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Abstract

Background: Airborne laser scanning (ALS) has recently emerged as a promising tool to acquire auxiliary
information for improving aboveground biomass (AGB) estimation in sample-based forest inventories. Under
design-based and model-assisted inferential frameworks, the estimation relies on a model that relates the auxiliary
ALS metrics to AGB estimated on ground plots. The size of the field plots has been identified as one source of
model uncertainty because of the so-called boundary effects which increases with decreasing plot size. Recent re-
search in tropical forests has aimed to quantify the boundary effects on model prediction accuracy, but evidence of
the consequences for the final AGB estimates is lacking. In this study we analyzed the effect of field plot size on
model prediction accuracy and its implication when used in a model-assisted inferential framework.

Results: The results showed that the prediction accuracy of the model improved as the plot size increased. The
adjusted R2 increased from 0.35 to 0.74 while the relative root mean square error decreased from 63.6 to 29.2%.
Indicators of boundary effects were identified and confirmed to have significant effects on the model residuals.
Variance estimates of model-assisted mean AGB relative to corresponding variance estimates of pure field-based
AGB, decreased with increasing plot size in the range from 200 to 3000 m2. The variance ratio of field-based esti-
mates relative to model-assisted variance ranged from 1.7 to 7.7.

Conclusions: This study showed that the relative improvement in precision of AGB estimation when increasing
field-plot size, was greater for an ALS-assisted inventory compared to that of a pure field-based inventory.
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Background
Tropical forests play an important role in the global car-
bon cycle as they store about 40% of the global terres-
trial carbon, and absorb larger amounts of CO2 from the
atmosphere than any other vegetation type [1]. Despite
their potential, tropical forests continue to be exploited
at alarming rates, by being converted into secondary for-
est and many other forms of land use. In an effort to
conserve tropical forests, the United Nations Framework
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Convention on Climate Change (UNFCCC) has devel-
oped the mechanism called Reducing Emissions from
Deforestation and Forest Degradation in tropical coun-
tries (REDD+). There is high interest in seeing such ini-
tiatives to take form, but a key limitation for successful
implementation of REDD+ is reliable methods for quan-
tifying forest aboveground biomass (AGB) [2,3]. Such
methods are important because payments for carbon off-
sets under REDD+ are based on estimates of carbon
stock and stock changes over time. Moreover, AGB in-
formation is also useful for understanding the contribu-
tion of the tropical forests to the global carbon cycle and
ecosystem processes [4].
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Airborne laser scanning (ALS) has emerged as one of
the most promising remote sensing technologies to sup-
port AGB forest inventories in boreal-, temperate-, and
tropical forests [5]. A particular strength of ALS for for-
est applications is its ability to accurately characterize
the three-dimensional (3D) structure of the forest canopy
[6]. Such information is more useful for forest inventories
than the information from other remote sensing tech-
niques see e.g. [7]. Height and density metrics derived
from the ALS data has been reported to be highly corre-
lated with AGB see e.g. [8,9]. Furthermore, ALS has shown
to be superior to other remote sensing data sources be-
cause the relationship between AGB and the remotely
sensed information has a much higher saturation level for
ALS compared to other types remote sensing. Because of
this, ALS is a highly appropriate choice of technique in
high-biomass forests. Based on its potential, ALS has re-
cently been recommended for Monitoring, Reporting and
Verification (MRV) systems under REDD+ initiatives [10].
Estimation of AGB using ALS is often carried out

according to the area-based approach (ABA) [11]. In
ABA, empirical models between various metrics derived
from the ALS data and AGB values obtained in geo-
referenced field sample plots are fitted. The area of
interest is then tessellated into grid cells [12] with the
same size as the plots [13,14] and the developed models
are used to provide cell-wise predictions of AGB. Finally,
estimates for the particular area of interest (forest stand,
forest property, village, district, or nation) are provided
by summing the individual cell predictions. For some es-
timation approaches, adjustment of model prediction
bias [15] is also carried out.
As indicated above, the modeled relationship between

ALS metrics and ground-based values is of fundamental
importance for the outcome of the ALS-assisted estima-
tion. The use of field plot data for model development
requires co–registration of field plot location with the
ALS data [16,17]. In an ALS-assisted inventory, the
point cloud is extracted only within the plot perimeter.
However, in field measurements trees are treated as be-
ing inside plots if the center point of the stem is inside
the plot. This is a challenge in ALS-assisted forest inven-
tory, since the crowns of trees just outside the plot
border partly extend into the plot area which means that
the ALS data will be affected by trees that are not regis-
tered in field. Conversely, also trees just inside the plot
extend their crowns beyond the plot boundary. This
means that there may be mismatch between the data
captured in field and from the air.
In order to reduce these boundary effects, it has been

suggested in a number of studies to use larger plots in
ALS-assisted forest inventory see e.g. [18,19]. This is be-
cause, as plot size increases, the perimeter to area ratio
decreases and thus the plots include a lower proportion
of boundary-related elements. Similarly, the relative and
negative influence of a given plot positioning error is re-
duced because the relative overlap between the field-
and ALS-data becomes larger as plot size increases.
Reduction in model errors are also expected by increas-
ing plot size due to so-called spatial averaging of the er-
rors [20], because both the field observations and the
ALS data capture more of the spatial variation as they
increase in size. Thus, as plot sizes increase, the vari-
ances of field-based and ALS-assisted estimates are ex-
pected to be reduced, which means that fewer plots are
needed to reach a certain precision of an AGB estimate.
However, large plots also have disadvantages by being
more complicated to measure, which may affect the time
consumption for collecting field measurements [21],
This makes it challenging to select the “optimal” plot
size that balances the tradeoff between plot size, sample
size (number of plots), on-plot costs, traveling costs and
precision of ALS-assisted AGB estimates in different for-
est types.
As indicated above, plot size has a profound effect on

the precision of ALS-assisted AGB estimates for several
reasons. Likewise, the plot size has an impact on the
precision of pure field-based estimates for reasons men-
tioned above; larger plots capture more of the variability
in the area of interest and thus precision will tend to im-
prove as long as the sample size is kept constant. A key
question is therefore if larger plots will favor ALS-
assisted estimation precision to the same extent as it fa-
vors field-based estimation precision. Different responses
to plot size should have a direct impact on how tropical
ALS-assisted field sample surveys should be designed as
their designs currently are “optimized” for pure field-
based estimation.
Forest sample surveys are often designed according to

design-based (probability-based) principles. Simple ran-
dom sampling is one of these principles, and analytical
and so-called design-unbiased estimators and corre-
sponding variance estimators exist for a great number of
such designs. When auxiliary data such as those ac-
quired by ALS are at hand for the entire area of interest,
or at least with partial coverage of the area of interest,
use of these data can greatly improve the precision over
a pure field-based estimate assuming the same design.
The inferential framework applied under probability
sampling when a model is used to predict AGB using
the ALS data is known as design-based model-assisted
(MA) estimation. In the MA framework, the model is
used to predict AGB for grid cells and then AGB is
summed over all grid cells as indicated in the ABA, but
in addition to that, the model predictions for the ground
samples are used to provide an estimate of bias in the
model predictions, which corrects the pure model-based
estimate. Several studies see e.g. [22-24] have indicated



Table 1 Selected ALS metrics for different plot sizes

Plot size (m2) n Selected variablesa

200 30 D0.F D1.L log.H80.F

300 30 D1.L log.H90.F log.D0.L

400 30 H80.F D1.L

500 30 H70.F D1.L

600 30 H70.F D1.L

700 30 H90.F D1.L

800 30 H90.F D1.L

900 30 H90.L D1.L

1000 30 Hsd.L D1.L log.D0.F

1100 30 D3.F D2.L log.H10.F

1200 30 Hmean.F D1.L

1300 30 H70.F D1.L

1400 30 D3.F D2.L log.H10.F

1500 30 H70.F D1.L

1600 30 H60.F D1.L

1700 30 H60.F D1.L

1800 30 H60.F D1.L

1900 30 H60.F D1.L

2000 25 H60.F D1.L

2100 25 H60.F D1.L

2200 24 H60.F D1.L

2300 24 H60.F D1.L

2400 24 H70.F D1.F

2500 22 H70.F D1.F

2600 22 H70.F D1.F

2700 22 H70.F D1.F

2800 22 H70.F D1.F

2900 22 H70.F D1.F

3000 22 H60.F D1.F
aD0.F, D1F.and D3.F = Canopy densities corresponding to the proportion of first
echoes above fraction #0 (2 m), #1 and #3 (see text). aD0.L, D1.L and
D2L. = Canopy densities corresponding to the proportion of last echoes above
fraction #0 (2 m), #1 and #2 (see text).
H10.F, H60.F, H70.F, H80.F and H90.F. = ALS height percentiles of the canopy
height for the first echo.
Hsd.L = Standard deviation of the canopy height of the first echoes.
Hmean.F = Arithmetic mean of the first echo ALS canopy height.
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the potential of MA estimation in reducing the variance
of AGB estimates in boreal forests, but apart from some
indications provided by [23], neither of them has ana-
lyzed how the variance of the estimates is affected by
changes in field plot sizes. In tropical forests where the
current study was conducted, there is even less know-
ledge regarding performance of MA estimation using
ALS with varying plot sizes. Several tropical studies have
examined the effects of plot size on model prediction ac-
curacy See e.g. [25-27], but none of them have assessed
the effects on the precision of AGB estimates and com-
pared such precision estimates with corresponding pre-
cision of field-based AGB estimates using the same
sampling design, which is of fundamental importance
for designing future sample surveys serving multiple
purposes and estimation approaches.
The objectives of this study were to (1) examine the

effects of field plot size on AGB regression model qual-
ity, (2) assess plot boundary effect and its impact on
model quality based on the field data, and (3) quantify
the precision of ALS-assisted estimates of AGB relative
to field-based estimates of AGB assuming the same de-
sign for different plot sizes. The study was conducted in
tropical rain forest in Tanzania with high AGB densities,
which was expected to represent a particular challenge
in terms of large boundary effects.

Results
Effects of field plot size on ALS AGB predictions
To assess the effect of plot size on ALS assisted forest
inventory, we first fitted the regression models for each
of the plot sizes. The independent variables selected var-
ied between the models developed for the different plot
sizes (Table 1). The number of variables varied between
two and three. For all models, the parameter estimates
were significantly different from zero (p < 0.05) and the
VIF values were <10, indicating acceptable levels of
multicolinearity. The variability explained by separate
models (i.e. adjusted R2) improved as the plot size in-
creased, with few exceptions (Figure 1a). The adjusted
R2 ranged from 0.35 for the plot size of 200 m2 to 0.74
for the plot size of 3000 m2. The RMSE% values for
LOOCV decreased non-linearly with increasing plot size,
from 63.8 to 29.2% (Figure 1b). The MPE% values
(Figure 1b) and the pattern of under predictions for plots
with high AGB were relatively lower for larger plots com-
pared smaller (Figure 2). However, it should be noted that
the number of the larger plots was relatively small.

Boundary effects
Boundary effects were studied by analyzing how the rela-
tive residual errors of the models were affected by the
ground reference AGB of the trees in an outer buffer
zone for different field plot sizes. Our results showed
that SAGBbuffer and MAGBbuffer contributed to explain-
ing the variation in the relative residual errors
(Table 2). Relating the absolute value of the relative re-
sidual with plot size using simple linear regression
model indicated that there was a highly significant ef-
fect of plot size (p < 0.0001). Furthermore, the param-
eter estimate for plot size was negative showing that
the relative residual is larger in absolute terms for
small plots compared to larger plots (Table 3).



Figure 1 Model quality and plot size. (a) Adjusted R2 versus plot sizes. (b) Relative MPE% and RMSE% versus plot sizes.
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Efficiency of ALS-assisted AGB estimation
The SE estimates for the field-based AGB estimates were
larger than the corresponding model-assisted SE esti-
mates (Figure 3). For the plot sizes that allowed consist-
ent analysis for all 30 sizes, i.e. from 200 to 1900 m2, the
field-based SE estimates decreased from 58.0 Mg ha−1 to
28.7 Mg ha−1, while the model-assisted SE estimates de-
creased from 44.3 Mg ha−1 to 15.5 Mg ha−1. Relative to
the mean of field reference AGB for the plot size from
200 to 1900 m2, the field –based SE estimates decreased
from 14.1% to 8.2% , while for the model-assisted esti-
mates decreased from 10.8% to 4.4%. Similarly, for the
Figure 2 Relationship between field reference AGB and predicted AGB for
larger plots (up to 3000 m2) for which 22 observations
were available for consistent analysis, the SE estimates
for model-assisted were relatively much smaller com-
pared to the field-based inventory. In both cases the SE
was higher for smaller plots compared to the larger
plots. Generally, the effectiveness of the ALS-assisted es-
timates was more improved as the plot size increased
compared to the field-based estimates. This indicates
that larger plots are relatively more favorable for ALS-
assisted estimation than for pure field-based estimation.
The RE values were >1 with a maximum value of 3.4
(Figure 4) for the plot sizes ranging from 200–1900 m2
different plot sizes.



Table 2 Coefficient estimates for models explaining residual errors of AGB using information extracted
from buffer zones

Models1 Model
parameter

3 m buffer 6 m buffer

Parameter estimate p-value AIC Parameter estimate p-value AIC

Model 1 Intercept −0.0159 0.8022 297 −0.1835 0.0206 654
2SAGBbuffer 0.0838 <0.0001 0.1892 <0.0001

Model 2 Intercept −0.0321 0.5826 266 0.0501 0.4674 663
2MAGBbuffer 0.4865 <0.0001 0.7015 <0.0001

1Models = Two models; Model 1 uses SAGBbuffer as fixed effects with plot identity as random effect. Model 2 uses MAGBbuffer with plot identity as random effect
(see text).
2SAGBbuffer = Ratio of either sum of AGB at the buffer to the ground reference AGB per hectare, MAGBbuffer = ratio of Maximum AGB at the buffer to the ground
reference AGB per hectare (see text).
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for which we have a complete dataset of 30 plots. For
the other set with plot size up to 3000 m2 the maximum
RE value was 7.7. It should be noted that the peak in
relative efficiency for the smallest dataset (22 plots) in
Figure 4 was caused by considerable change in the ob-
served AGB for a single plot when increasing the plot
size beyond 2000 m2. The increasing AGB was due to a
large tree that was included in the plot measurements
once the plot radius exceeded 25 m. This illustrates that
in a small dataset the results can be sensitive to indi-
vidual observations and even to the presence of indivi-
dual trees.

Discussion
The findings of this study demonstrated the importance
of choosing appropriate field plot sizes in ALS-assisted
forest inventories in tropical forests. This is particularly
important given that field campaigns are expensive and
time consuming, and linking field measurements with
remotely sensed data in the most effective manner
would benefit both REDD+ implementations, together
with all other studies related to forest carbon cycle. The
current study extends previous research conducted in
tropical forests, by having a dataset with a wide range of
plot sizes. Furthermore, most of the previous studies
have used rectangular plots.
See e.g. [18,26], whereas in this case circular plots have

been used. Circular plots are more convenient for re-
mote sensing studies compared to square or rectangular
plots because only a single coordinate together with a
plot radius are needed to match the two data sources
geographically [19,28,29]. Circular plots are also within
certain sizes easier to establish in the field because they
have one dimension (i.e. radius) that defines the plot
Table 3 Parameter estimates for the model relating
relative residual in absolute form and plot sizes

Coefficients Parameter estimates p-value

Intercept 0.5060 <0.0001

Plot size −0.0002 <0.0001
boundary. The use of circular plots minimizes the plot
boundary effects because of a smaller circumference to
area ratio than all other plot shapes. However, the visi-
bility from the plot center to the perimeter on a circular
plot is increasingly hampered as the plots get larger,
which increase per tree measurement time for the
border trees. An increase of the area of a rectangular
plot would not necessarily mean increased marginal cost
(cost of including one more tree) if the width of the plot
is kept constant and inclusion of trees are made with
reference to the long side. However, rectangular plots
are in general more difficult to establish. For example, in
rugged terrain it can be difficult to keep the sides
parallel.
Our findings demonstrated empirically the positive ef-

fects of increasing plot sizes on improved predictive
power of the AGB models. The model fit (adjusted R2)
of the regression models was improved as plot size in-
creased. Reduced circumference to area ratio, spatial
averaging, and less effect of positioning errors are prob-
ably the main reasons. The fit of our models are in line
with previous ALS-based studies in both tropical forests
and temperate forests. For example, [30] reported R2 of
0.78 in the tropical rainforest of Hawaii islands while
[31] reported R2 of 0.64 in a tropical rainforest of West
Africa. Furthermore, results from the cross-validation
showed smaller RMSE% and MPE% (Figure1b) for larger
plots compared to smaller plots. Similar trends have
been reported and discussed by other authors in both
temperate and tropical forests see e.g. [32].
Plot boundary effects have been discussed in previous

studies see e.g. [16,33] as one among the sources of
model error in ALS-assisted inventories, particularly
when relying on small plots. We demostrated this in two
steps; first by relating relative residuals to the sum of
AGB per hectare for all trees in the buffer (SAGBbuffer )
and the maximum AGB per hectare for the largest tree
in the buffer (MAGBbuffer ) where we noted that their
importance were depending on the size of the buffer.
The buffer conditions as expressed both by (MAGBbuffer)
and (SAGBbuffer), seemed to have more impact on the



Figure 3 Field-based and model-assisted SE estimates for different plot sizes covered in two sample datasets (i.e. 200 to 1900 and 200
to 3000 m2).
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residual error with decreasing distance to the plot
judged by the AIC values (Table 2), which is logical. Fur-
thermore, when comparing the two variables, SAGBbuffer
seemed to lose less explanatory power by going from 3
meter to 6 m buffer than MAGBbuffer. This result was also
expected because the represetation of the whole buffer by
SAGBbuffer is less prone to be changed by the increase in
size compared to MAGBbuffer which is calculated from a
single tree. Furthermore, the decrease in ALS model resi-
duals (Table 3) with increasing plot sizes is a clear indica-
tion that smaller plots are more prone to boundary effects
compared to larger plots.
Contribution of ALS data in improving precision of

AGB estimates was also demonstrated within varying
ranges of plot sizes. The RE values were > 1, indicating
that ALS-assisted estimation is more efficient compared
to pure field-based estimation. To achieve similar preci-
sion of a pure field-based estimate relying on simple ran-
dom sampling, would mean to increase the sample size
for the field-based inventory by a factor equivalent to
the value of RE, which would have a substantial effect
on field inventory costs. In general, the gain in relative
efficiency was more pronounced as plot size increased,
suggesting that larger plots are more favorable when ALS-
data are used to assist in the estimation. Even though we
did not undertake any analysis of cost-efficiency, the trend
would be toward larger and fewer plots as one introduces
ALS to support in the estimation. Even this finding can be
attributed to the effects discussed above, namely reduced
boundary effects and co-registration errors.
Despite the potential of improving the efficiency of

ALS-assisted inventories by use of larger plots, choice of
an “optimal” plot size must be seen in a broader context
by considering a number of factors including; sample
sizes, on-plot costs, traveling costs and overall field in-
ventory design. Several authors see e.g. [20,23,30] have
indicated that selection of the plot size also will depend
on forest types, available resources and the needed preci-
sion. Based on our findings, there is larger potential of
gaining efficiency of using ALS data in this type of forest
when the field plot size is larger than 1200 m2. Finally,
even though our study was limited to the tropical rain-
forests of Tanzania, the major findings are of interest
and efforts should be taken to upscale to other tropical
forests by considering more factors that would lead to
selection of “optimal” plot size.

Conclusions
To conclude, our study has demonstrated that field plot
size effect the prediction accuracy of ALS-assisted AGB
estimation in the tropical forests. Generally, there was
substantial improvement in prediction accuracy from



Figure 4 Relative efficiency for different plot sizes.
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larger plots compared to smaller plots. Indicators of
boundary effects were also identified and confirmed to
have significant effects on the model quality. From a
purely technical point of view, our results suggested that
it is relatively more favorable to increase the plot size
when ALS is used to enhance the estimates. This study
showed that there is a relative improvement in precision
of ALS-assisted AGB estimation, compared to pure
field-based estimation up to around 3000 m2 in this type
of forest. However, the maximum plot size of 3000 m2 in
the current study leaves an open question as to whether
there are any additional gains in relative precision be-
yond this size. Future studies should be conducted to
quantify the contribution of ALS to improve estimation
precision for even larger plots as the basis for design of
future inventories in tropical rainforests. Similar studies
should also be conducted in other types of tropical forests.

Methods
Site description
The study was conducted in Amani nature reserve
(ANR), which is situated in the southern part of the East
Usambara Mountains in northern Tanzania (Figure 5). It
was gazetted in 1997 with a protected area of 8,380 ha.
ANR lies between 5°14' - 5° 04' S and 38° 30' - 38°40' E,
with an altitudinal range of 190 to 1130 m above sea
level [34]. Rainfall is heavy at higher altitudes and in the
southeast of the mountain, with an average of 1900 mm
annually. The dry seasons are from June to August and
January to March, but rainfall is frequent throughout the
year. The mean annual temperature is 20.6°C [35].

Data collection
Sampling design
An initial probability sample of 173 field plots with an
average size of 900 m2 were established across ANR ac-
cording to a systematic design (450 m × 900 m distance
between plots) in 1999–2000 by a non-governmental
conservation and development organization, Frontier
Tanzania [34] (Figure 5). The plots were revisited and
re-measured in 2008–2012. In order to analyse plot size
effects on AGB estimates, a small sub-sample of 30 large
plots was established. Measurements on the 30 plots
were acquired in a separate campaign after completion
of measurements of the large sample. Due to high travel
costs and long walking distances in the very steep and
rough terrain, establishing a probability sample of 30
large plots across the entire study area was cost-
prohibitive. Instead we developed a sampling strategy
by which we took advantage of the a priori knowledge
of the distribution of AGB in the large probability sam-
ple and selected purposefully three sub-regions within
the study area in which the initial plots were revisited.
There is a strong altitude-dependent AGB gradient in



Figure 5 Study area and field plots layout. Left: Location of Amani nature reserve (marked with star). Right: Map of Amani nature reserve and the
two samples of field plots.
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the study area. It was therefore important to capture the
altitude gradient in each of the three sub-regions in
order to resemble the AGB distribution in the initial
probability sample.
In the sampled sub-regions, we first selected 16 of the

plots in the initial probability sample for measurement.
We also established 14 new and additional plots along
the grid-lines of the probability sample and located them
exactly mid-way between two existing plots. Thus, the dis-
tance between our plots was 225 m rather than 450 m.
Although the resulting sample of 30 large plots was

not selected according to probabilistic principles, it
closely resembled essential properties of the large prob-
ability sample. First of all the AGB distributions of the
two samples were similar (Figure 6). The mean AGB of
the 30 plots with an area of 900 m2 was 366.0 Mg ha−1

(Table 4, Figure 6), while it was 461.9 Mg ha−1 for the
large probability sample (Figure 6). The AGB range was
69.4-908.3 Mg ha−1 (standard deviation of 216.3 Mg ha−1)
while it was 43.2-1147.1 Mg ha−1 (standard deviation of
214.7 Mg ha−1) for the large sample. Furthermore, the 30
plots covered an elevation range of 200 to 1000 m above
sea level (Figure 7a) so that both the lowland forests
(<800 m above sea level) and the sub mountain forests
(>800 m above sea level) were represented. The 30 plots
also covered a wide range of tree sizes (Figure 7b).

Field data
Field data were collected during November 2012, about
six mounts after completion of the field work on the
large probability sample. On each of the 30 plots, we
registered all trees within a radius limited by the max-
imum distance measuring range of a Vertex hypsometer
[36], which was used to measure the horizontal distance
from the plot centre to each tree. The maximum meas-
uring range of the hypsometer varied among the plots
due to differences in terrain ruggedness and forest dens-
ity. The radius distribution among the 30 plots was as
follows; 31 m (22 plots), 28 m (2 plots), 26 m (1 plot)
and 25 m (5 plots). For each tree with diameter at breast
height (dbh) larger than 5 cm, scientific name, local
name, distance to plot centre and dbh was registered. A



Figure 6 Distribution of AGB in the large probability sample (dark
grey), in the small sample of 30 plots (900 m2) (light grey) and
overlap between the two distributions (grey). The vertical line A
indicates the mean of the small sample (366.0 Mg ha−1) and line B
the mean of the large sample (461.9 Mg ha−1).
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diameter tape, rather than a calliper, was used to gauge
diameters since tree trunks in this forest type tend to be
both oval and large in size. The distance was measured
from plot center to the front of each tree, and half of the
tree diameter was added to get the total horizontal dis-
tance. The distance measures enabled us to generate any
plot size within the limit of the maximum radius. For
this study, we decided to select radii between 7.98 m
(200 m2) and 30.90 m (3000 m2) (Table 4) for further
analysis. Three trees (largest, medium and smallest in
terms of diameter) per plot were measured for height (h)
using a Vertex hypsometer.
Precise field coordinates were determined in the centre

of each plot by means of differential Global Navigation
Satellite Systems (dGNSS). Topcon Legacy 40 channels
dual frequency receivers, observing both pseudo-range
and carrier phase of the Global Positioning System (GPS)
and the Global Navigation Satellite System (GLONASS)
were used as rover and base station. The post-processing
reports from Pinnacle version 1.0 software [37] indicated
an average error of 19 cm for the planimetric coordinates.
The error was computed as two times the standard devia-
tions of the corrected single observations reported from
Pinnacle output [38].

Field estimates of AGB
For each plot AGB was estimated by using the local allo-
metric AGB model developed by [39] with both dbh and
h as predictor variables (Eq. 2). Using models with both
dbh and h is reported to moderate the effect of large
dbh-values on AGB estimates as compared to models
with dbh only [40-42]. Before calculating AGB, a height
model (Eq. 1), was developed using the observations of
tree height and corresponding diameters from each plot.
A number of model forms for diameter–height relation-
ship [43-48] were tested using non-linear mixed effect ap-
proach. Best model fit, judged by the Akaike information
criterion (AIC), was obtained using the model form by
[46]

h ¼ 1:3þ 45:5103 exp −2:7163 � exp −0:0354 � dbhð Þ�� ��
ð1Þ

This model was used to predict height for trees with-
out height measurements. AGB was calculated for indi-
vidual trees within each plot according to [39] i.e.,

AGB ¼ 0:4020 � dbhð Þ1:4365 hð Þ0:8613 ð2Þ
and then summed to obtain total AGB for the respective
plot. The AGB values were finally scaled to per ha values
for the different plot sizes (Table 4). The calculated AGB
values are henceforth denoted field reference AGB.

Laser scanner data
ALS data were collected during the period from 19
January to 18 February 2012 using a Leica ALS70 sensor
(Leica Geosystems AG, Switzerland) carried by a Cessna
404 fixed-wing aircraft. Mean flying altitude was 800 m
above ground covering the entire area of ANR (i.e. wall
to wall) at a ground speed of 75 m s−1. The scanning
rate was 58.6 Hz and the instrument operated at a pulse
repetition frequency of 339 kHz with a resulting average
pulse density of 10.6 points m−2.
Processing of the ALS data started with classification

of each ALS echo as ground or vegetation using the
progressive irregular triangular network densification
method [49] implemented in the TerraScan software
[50]. A Triangular Irregular Network (TIN) was cre-
ated using the ALS echoes classified as ground echoes.
The heights above the ground surface were calculated
for all echoes by subtracting the respective TIN heights
from the height values of all echoes recorded. Up to five
echoes were registered per pulse and we used the three
echo categories classified as “single”, “first of many”, and
“last of many”. The “single” and “first of many” echoes
were pooled into one dataset denoted as “first” echoes,
and correspondingly, the “single” and “last of many” echoes
were pooled into a dataset denoted as “last” echoes.
Several variables were extracted from the ALS data for

each of the field plot sizes as described by [51]. For each
plot size, height distributions of both first and last
echoes were first created. A height threshold of 2.0 m
was applied in order to remove the effect of low vegeta-
tion and echoes from ground features falsely classified
as vegetation. Then, heights at nine percentiles (10th,



Table 4 Summary of field data

Plot size (m2) Number of plots (n) Mean (Mg ha−1) Standard deviation (Mg ha−1) Minimum (Mg ha−1) Maximum (Mg ha−1)

200 30 411.4 323.2 53.3 1179.5

300 30 401.0 257.3 48.2 816.0

400 30 424.5 275.8 72.6 1185.2

500 30 413.8 263.4 77.8 1148.0

600 30 395.3 243.9 87.9 1066.6

700 30 371.8 221.5 75.4 931.7

800 30 363.1 204.4 74.3 824.3

900 30 366.0 216.3 69.4 908.3

1000 30 367.1 210.1 62.4 859.7

1100 30 365.6 203.0 66.4 839.5

1200 30 365.0 193.7 78.4 797.6

1300 30 361.0 190.5 82.1 757.9

1400 30 352.3 184.7 87.3 707.0

1500 30 354.2 180.4 85.5 757.8

1600 30 353.2 174.1 82.2 725.5

1700 30 355.0 170.2 95.6 702.6

1800 30 355.9 163.9 91.5 696.5

1900 30 351.1 159.6 90.7 703.3

2000 25 352.2 170.8 89.6 669.3

2100 25 350.4 168.0 85.5 646.2

2200 24 344.7 169.3 89.3 631.1

2300 24 343.0 167.8 88.5 639.8

2400 24 344.2 171.3 87.9 677.7

2500 22 332.1 175.0 84.4 661.5

2600 22 334.1 183.1 91.8 669.9

2700 22 328.0 179.8 88.6 674.7

2800 22 322.7 177.7 85.4 665.9

2900 22 323.5 177.9 82.5 655.6

3000 22 321.0 179.7 79.7 666.7

Number of plots for the different plot sizes together with mean field reference AGB values with corresponding standard deviation, minimum, and maximum.

Mauya et al. Carbon Balance and Management  (2015) 10:10 Page 10 of 14
20th, …, 90th) of both the first- and last echo distribu-
tions were computed to represent canopy height and la-
beled H10.F, H20.F, …, H90.F (first echoes) and H10.L,
H20.L, …, H90.L (last echoes), respectively. Measures of
canopy density were also derived for first and last
echoes of each plot size. The range between the lowest
ALS canopy height (>2 m) and the 95th percentile height
was divided into 10 vertical fractions of equal height.
Canopy densities were then computed as the proportion
of ALS echoes above each fraction to total number of
first echoes and labeled D0.F (>2 m), D1.F, …, D9.F.
Density variables for the last echo distribution were cal-
culated the same way (relative to total number of last
echoes) and labeled D0.L, D1.L, …, D9.L. Furthermore,
for both first and last echo height distributions on each
plot, the maximum height (Hmax..F and Hmax.L ), mean
values (Hmean..F and Hmean.L), standard deviation (Hsd.F
and Hsd.L), coefficient of variation (Hcv.F and Hcv.L),
and skewness (Hskewness.F and Hskewness.L) were computed.

Data analyses
Model development
Multiple linear regression analysis with ordinary least
square regression (OLS) was used to develop the statis-
tical models relating the field reference AGB and the
predictor variables from the ALS data. To ensure that
our modelling approaches met the basic assumptions of
OLS, the response variable was transformed to logarith-
mic scale [11,52], while for the predictors both log trans-
formed and non-transformed variables were used.
Separate models with log transformed response and
combination of log transformed and non-transformed



Figure 7 Distributions of field plots, elevation, number of trees per ha and tree sizes. (a) Number of field plots versus elevation. (b) Number of
trees per ha versus tree sizes.
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predictor variables were fitted for each of the plot sizes.
We decided to fit separate models (unique variable
combinations) for each of the plot sizes, because we
wanted the model for each plot size to be the “best”
and not be constrained by forcing specific variables
into the model.
Variable selection was conducted by using reg-subset

in the leaps package in R [53]. The selection of the vari-
ables was limited to the best combinations of three or
fewer variables in order to avoid multicollinearity among
candidate predictors. The preferred models were chosen
based on the Bayesian information criterion (BIC) [54].
Adjusted R2 was also used for assessing the model fit
while multicollinearity was assessed by computing the
variance inflation factors (VIF). The VIF values were de-
termined for the individual β parameters. VIF values
greater than 10 were regarded as an indication of multi-
collinearity problems [55].
Log-transformation of the response variable introduces

a bias when back-transforming to the arithmetic scale.
The model for AGB was therefore adjusted for logarith-
mic bias according to [56] by adding half of the model
mean square error to the constant term before trans-
formation to arithmetic scale.

Model validation and accuracy assessment
In order to assess the performance of the models for
each plot size, leave-one-out cross–validation (LOOCV)
was performed. One field plot at a time was excluded
from the dataset, and the model was fitted based on n-1
plots to predict the AGB of the left out plot. Here, n de-
notes the number of field plots, where i = 1,…, n. Rela-
tive root mean square error (RMSE %) and the mean
prediction error (MPE%) were used as the measures of
reliability and calculated according to

RMSE% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
yi−byið Þ2=n

q
y

� 100 ð3Þ

MPE% ¼
Xn

i¼1
yi−byið Þ=n
y

� 100 ð4Þ

Where yi and byi denote field reference AGB and pre-
dicted AGB for plot i, respectively, and �y denotes mean
field reference AGB for all plots. RMSE% is a good
measure of how accurately the model predicts the re-
sponse and is the most important criterion for fit if the
main purpose of the model is prediction [57].

Analysis of boundary effects
To analyze the boundary effects we studied how the re-
sidual errors of the models were related to the field ref-
erence AGB of the trees in an outer buffer zone for
different field plot sizes. To archive this, we extracted
field reference AGB values for 3 m and 6 m buffers out-
side the field plots for the plot sizes of 200–1500 m2 and



Mauya et al. Carbon Balance and Management  (2015) 10:10 Page 12 of 14
200–1100 m2, respectively. We selected the trees with
dbh > 10 cm and computed AGB per hectare for the lar-
gest tree in the buffer and the total AGB per hectare for
all trees in the buffer. To obtain the model residual
error, we first subtracted the ground reference AGB
from the predicted AGB. Then we calculated the ratio
between the residuals and the total field reference AGB
for the respective plot (i.e., relative residual). Similar ra-
tios between (1) sum of AGB per hectare for all trees in
the buffer (SAGBbuffer) and the field reference AGB for
the plot and (2) the maximum AGB per hectare for the
largest tree in the buffer (MAGBbuffer,) and the field ref-
erence AGB for the plot were also computed. Two em-
pirical models explaining the variation in the relative
residual values using either SAGBbuffer or MAGBbuffer as
explanatory variables were developed. Linear mixed ef-
fects (LME) regression using nlme add-on package [58]
in R was used for model fitting. LME models are linear
regression models in which parameters are the sum of
the fixed and random effects. In this case the fixed ef-
fects were either SAGBbuffer or MAGBbuffer while plot
identity was treated as the random effect. We assumed
that each plot will have different random error struc-
tures and that the distribution of AGB within these plots
is not independent of one another. To test the effect of
plot sizes on relative residual, we also fitted the linear re-
gression model which relates relative residuals in abso-
lute form and plot sizes. Absolute value was used because
we were interested in the magnitude of the residual re-
gardless of its sign.

Efficiency of ALS-assisted AGB estimation
ALS-assisted estimation of AGB within the design-based
and model-assisted inferential framework can greatly im-
prove the precision compared to pure field-based esti-
mation. The purpose of this analysis was to quantify the
gain in estimated precision of using ALS data relative to
a pure field-based estimate for increasing plot sizes.
A basic requirement for validity of design-based infer-

ence is the availability of a probability sample [59]. As
stated above, the current sample of 30 plots was ob-
tained as a subsample of a probability sample, but the
sub-sampling was not conducted according to strict
probabilistic principles. However, the sub-sample was se-
lected to resemble important properties of the large
probability sample as closely as practically feasible. Thus,
a comparison of variances using the current data and as-
suming a probabilistic design will most likely introduce
a bias in the estimators of unknown magnitude. Like-
wise, when a systematic sample is obtained, it is com-
mon to adopt design-based estimators assuming e.g.
simple random sampling (SRS) although it is well-
known that SRS variance estimators usually are posi-
tively biased under systematic sampling. The magnitude
of the bias is always unknown for a particular sample be-
cause bias is a property of an estimator and not a particular
sample. The current analysis was conducted under the as-
sumption that the sample at hand would give a meaningful
quantification of the effect of plot size on relative variance
estimates. Thus, in the current study we adopted design-
based variance estimators assuming simple random sam-
pling and complete cover of ALS data.
Assuming SRS, the variance estimator for the field-

based AGB estimate ignoring corrections for finite popu-
lation is [60].

bV field ¼
Xn

i¼1 yi−�yð Þ2
n n−1ð Þ ð5Þ

For model-assisted estimation, the variance estimator
of the so-called generalized regression estimator is [60].

bVALS ¼
Xn

i¼1 êi−�eð Þ2
n n−1ð Þ ð6Þ

where êi ¼ yi−byi is the model prediction residual for plot

i and �e ¼
Xn

i¼1 êi
n is the mean residual for all plots.

Standard error (SE) was computed as the square root of
the variance estimates. Finally, the relative efficiency
(RE) of ALS-assisted inventory relative to field-based in-
ventory was calculated for different plot sizes as the ratio
of the two variance estimates, i.e.,

RE ¼ bV field

�
bVALS ð7Þ

Values of RE greater than 1.0 indicates higher effi-
ciency of ALS-assisted estimates than field-based esti-
mates for a given plot size. To achieve consistency in the
analysis across different plot sizes, the dataset was di-
vided into two major groups. The first group subject to
analysis comprised all the 30 plots and allowed consist-
ent analysis of plot size ranging from 200–1900 m2. The
second group allowing analysis from 200 to 3000 m2

consisted of 22 of the plots.
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