Tewele, C. personal communication, 2015). Six sampling sites including 

Uyole, Mkungugu and Nyang’oro for the plateau landscape; upper and lower positions of 

escarpment for the escarpment landscape and Izazi village area for the rift valley floor 

were selected where detailed studies including terrain characterization, identification and 

mapping of vegetation for NDVI determination and rodent trapping were carried out.  

 

3.2.2 Estimation of NDVI across vegetation habitats and landscapes 

NDVI was calculated from Landsat 8 (Operational Land Imager (OLI)) sensor with 

satellite images for each period covering the corresponding start, mid and end of dry and 

wet seasons (Table 3.2). It was calculated as the normalized difference in reflectance 

between Red channel (0.636- 0.673 μm) and near Infrared (NIR) channel (0.851 - 0.879 

μm) of electromagnetic spectrum using Equation 3.2 (Knight and Kvaran, 2014; Pirotti et 

al., 2014). The Landsat 8 OLI sensor provides 16-bit images at 30 m spatial resolution for 

multispectral bands (10m for panchromatic and 100m for thermal) (Knight and Kvaran, 

2014). The images were obtained from level 1 product of the USGS Landsat archives 

considering cloud free and day time as criteria for obtaining good satellite images.                

The images were geo-referenced to EPSG: 21036 for uniform coordinate system and to 

eliminate the effect of clouds, the Maximum Value Composite (MVC) was used in NDVI 

data processing (Mingjun, 2007). In MVC procedure, the multi-temporal geo-referenced 

NDVI data were evaluated on a pixel basis, to retain the highest NDVI value for each 

pixel location.   
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Table 3.2:  Remote sensing data acquisition 

Seasonal Required period  L 8 (OLI 30 m) date SRTM DEM (30 m) 

 

Dry 

season 

SD May, June and July 14
th

 Jun-16  

 

23
rd

 Sept-14 

 

MD August and September 1
st
 Aug and 18

th
 Sept-15 

ED October and November 20
th

 Oct and 21
st
 Nov-15 

Wet 

season 

SW December and January 7
th

 Dec-15 and 8
th

 Jan-16 

MW February 11
th

 Feb-16 

EW March and April  10
th

 March-16 

Key:  SD = start dry, MD = mid dry, ED = end dry season,  

                SW = start wet, MW = mid wet and EW = end wet season. 

 

 

………………………………………...………………………………. 3.2 

Where by:  NDVI = Normalized Difference Vegetation Index 

 R = Surface reflectance in the red portion of the 

electromagnetic spectrum 

 NIR = Near Infra-Red band respectively  

 

3.2.3 Rainfall data collection 

Rainfall datasets were obtained from both the real time, Tropical Rainfall Measuring 

Mission (TRMM) Multi satellite precipitation analysis (TMPA-RT, 3B42RT-V7) and 

Nduli Meteorological Station. The mean Monthly rainfall data from TMPA-RT grids with 

a spatial resolution of 0.25
0
 by 0.25

0 
 were acquired from March, 2015 to March, 2016 for 

start, mid and end periods of each wet and dry season. Point rainfall data available from 

Nduli Meteorological Station recorded from 1986 to 2016 was used for evaluating site 

climatic patterns and for validating both NDVI predicted rainfall and the TMPA-RT 

derived data. Rainfall patterns from point rainfall measurement available for Nduli 

Meteorological Station located in the plateau area was related with TMPA-RT rainfall 

measurement in order to obtain a temporal relationship that could be used to relate with 

NDVI for predicting rainfall in space and time and for predicting small mammals at a fine 

scale. 
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3.2.4 Data collection procedures 

The highway from Iringa to Dodoma was used as a transect to guide sampling and data 

collection where a buffer of 1 km on each side of the road/highway was created to mark 

crosswise boundary for the extent of the study area across six sample sites located along 

the road from Nduli to Izazi. Ground survey was carried out in both dry and wet seasons 

for three different periods covering Start, Mid and End of each season (Table 3.2). 

Considering spatial variability of the landscape characteristics throughout the study site, 

stratified random sampling procedure based on broad land cover types and topography 

was used to locate the quadrats in each sample area (Hieronimo et al., 2014). 

 

A total of 144 quadrats were established for the six sample sites (i.e. Uyole, Mkungugu, 

Nyang’oro (for the plateau), upper and lower positions of the escarpment (for the 

escarpment) and Izazi village area for the Rift valley floor). For each sample site, 24 

quadrats each measuring 100 m x 100 m were randomly located for detailed 

characterisation of vegetation habitats and small mammal trapping. Decision on the 

number of observations/quadrats per site was determined following the experience gained 

from a similar study in the west Usambara Mountains, Tanzania (Hieronimo et al., 2014), 

the size and representativeness of the sample site, time and resources availability. At each 

observation site, information on vegetation habitat characteristics was documented for 

interpretation of NDVI and small mammal trapping was carried out.  

  

3.2.5 Small mammal trapping  

A total of 49 traps (in a grid of 7 x 7 traps at 10m intervals) were set for each spatially 

located quadrat (Hieronimo et al., 2014). Sherman LFA live traps (7.5 x 9.0 x 23 cm;             

HB Sherman Traps, Tallahassee, USA) baited with peanut butter and maize flour were 

used (Hieronimo et al., 2014). Animals captured for each quadrat were counted and 
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rodent trap success was then calculated based on the number of small mammals trapped 

divided by the product of the number of traps used and number of trapping nights as 

shown in equation 3.3 (Ralaizafisoloarivony et al., 2014).  

 

   ………..……………………………………………….3.3 

Whereby;     N = number of small mammal trapped, 

 Nt  = number of traps used,  

 Nn  = Duration in terms of nights during which the trap 

was set.  

 

3.2.6 Data Analysis 

Statistical analysis was conducted using STATISTICA and R software and spatial 

analysis modules available in the QGIS version 2.12.2 and ArcGIS version 10.3 software. 

In STATISTICA version 12 and R version 3.3.2 software, both linear and multiple 

regression were used for deriving relationships and model for predicting rodent 

abundance from rainfall and NDVI.  

 

The degree of association between variables (rainfall and NDVI across seasons, NDVI 

derived rainfall, predicted rodent abundance from rainfall and predicted rodent abundance 

from NDVI) was measured by linear regression and calculation of the Pearson correlation 

coefficient (r) at P ≤ 0.05. The model predicted values were validated by linear regression 

analysis between model predicted and the actual recorded abundance of small mammals 

across habitats and seasons and the degree of association was calculated using Pearson 

correlation coefficient (r) at P ≤ 0.05. Predicted small mammal abundance maps across 

habitats and seasons were created using geospatial analysis tools in QGIS version 2.12.2 

and ArcGIS version 10.3 across the studied landscapes and seasons. 
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3.3 Results and Discussion  

3.3.1 Relationship between TMPA-RT measured rainfall and NDVI across Isimani 

landscapes 

The relationship between rainfall and NDVI across Isimani landscapes is presented in 

Table 3.3. Results show that there is a good correlation (r>0.6) between rainfall and 

NDVI across the studied landscapes (plateau, escarpment and valley floor). A slight 

variation was observed in different landscape units with escarpment having higher 

correlation (r = 0.688) than the plateau (r=0.653) and the valley floor (r =0.652).                       

The Normalised Difference Vegetation Index, is the most commonly used index of 

greenness derived from multispectral remote sensing data, and is used in several studies 

on vegetation, since it has been proven to be positively correlated with density of green 

matter (Huete et al., 2002; Dabien et al., 2010). Several studies that have explored the 

strength of the vegetation-rainfall relationship have yielded converging results similar to 

the findings of this study that NDVI is positively correlated with TMPA-RT measured 

rainfall (Ji and Peters, 2004; Dabien et al., 2010). 

 

The spatial patterns between seasonal rainfall (i.e. obtained from TMPA-RT, 3B42RT-

V7) and NDVI across the Isimani landscape are presented in (Fig. 3.3). The results show 

that seasonal peaks of rainfall are followed by seasonal peaks of NDVI. Higher rainfall 

amounts are observed in December or January (start wet season) resulting in higher NDVI 

peaks in February or March, generally after a time lag of one month, which could be 

explained by the delay in the vegetation water uptake.  
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Table 3.3:  Correlation between rainfall and NDVI in different landscape units 

Landscape units                                   r                                    R
2
 

Plateau 0.653 0.5124 

Escarpment 0.688 0.617 

Valley floor 0.652 0.4289 

Key:     r = Pearson correlation coefficient,          R
2
 = coefficient of determination 

 

 
Key:   SD = start dry, MD = mid dry, ED = end dry season, SW = start wet, MW = mid wet and EW 

= end wet season. 

 

Figure 3.21: Seasonal comparison of TMPA-RT rainfall and NDVI across different 

landscapes zones in Isimani Division, Iringa Tanzania.   
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Similar results were obtained by Dabien et al. (2010) in the west Usambara Mountains, 

Tanzania where higher rainfall was observed for the month of March 2000 and September 

2002, resulting in higher NDVI peaks with a time lag of one or two months. The rainfall 

spatial distribution pattern across the Isimani landscape and NDVI were similar for all the 

studied seasons. Therefore, by considering the time lag, time series relationship between 

rainfall and NDVI could be used with success to improve the prediction of rainfall 

distribution at local level (Liu et al., 2016). 

 

Results obtained in this study are in agreement with other studies conducted in semiarid 

and arid Africa and around the world (Ding et al., 2007). For example, a study conducted 

in the African Sahel of Mali and Niger by Nicholson et al. (1990) reported good 

relationship between monthly NDVI and monthly rainfall. Mahmoud et al. (2001) 

demonstrated varying degree of correlation between vegetation cover and rainfall across 

different land units in south-western part of Iran. In the study of Mahmoud et al. (2001), a 

strong correlation between the two variables was noted in the alluvial and flood plains.             

In the Isimani division and in the tropics in general rainfall data are not readily available 

and if available are not accurately recorded, and are often discontinuous in time.                       

The results obtained in this study suggest that NDVI could be applied fruitfully to 

estimate rainfall variability and seasonality across the landscape. Therefore representative 

locations can be chosen for sampling of NDVI values to explain rainfall scenarios instead 

of being dependent on the locations of the meteorological stations.  

  

3.3.2 Predicting rainfall from NDVI across Isimani landscapes 

The graphical comparison of NDVI and rainfall as an exploratory test of the relationship 

between NDVI and rainfall show a weak relationship (R
2
 = 0.45) (Fig. 3.4). Only 45 % of 

the predicted rainfall was explained by NDVI. Rainfall data used in this relationship is 
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derived from TMPA-RT (Huffman and Bolvin, 2015). TMPA-RT provides accurate 

spatial and temporal measurements of rainfall information over the tropics, but only at 

coarse resolutions (0.25° × 0.25° resolution) often not suited for studies at finer 

resolutions (Huffman and Bolvin, 2015; Dabien et al., 2010).   

 

In the study area vegetation communities vary spatially on different landscapes and 

follow elevation gradient. Ralaizafisoloarivony et al. (2014) noted in the west Usambara 

Mountains, Tanzania that most of the vegetation habitats including natural forest, 

plantation forest, cultivation, horticulture, settlements and bare dominantly occupied the 

elevations ranging from 1000 m a.s.l. to 1900 m a.s.l while the shrubs occupied lower 

altitudes (<1000 m a.s.l.) comprising the plain landscape. These landscape features 

portray a similar pattern observed in the study area of Isimani landscape where elevation 

seems to control the behaviour of vegetation patterns and rainfall distribution.  

 

Therefore, to overcome the resolution problem of TMPA-RT rainfall measurements, a 

link was made between rainfall, elevation and NDVI of the common vegetation habitats 

in the study area. Previous research showed that the reconstruction of (historical) rainfall 

patterns based on the established relationship between rainfall and NDVI could give 

satisfactory results (Grist et al., 1997; Immerzeel et al., 2009). Hence, the relationship 

between elevation and rainfall in the study area was explored in this study. 
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Figure 3.22: Relationship between rainfall and NDVI of different vegetation habitats 

in the study area  

 

 

The rainfall regime in the Isimani landscape is closely related to elevation with the 

direction of slope having a secondary effect (Fig. 3.5). TMPA-RT derived mean seasonal 

rainfall in the study area shows a significant correlation with elevation (R
2
 = 0.56)                  

(Fig. 3.5). TMPA-RT mean seasonal rainfall on the lower elevations (< 900 m asl) was 

less than 80 mm while that at a higher elevations was more than 110 mm. From this 

relationship NDVI and elevation were used as predictor variables for predicting rainfall 

based on TMPA-RT rainfall measurements. NDVI-elevation model for quantification of 

rainfall across vegetation habitats in Isimani landscape is presented in Table 3.4.  

 

According to the model, the rainfall pattern in Isimani division was significantly                      

(r = 0.76) correlated with NDVI and elevation and hence rainfall patterns in Isimani 

division could be predicted as shown in Equation 3.4. The linear regression model 

obtained during the calibration was used as the model equation for calculating rainfall. 

The general pattern of the predicted rainfall is presented in Figure 3.6. The results showed 
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that the spatial distribution of the predicted rainfall across vegetation habitats and seasons 

is generally good. Leilei et al. (2014) reported good relationship between seasonal 

changes of NDVI and rainfall based on remote sensing in Tibet, China.  

 

 
Key:  The grouping of the data points was mainly due to course spatial resolution 

of the TMPA-RT rainfall data when applied at smallholder farming scale. 

Apart from its course resolution effect, it showed a great relationship with 

elevation across the plateau area of the Isimani division (R
2
 = 0.56) 

 

Figure 3.23:  Relationship between mean seasonal rainfall and elevation in the study 

area 

 

Table 3.4:  Multiple regression statistics for predicting rainfall from NDVI and 

elevation 

Variables  Coefficients P-value R
2 

Multiple R F Fsignif 

Intercept - 31.041 ** 0.57 0.76 46.17 1.88 x 10
 -13 

NDVI 374.606 
**     

elevation 0.0118 **     

Key:   ** = P < 0.01, Fsignif = significance F 

 

Y = 374.606 (Xndvi) + 0.0118 (Xelev) - 31.041…………………………………. . 3. 4 

Where;      Y = Average seasonal Rainfall (mm) 

 Xndvi = NDVI 

 Xelev = Elevation 
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Figure 3.24: Spatial average seasonal rainfall predicted from NDVI and elevation 
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Despite the fact that TMPA-RT provides accurate measurements of rainfall in space and 

time, it only gives information at coarse resolutions (0.25° × 0.25° resolution), which is 

not suitable for studies like this i.e. at finer resolutions (Dabien et al., 2010). Hence, in 

this study, a relationship between NDVI and TMPA-RT rainfall established to derive 

rainfall at a scale of smallholder farming agro-ecosystems. Similar approach conducted 

by Dabien et al., 2010 in the Usambara mountains, where the link between TRMM coarse 

resolution rainfall measurement and NDVI established to reconstruct rainfall patterns at 

finer resolution. 

 

To validate the model, predicted seasonal rainfall values calculated from NDVI images 

were compared with measured rainfall rates of Nduli Meteorological Station located in 

the plateau for the same seasonal periods. For every seasonal period, the rainfall rates at 

the location of the meteorological station were extracted for each seasonal raster image of 

estimated rainfall. These seasonal estimated rainfall rates were then compared with the 

seasonal in situ measurements of rainfall (Fig. 3.7).  

 

As observed in Figure 3.7, the predicted seasonal rainfall values were high as compared 

to field measured seasonal rainfall values. Although the inter-seasonal patterns resembled 

well, the coinciding rainfall peaks of predicted seasonal rainfall versus measured seasonal 

rainfall observed to differ by a time lag of one month.  To some extent, results in this 

study resembles that by Dabien et al., 2010 in west Usambara Mountains. In that study 

the inter-annual and inter-seasonal trends, fall and rise at the same time in the estimated 

and measured rainfall time series. 
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Key:  SD = Start of dry season, MD = mid of dry season, ED = End of dry season, 

SW = Start of wet season, MW = mid of wet season and EW = End of wet 

season.   

Figure 3.25:  Comparison of predicted seasonal rainfall values calculated from 

NDVI images with measured rainfall rates of Nduli Meteorological 

Station located in the plateau area 

 

 

3.3.3 Seasonal comparison of rodent abundance and rainfall derived from NDVI 

and elevation 

Results show that rainfall has a positive influence on the rodent abundance over the 

studied seasons. Increasing rodent population is observed at the start of the rainy season 

or end of the dry season i.e. in the months of November and December (Fig. 3.8). During 

the wet season (i.e. from December to March) lower rodent abundancies are observed 

followed by higher abundancies at the end of wet season (Fig. 3.8). Visually, higher 

rainfall amounts between December and March are followed by lower rodent abundancies 

(Fig. 3.9). Low rodent abundancies correspond with high rainfall amounts and peaks of 

dry periods.    

 

In semi-arid grasslands of Inner Mongolia, China, Jiang et al. (2011) reported significant 

positive correlations between precipitation and abundances of rodent species. In agro-

ecosystems of central Argentina, herbivorous rodents were more affected by rainfall and 
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temperature, probably because of their effects on primary productivity (Andreo et al., 

2009). In the west Usambara Mountains in Tanzania, an increase in elevation was linked 

with concurrent increase in small mammal’s abundance in space and time, both in number 

and diversity due to increased water and food availability (Ralaizafisoloarivony et al., 

2014). Bayessa (2010) indicated that, modified habitats including plantation forest and 

cultivation influenced rodent distribution due to availability and quality of food, shelter 

and rainfall. A study conducted in Simpson Desert, Queensland by Letnic (2003) reported 

that, heavy rainfalls in 2000 increased seed production which prompted increases in the 

populations of rodent species. Therefore, rainfall influences rodent abundance through its 

linkage to increase in primary production and water availability, which in turn increases 

food resources for small mammals (Witecha, 2011). 

 

 
Key:  SD = Start of dry season, MD = mid of dry season, ED = End of dry season, 

SW = Start of wet season, MW = mid of wet season and EW = End of wet 

season.   

 

Figure 3.26:  Seasonal comparison of rodent abundance and rainfall derived from 

NDVI in the study area   
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Figure 3.27:  Monthly comparison of rodent abundance and field measured rainfall 

in the study area. 

   

3.3.4 Seasonal comparison of rodent abundance and NDVI of common vegetation 

habitats 

Rodent abundance was lowest in mid dry season (MD = August - September) and highest 

towards the end of wet season (EW = April and May) (Fig. 3.10). Temporal distribution 

of rodent abundance followed the NDVI pattern which is a proxy of primary productivity 

(Fig. 3.10). Peak NDVI has frequently been shown to correlate strongly with peak 

aboveground biomass in grasslands (Pettorelli, 2013).   

 

In desert grasslands of California, USA a clear, positive correlation between primary 

productivity (measured as peak NDVI) and the presence of giant kangaroo rat 

(Dipodomys ingens) was reported (Bean et al., 2014). In north-eastern Tanzania a 

stronger relationship between NDVI (MODIS) and rainfall (TRMM) was reported by 

Dabien et al. (2010) and that this relationship could be used to reconstruct rainfall 

patterns which has been shown to correlate with ground biomass or primary productivity; 

a proxy for rodent abundance (Butterfield and Malmström, 2009). In East Africa, where 

rainfall data is not readily available, studies that demonstrate the relationship between 
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primary productivity measured as NDVI and rodent abundance are lacking. This study 

has demonstrated the power of NDVI for use in ecological research and in particular for 

monitoring rodent population dynamics and outbreaks under smallholder farming agro-

ecosystem. 

 

 

Key:  SD = Start of dry season, MD = mid of dry season, ED = End of dry season,  

SW = Start of wet season, MW = mid of wet season and EW = End of wet 

season.   

Figure 3.28:  Seasonal comparison of rodent abundance and NDVI of common 

vegetation habitats in the study area 

 

3.3.5 Predicting rodent abundance using rainfall derived from NDVI of common 

vegetation habitats in different seasons 

A strong linear relationship (R
2
 = 0.7) was observed between rodent abundance and 

rainfall derived from NDVI across the Isimani landscape (Fig. 3.11). Mean seasonal 

rodent abundance increases with an increase in mean seasonal rainfall. Results also show 

that rodent population was higher in the wet season compared to the dry season in the 

study area (Fig. 3.12). 
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Figure 3.29:     Relationship between rodent abundance and rainfall derived from 

NDVI across the Isimani landscape 

 

 

Literature suggests that population dynamics of Mastomys natalensis rats in Tanzania are 

significantly affected by the distribution of rainfall during the rainy season (Leirs et al., 

1996). For example, a logistic regression model explained 69% of the variation in 

occurrence of rodent outbreaks when rainfall data of the two peak months of the short 

(vuli) rainy season (December - January) in Tabora, Tanzania was used as the 

independent variable (Leirs et al., 1996). It is hypothesised that prolongation of the rainy 

season could generate excess food and cover, allowing for better survival and/or 

reproduction of rodents (Leirs et al., 2010), hence rainfall derived from NDVI could be a 

good predictor of rodent pest abundance. Patterns of growth and reproduction of 

multimammate rats, Mastomys natalensis (Smith, 1834) in Morogoro, Tanzania were also 

related to onset and abundance of rains (Leirs et al., 1990).  
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Figure 3.30:  Spatial rodent abundance predicted using rainfall derived from             

NDVI of common vegetation habitats for different seasons  
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Rainfall data in many localities under smallholder farming are not readily available.                 

The relationship obtained between rodent pest abundance and rainfall derived from NDVI 

provides a quick insight that could help in ameliorating pest control planning in some 

areas in Tanzania. It should be noted that NDVI derived rainfall is retrospective due to the 

time lag that has been mentioned earlier. 

  

3.3.6 Predicting rodent abundance using NDVI of common vegetation habitats for 

different seasons 

The relationship between rodent abundance and NDVI is presented in Figure 3.13.                     

The results show positive linear relationship (R
2
 = 0.706) between rodent abundance and 

NDVI (a measure of primary productivity). The linear regression model demonstrated in 

this study explained about 71% of the rodent abundance predictions by NDVI. Spatial-

temporal rodent abundance predicted using NDVI of common vegetation habitats is given 

in Figure 3.14. Results show that the model predicted higher rodent abundances in the wet 

season (December to May) when compared to dry season (June to November) (Fig. 3.14). 

The lowest predicted abundances occur at the end of dry season during the months of 

October and November.  

 

In the tropics and in semi-arid areas of East Africa in particular studies that relate rodent 

abundance and NDVI are rare. In central Argentina, population dynamics of grass mouse 

(Akodon azarae) was reported to be strongly influenced by human land use, indexed by 

NDVI (Andreo et al., 2009). NDVI has been used as an index of food or vegetation 

resources (Young et al., 2009). In this study, mean NDVI values varied across the 

landscape and in different seasons. Higher values (0.2 to 0.6) were observed in the wet 

season and lower values (0.0 to 0.2) in the dry season corresponding to the spatial patterns 

of the predicted rodent abundances (Fig. 3.14). The results of this study suggest that 
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NDVI could be used as an index of vegetation and also as an index of food resources in 

the semi-arid areas of Tanzania for monitoring rodent pest.  

 

 

Figure 3.31:  Relationship between seasonal rodent abundance and NDVI of 

common vegetation habitats 
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Figure 3.32:  Spatial rodent abundance predicted using NDVI of common 

vegetation habitats in different seasons  
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3.3.7 Seasonal pattern of field measured rodents and predicted rodent abundance 

from rainfall and NDVI in the study area  

Comparison of seasonal patterns for the field measured rodent and the predicted rodent 

abundances from rainfall and NDVI is presented in Figure 3.15. The NDVI predicted 

rodent abundance compares better with field measured rodent abundance than the rainfall 

predicted abundance (Fig. 3.15). Results from this study suggest that in a situation where 

rainfall data is hardly available, NDVI values of the studied landscapes could easily be 

used to predict rodent population particularly in smallholder farming ecosystems.               

These results confirm the hypothesis of this study that NDVI, vegetation derived index 

could be used to explain rodent abundance at fine scale. 

 

Key:  SD = Start of dry season, MD = mid of dry season, ED = End of dry season,  

SW = Start of wet season, MW = mid of wet season and EW = End of wet 

season.   

Figure 3.33:   Seasonal comparison of field measured rodents and rodent abundance 

predicted from rainfall and NDVI 
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3.3.8 Relationship between field measured rodents and predicted rodent 

abundance from rainfall and NDVI   

The relationships between fields measured rodent abundance and predicted rodent 

abundance from rainfall and NDVI are presented in Figures 3.16 and 3.17. A strong 

relationship (R
2
 = 0.98) was observed between the average seasonal field measured rodent 

abundance and NDVI predicted rodent abundance (Fig. 3.16). The exploratory test of the 

relationship between the average seasonal field measured rodent abundance and rainfall 

predicted rodent abundance also show a strong relationship (R
2
 = 0.85) (Fig. 3.17).                

The results show that 98% of the predicted rodent abundance was explained by NDVI 

while rainfall explained only 85%. Both NDVI and rainfall predicted rodent abundance 

showed a strong correlation with the field measured rodent abundance (Table 3.5).  

 

These results have therefore, supported the hypothesis that NDVI of common vegetation 

habitats derived from satellite remote sensing data has the potential for monitoring rodent 

population dynamics and outbreaks under smallholder farming agro-ecosystems in the 

study area. Further, due to course resolution of TMPA-RT rainfall data and the sparse and 

not readily available ground measured rainfall data, the results also support the hypothesis 

that NDVI could be used to model rodent outbreaks within a reasonable short time 

compared to the sparse and not readily available rainfall data. Many studies have 

demonstrated good correlation between NDVI and crop parameters such as Biomass 

(Wiegand and Richardson, 1990; Verma et al., 1998) and grain yield (Ali et al., 2014).  

 

Studies that have demonstrated correlation between NDVI and abundance of small 

mammals (rodent pests) are lacking in tropical sub-Saharan Africa (SSA). It is apparent 

from the results of this study that there is more work that remains to be done on the 

application of remote sensing derived NDVI in monitoring rodent pest population 

dynamics for fine-tuning ecologically based rodent management strategies. 
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Figure 3.34:  Relationship between the average seasonal field measured rodent 

abundance and NDVI predicted rodent abundance.  

 

 

Figure 3.35:  Relationship between the average seasonal field measured rodent 

abundance and rainfall predicted rodent abundance. 
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Table 3.5:  Correlation matrix between fields measured rodent abundance and 

rodent abundance derived from rainfall and NDVI 

  

Field measured 

Rodent 

Rainfall predicted 

rodent 

NDVI predicted 

rodent 

Field measured Rodent 1 

  Rainfall predicted rodent 0.92* 1 

 NDVI predicted rodent 0.99** 0.93* 1 

Key: * = p < 0.05 and ** = p < 0.01.   

 

3.4 Conclusions and Recommendations 

3.4.1 Conclusions  

The Normalised Difference Vegetation Index (NDVI), is the most commonly used index 

of greenness derived from multispectral remote sensing data, and has been used in many 

studies on vegetation, where it has been proven to be positively correlated with density of 

green matter. Over the last decade, numerous studies have highlighted the potential role 

of satellite data in ecological studies, in particular the use of Normalized Difference 

Vegetation Index. Recently, the use of NDVI-based indices linked to animal distribution 

and abundance has been emphasised. However, these technologies have not widely been 

adopted in the tropical sub-Saharan Africa (SSA) and Tanzania in particular. In this study, 

the potential of NDVI of common vegetation habitats derived from satellite remote 

sensing data was evaluated for monitoring rodent population dynamics and outbreaks 

under smallholder farming agro-ecosystems. The following conclusions are made in the 

light of the results obtained in this study;  

 

The study demonstrated a good correlation between TMPA-RT rainfall and NDVI across 

the studied landscapes with the escarpment having relatively higher correlation                      

(r = 0.688), than the plateau (r = 0.653) and the rift valley floor (r = 0.652). These results 

suggest that NDVI could be applied fruitfully to estimate rainfall variability and 

seasonality across the studied landscapes. This implies that representative locations can 
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be chosen for sampling of NDVI values to explain rainfall scenarios instead of being 

dependent on the locations of the meteorological stations.  

 

In the study area, vegetation communities vary spatially on different landscapes and 

follow elevation gradient. The study has also observed that the rainfall regime in the 

Isimani landscape is closely related to elevation (R
2
 = 0.56) with the direction of slope 

having a secondary effect. From this relationship, the study has demonstrated that rainfall 

pattern in Isimani division was significantly positively correlated (r=0.76) with NDVI of 

common vegetation habitats and elevation. This relationship suggests that rainfall pattern 

in the study area could be easily predicted from a link between NDVI and elevation as 

predictor variables.  

 

Generally, temporal distribution of rodent abundance in the study area followed the NDVI 

pattern which is a proxy of primary productivity. This study has therefore demonstrated 

the power of NDVI for use in ecological research and in particular for monitoring rodent 

population dynamics and outbreaks in smallholder farming agro-ecosystems in the study 

area and other areas with similar conditions in Tanzania.  

 

In this study, a strong linear relationship (R
2
 = 0.7) was observed between rodent 

abundance and rainfall derived from NDVI across the Isimani landscape. Mean seasonal 

rodent abundance increases with an increase in mean seasonal rainfall. The relationship 

obtained between rodent abundance and rainfall derived from NDVI provide a quick 

insight that could help in ameliorating pest control planning in semi-arid areas of 

Tanzania. 
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Generally, there was positive linear relationship (R
2
 = 0.706) between rodent abundance 

and NDVI (a measure of primary productivity). The linear regression model demonstrated 

in this study explained about 71 % of the rodent abundance predictions by NDVI. 

 

The NDVI predicted rodent abundance compares better with field measured rodent 

abundance than the rainfall predicted abundance. This suggests that in a situation where 

rainfall data is hardly available, NDVI values of the studied landscapes could easily be 

used to predict rodent population particularly in smallholder farming ecosystems.           

The study show further that 98% of the predicted rodent abundance was explained by 

NDVI while rainfall explained only 85%.  

 

This study has therefore supported the hypothesis that NDVI of common vegetation 

habitats derived from satellite remote sensing data has the potential for monitoring rodent 

population dynamics and outbreaks under smallholder farming agro-ecosystems in the 

study area.  

 

3.4.2 Recommendation 

Findings from this study have provided some insights into the potential use of NDVI of 

common vegetation habitats derived from satellite remote sensing data for monitoring 

rodent pests under smallholder farming agro-ecosystems. However, results obtained 

revealed some gaps which require further research so as to provide future guidelines for 

monitoring rodent pest population dynamics and ecological based rodent management 

decisions, hence the following recommendations: 

 

Studies that have demonstrated correlation between NDVI and abundance of small 

mammals (rodent pests) elsewhere are lacking in tropical sub-Saharan Africa. It is 

apparent from the results of this study that there is more work that remains to be done on 
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the application of remote sensing derived NDVI in monitoring rodent pest population 

dynamics taking into consideration the major rodent pest species such as Mastomys 

natalensis, Arvicanthis spp, and Gerbillicus spp which are common in smallholder agro 

ecosystems.  

 

Further research is also required to establish relationships between NDVI and rodent pest 

species composition and community structure in different habitats and seasonal rainfall 

patterns.  
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CHAPTER FOUR 

 

4.0 GENERAL CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

Small mammal pest outbreaks is still a major problem in most smallholder farming agro-

ecosystems in Tanzania. The major constraint is diversification in habitat preferences by 

various small mammal species. Habitat characterization in space and time require a 

thorough understanding of the vegetation patterns, climate and terrain parameters for 

which abundance of small mammals can be predicted. Such knowledge in sub-Saharan 

Africa is poorly understood. The current study was carried out to characterize and 

spatially map the vegetation habitats associated with small mammal abundance in 

smallholder farming agro-ecosystems. 

 

The Normalized Difference Vegetation Index (NDVI) of common vegetation habitats and 

rainfall patterns were also explored. NDVI, is the most commonly used index of 

greenness derived from multispectral remote sensing data, and has been used in many 

studies on vegetation, where it has been proven to be positively correlated with density of 

green matter. Over the last decade, numerous studies have highlighted the potential role 

of satellite data in ecological studies, in particular the use of Normalized Difference 

Vegetation Index. Recently, the use of NDVI-based indices linked to animal distribution 

and abundance has been emphasised. However, these technologies have not widely been 

adopted in the tropical sub-Saharan Africa (SSA) and Tanzania in particular.  

 

The current study was therefore carried out as an intervention to provide key vegetation 

habitat variables that can be modelled to predict rodent pest abundance in smallholder 

farming agro-ecosystems in Isimani division, Iringa, Tanzania. In this study, the potential 
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of NDVI of common vegetation habitats derived from satellite remote sensing data was 

evaluated for monitoring rodent population dynamics and outbreaks under smallholder 

farming agro-ecosystems. In the light of the results obtained, the following conclusions 

can be drawn. 

 

Generally, land use land cover types were observed to influence small mammal’s habitats 

fragmentation and heterogeneity in space and time. In the studied site, it was revealed that 

vegetation habitat characteristics identified based on land use land cover types are largely 

dominated by agriculture that account for about 60% of the plateau landscape with 

intensive annual and cereal crop cultivation. Forest and woodland vegetation dominated 

the escarpment while the majority of sparse vegetation of acacia type and baobab tree 

with grassland and shrubs were dominant in the rift valley floor. 

 

In the plateau area (1295 – 1590 m a.s.l.) a series of undulating hills were observed, that 

give rise to convex low ridge summits and concave valley bottoms characterised by the 

linear ridge slopes with very deep sandy clay loam soils commonly occurring on the 

transition between convex and concave landscapes. Maize cultivation is the dominant 

land use with severe and frequently reported rodent outbreaks. It has been demonstrated 

in the current study that the plateau habitats support more small mammals (80%) than the 

habitats in the other landscapes. This suggests that the land use/cover observed in this unit 

provides relatively "better" habitats for rodent pests in the study area. 

 

A strong correlation (r=0.96) was obtained between ground measured point rainfall data 

and the real time Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite 

Precipitation Analysis (TMPA-RT) rainfall data across vegetation habitats. From this 

relationship it is suggested that rainfall pattern and NDVI could be related and used as a 

proxy for spatial prediction of small mammals. 
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In this study, a general spatial variability of mean NDVI values with seasonal pattern 

across the studied landscape units was observed, whereby, higher values (0.2 to 0.6) were 

observed in the wet season and lower values (0.0 to 0.2) in the dry season. The results 

suggest that NDVI could be used as an index of vegetation and also as an index of food 

resources in the semi-arid areas of Tanzania for monitoring rodent pests. Also, the 

obtained NDVI values provide a robust measure of the presence and abundance of 

vegetation across the studied landscapes which could be very useful in monitoring rainfall 

dynamics and as a proxy for predicting rodent pest outbreaks in the study area. 

 

The study has further demonstrated a good correlation between TMPA-RT rainfall and 

NDVI across the studied landscapes with the escarpment having relatively higher 

correlation (r = 0.688), than the plateau (r = 0.653) and the rift valley floor (r = 0.652). 

These results suggest that NDVI could be applied fruitfully to estimate rainfall variability 

and seasonality across the studied landscapes. This implies that representative locations 

can be chosen for sampling of NDVI values to explain rainfall scenarios instead of being 

dependent on the locations of the meteorological stations. 

 

Generally, temporal distribution of rodent abundance in the study area followed the NDVI 

pattern which is a proxy of primary productivity. This study has therefore demonstrated 

the power of NDVI for use in ecological research and in particular for monitoring rodent 

population dynamics and outbreaks in smallholder farming agro-ecosystems in the study 

area and other areas with similar conditions in Tanzania.  

 

In this study, a strong linear relationship (R
2
 = 0.7) was observed between rodent 

abundance and rainfall derived from NDVI across the Isimani landscape. Mean seasonal 

rodent abundance increases with an increase in mean seasonal rainfall. The relationship 
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obtained between rodent abundance and rainfall derived from NDVI provide a quick 

insight that could help in ameliorating pest control planning in semi-arid areas of 

Tanzania. 

 

The study has demonstrated that 98% of the predicted rodent abundance was explained by 

NDVI while rainfall explained only 85%. This study has therefore supported the 

hypothesis that NDVI of common vegetation habitats derived from satellite remote 

sensing data has the potential for monitoring rodent population dynamics and outbreaks 

under smallholder farming agro-ecosystems in the study area. 

 

4.2 Recommendations 

Findings from this study have provided some insights into the structural characterization 

and mapping of vegetation habitats that could contribute knowledge about rodent 

populations on individual farms. Thorough understanding of the vegetation patterns, 

climate and terrain parameters for habitat characterization and for which abundance of 

small mammals can be predicted were established. Results also demonstrated the 

potential use of NDVI of common vegetation habitats derived from satellite remote 

sensing data for monitoring rodent pests under smallholder farming agro-ecosystems. 

However, results obtained revealed some gaps which require further research so as to 

provide future guidelines for monitoring rodent pest population dynamics and ecological 

based rodent management decisions, hence the following recommendations: 

 

Temporal patterns of rainfall could be used to describe vegetation habitats and small 

mammal population dynamics in most agro ecosystems. However, lack of a network of 

accurately recorded rainfall time series data in the study area has posed a significant 

challenge. To minimize the problem of rainfall data availability, further research is 
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recommended to explore the use of satellite data such as MODIS-NDVI, and TMPA-RT 

at fine resolution to generate rainfall data for use instead of relying on commonly not 

readily available point rainfall measurements. 

 

Further research to explore the existing relationship between vegetation habitats with their 

associated microclimate and small mammal particularly rodent pest’s hotspot areas is 

recommended. 

 

Studies that have demonstrated correlation between NDVI and abundance of small 

mammals (rodent pests) elsewhere are lacking in tropical sub-Saharan Africa. It is 

apparent from the results of this study that there is more work that remains to be done on 

the application of remote sensing derived NDVI in monitoring rodent pest population 

dynamics taking into consideration the major rodent pest species such as Mastomys 

natalensis, Arvicanthis spp, and Gerbillicus spp which are common in smallholder agro 

ecosystems.  

 

Further research is also required to establish relationships between NDVI and rodent pest 

species composition and community structure in different habitats and seasonal rainfall 

patterns. 

 

In the light of findings of this study and similar studies in other areas, there are several 

research questions that require further consideration in the future research. This include 

for example, to conduct a research to establish threshold for rodent outbreaks in 

smallholder farming conditions, minimum NDVI value that will be needed by 

smallholder farmers with regard to risk of rodent outbreaks in the study area and at what 

point in time is prediction of such nature important to enable corrective measures.
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                    APPENDIX 

 

  Appendix 1: Population of small mammals’ species across the Isimani landscapes 

 

Landscape unit Vegetation habitats 
Number of small mammal (trapped) 

Total MN GB LZ AE AC GR ES AV CH 

Plateau Grassland/shrub land/tree 271 14 1 2 2 

   

7 297 

Agriculture 150 8 1 

 

5 

  

1 4 169 

Shrub land 9 

 

1 6 

    

1 17 

River line vegetation/litters/valley bottoms 1 

  

4 

     

5 

Bare/grasses/sparse tree 57 

       

4 61 

Valley bottom/grass land 25 5               30 

Sub total 513 27 3 12 7   1 16 579 

Escarpment Forest/ dried acacia trees       2 1         3 

Grasses and tree       1   1 1     3 

Sub total    3 1 1 1   6 

Rift valley flow Woodland/shrubs/grasses   2     1         3 

Grassland/ sunflower         4     5   9 

Sub total  2   5   5  12 

Grand total 513 29 3 15 13 1 1 6 16 597 

 Key:          MN = Mystomys Natalensis, GB = Tatera, LZ = Lemniscomys Zebra, AE = Aethomys, AC = Acomys,  

                    GR = Graphiurus, ES = Elephant shrew, AV = Avicansis, CH = Crocidura shrew 

  


