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ABSTRACT 

High resolution surface climate variables are required for end-users in climate change impact studies; 
however, information provided by Global Climate Models (GCMs) has a coarser resolution. Downscaling 
techniques such as that developed at the University of Cape Town, which is based on Self-Organizing 

Maps (SOMs) technique, can be used to downscale the coarse-scale GCM climate change projections into 
finer spatial resolutions; but that must be combined with verification. The SOM downscaling technique 
was employed to project rainfall and temperature changes for 2046-2065 and 2080-2100 periods for Same, 

Tanzania. This model was initially verified using downscaled NCEP reanalysis and observed climate data 
set between 1979 and 2004, and between NCEP reanalysis and GCM controls (1979 - 2000). After 
verification, the model was then used to downscale climate change projections of four GCMs for 2046-

2065 (future-A) and 2080-2100 (future-B) periods. These projections were then used to compute changes 
in the climate variables by comparing future-A and B to the control period (1961-2000). Verification 

results indicated that the NCEP downscaled climate data compared well with the observed data. Also, 
comparison between NCEP downscaled and GCM downscaled showed that all the four GCM models 
(CGCM, CNRM, IPSL, and ECHAM) compared well with the NCEP downscaled temperature and rainfall 

data. Future projections (2046-2065) indicated 56 mm and 42 mm increase  in seasonal total rainfall 
amounts for March-April-May (MAM) and October-November-December (OND) (23% and 26% 
increase), respectively; and a temperature increase of about  2°C for both seasons. Furthermore, it was 

found that during MAM there will be a decrease in dry spells by 2 days, and an increase in seasonal length 
by 8 days, while for OND, there will be also 2 days decrease in dry spells, and 40 days increase in the 
seasonal length. The results for future-B shows a 4°C rise in temperature, and 46.5% and 35.8% increase 

in rainfall for MAM and OND, respectively. The results imply a better climatic future for the area because 
of the increase in the amount of rainfall and decrease in dry spells. However, it is suggested that further 
investigations are required to see if the projected changes will have real positive effects in agricultural 

production and also identify better agronomic practices that will take advantage of the opportunities. 
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1. Introduction 

Agriculture is the leading sector of the economy of Tanzania. It accounts for over half of the Gross 
Domestic Product (GDP), provides 85% of export earnings, and employs over 80% of the work force 
(URT 2001). Unfortunately, as in other African countries, the sector is highly vulnerable to climate 

change and variability because of its over-dependence in rainfall. According to World Bank (2002), only 
3.3% of the cropland was irrigated in Tanzania as of 1999. The remaining area depended on rainfed 

agriculture. Hence, any attempts to improve agriculture must therefore tackle the problems associated with 
climate change and its variability. 

 

*Corresponding author: E-mail address fredkahimba@.suanet.ac.tz; kahimbafcs@yahoo.com  (F.C. 
Kahimba) 

mailto:fredkahimba@.suanet.ac.tz
mailto:kahimbafcs@yahoo.com


 
 In order to capture the climate change issues relevant for agricultural production, location-based 

assessments are needed to complement the broad impact assessments such as those provided by Global 
Climate Models (GCMs) (Feenstra et al., 1997).  GCMs represent physical processes in the atmosphere, 

ocean, cryosphere, and land surface. They are widely known to be the most advanced tools currently 
available for simulating the response of the global climate system to increasing greenhouse gas 
concentrations (Kistler et al., 2001; Wilby et al., 2004). The GCMs are capable of simulating the general 

circulation as well as inter-annual oscillations such as El Nino - Southern oscillation (ENSO), and 
forecasting climate trends decades or hundred of years in advance. Although simpler models have also 
been used to provide globally- or regionally-averaged estimates of the climate response, only GCMs, 

possibly in conjunction with nested regional models, have the potential to provide geographically and 
physically consistent estimates of regional climate change which are required in impact studies (Houghton 
et al., 2001). GCMs depict the climate using a three-dimensional grid over the globe typically having a 

horizontal resolution of between 250 and 600 km, 10 to 20 vertical layers in the atmosphere, and 
sometimes as many as 30 layers in the oceans (Houghton et al., 2001). Their resolution is thus quite coarse 
relative to the scale of exposure units in most impact studies. 

 Downscaling techniques are commonly used to address the scale mismatch between coarse 

resolution GCM outputs and the regional or local scales (Kistler et al., 2001; Wilby et al., 2004; Spak et 
al., 2007). The techniques are used to provide insights at scales essential to stakeholders and policy 
makers to better assist users to assess the potential impacts of climate change and plan to adapt. Several 

methodologies to downscaling are available. Generally, the methodologies fall into two broad categories 
(Corell, 2007). The first category is called dynamic downscaling, and its basic approach is to nest a finer-
scale grid within a GCM over an area of interest. Despite some advantages of the dynamic downscaling, 

the methodology requires supercomputer systems and there are too few supercomputer systems available 
to perform such mesoscale simulations to fully assess the local/regional impacts and consequences of 
climate change (Corell, 2007). As supercomputer capabilities and availability increases, dynamic 

downscaling will become more widely accessible. 

 The second category, statistical or empirical downscaling (SD), is a fully developed and widely 

used technique for exploring the regional and local-scale response to global climate change as simulated 
by comparatively low-resolution GCMs. The technique involves developing quantitative relationship 

between large-scale climate variables (“predictors”) and local surface variables (“predictands”). As long 
as significant statistical relationships occur, empirical downscaling can yield regional information for any 
desired weather variable such as precipitation and temperature. As noted in the third assessment report 

(TAR) of the intergovernmental panel on climate change (IPCC, 2001), SD has a wide appeal because it is 
computationally inexpensive and can easily be applied to a large number of climate simulations. This 
makes it particularly attractive to the impacts community and especially to developing countries. The TAR 

highlights the extensive and diverse list of SD techniques that have been applied to climate downscaling 
(IPCC, 2001: Chapter 10, Appendix A). The techniques can generally be grouped into three categories: 
transfer function, weather typing, and weather generators. The optimal choices of model type and strategy 

depend on the problem; hence no general advice can be given (Corell, 2007). The implementation of SD 
techniques, however, requires a number of assumptions concerning the input data and subjective decisions 

on the choice of statistical parameters. An important assumption for the validity of SD is that of 
stationarity of the downscaling function, i.e. the relationship between the predictors and predictand 
remains valid for periods outside the fitting period (Hewitson and Crane, 2006). 

 This paper presents an evaluation of downscaled climate projections for Same, located in the 
North-Eastern Tanzania near Mt. Kilimanjaro. The study of climate change in Tanzania, including Same, 

is also reported by Matari et al. (2008). This was a country level study and which showed that mean 
annual temperature in the North-Eastern areas including Same will increase by 1.7oC by 2100 in 

comparison to 1961-1990 baseline. Precipitation over the whole country is expected to increase by 10%, 
and for North-Eastern rainfall is expected to increase by 18% for the period of March to May, period when 
this area receives most of its reliable rainfall. The study by Matari et al. (2008) used MAGICC/SCENGEN 



software to do the downscaling and used five GCM models including ECH3 and UK HIGH considering 
doubling of carbon dioxide (2xCO2).  

 This study aimed at investigating how the climate change will impact Same area given the current 

challenges that farmers are facing by looking in detail into rainfall parameters that affect crop growth such 
as dry spells, length of growing season, and rainfall amounts. The study used self-organizing map 
downscaling (SOM) technique to downscale climate data from four GCMs models (CGCM, CNRM, IPSL 

and ECHAM), forced by the SRES A2 emissions scenario. The A2 scenario is preferred in impacts and 
adaptation studies because it assumes that if one can adapt to a larger climate change, then the smaller 
climate changes of the lower end scenarios can also be adapted too (IPCC, 2000; NARCCAP, 2008). 

 The study investigated how well the GCM models predict the current situation of rainfall and 

temperature as well as how well they quantify the future projections as defined by IPCCC. Specifically, 
the study (i) evaluated the SOM model for downscaling temperature and rainfall projections for Same 
meteorological station; (ii) evaluated the GCMs models ability to simulate the current temperature and 

rainfall for Same for the control period (1979 to 2000); and (iii) projected changes in rainfall and 
temperature for future-A (2046 - 2065) and future-B (2081 - 2100). 

2. Materials and Methods 

2.1 The study location 

The Same meteorological station (Figure 1), located in the north eastern part of Tanzania, was selected for 
testing the downscaling method. Same district lies on the foothills of the Western Pare Mountains, which 
are part of the Eastern Arc Mountains. The area is semi-arid with highly variable and unreliable rainfall, 

with farmers strongly attached to growing maize as their main food crop. Rainfall is bimodal with 
lowlands receiving less than 500 mm per year and crop failure due to water deficit is common (Enfors and 
Gordon, 2007).This location was purposely selected because it is a study location for a project under a 

programme on “Climate Change Adaptation for Agriculture” funded by the Department of Foreign Affairs 
and International Development (DFID), UK and International Department for Relations and Cooperation 
(IDRC), Canada. 

Figure 1. 

Rainfall on the area is highly variable both annually and seasonally. The annual precipitation (1957-2004) 
averaged at 562 mm, with a standard deviation (SD) of 193 mm (Enfors and Gordon, 2007). The area has 

two distinct rain seasons, the long (Masika) and the short (Vuli) rains. For the Masika season the average 
annual precipitation is 251 mm (SD 119 mm), and for Vuli seasons it is 194 mm (SD 128 mm). There is 

increased frequency of dry-spells longer than 21 days for Masika seasons. Between 1957 and 1980, 42% 
of the Masika seasons were affected by dry-spells longer than 21 days, compared to 79% between 1981 
and 2004. This represents almost a doubling of the frequency. The long dry-spells often occur relatively 

later in the season (around day of the year 50-70). 

2.2 Downscaling 

This study used Self-organizing maps (SOMs) empirical downscaling technique (Hewitson & Crane, 
2006). The technique was used to downscale daily rainfall and temperature data for Same meteorological 
station. The SOMs technique was used to characterize the state of the atmosphere of that location on the 

basis of NCEP 6-hourly reanalysis data from 1979 to 2004, and using surface and 700-hPa u and v wind 
vectors, specific and relative humidity, and surface temperature. Each unique atmospheric state was 

associated with observed temperature and rainfall density functions (PDF). With such associations, 
models based on SOM technique were then developed for each climate variable (rainfall, minimum 
temperature and maximum temperature). Using these models, the future climate conditions (2046 to 2065 

and 2081 to 2100) were derived from four global climate models (GCMs): CGCM, CNRM, IPSL, and 
ECHAM. 



Table 1. 

In each case, the GCM data were mapped to the NCEP SOMs and temperature values 

(minimum/maximum) were drawn at random from the associated temperatures PDF. The same procedure 
was employed to obtain downscaled values for rainfall. More details on the methodology are given by 

Hewitson and Crane (2006). 

2.3 Statistical analysis 

2.3.1 Analysis of temperature data 

Observed daily maximum and minimum temperatures and downscaled daily NCEP reanalysis maximum 
and minimum temperatures were compared by running simple linear regression to obtain coefficient of 

determination (R2). The same was done to compare NCEP reanalysis and GCMs. 

2.3.2 Analysis of rainfall data 

Rainfall analysis was divided into the two rainfall seasons (March-April-May and October-November-
December, abbreviated as MAM and OND, respectively). Statistical parameters commonly used to 

characterize rainfall season were computed for each season, which are: 
(i) the number of events greater or equal to 2 mm rainfall (counts) 
(ii) the number of events greater or equal to 10 mm rainfall (counts) 

(iii) rainfall amount (mm) 
(iv) maximum dry spells (days) 
(v) start of the season (day of the year) 

(vi) end of the season (day of the year) 
(vii) length of the season (days) 

Comparison of the means of these parameters between observed and NCEP reanalysis was then done to 
obtain statistical differences at p<0.05 and p<0.01.  

2.3.3 Analysis of future changes 

To quantify the magnitude of rainfall changes between control period (1961 to 2000), and 2046-2065 
(future-A) and 2081-2100 (future-B) periods, the same seven rainfall parameters (> 2 mm rains, > 10 mm 

rains, rainfall amount, maximum dry spells, start of the season, end of the season, and seasonal length), 
were computed for each period. The difference between the mean values for the control period and future-
A and future-B were also computed to quantify the magnitude of change and statistical difference of the 

determined means. 

For temperature analysis, temporal variations of maximum temperature changes for future-A were plotted 
for different GCMs. In addition, the annual changes in minimum and maximum temperatures for the two 

future periods were also determined.  

3. Results and Discussions 

3.1 Verifications of the SOM-based downscaling technique 

This section provides verification results of the SOM-based downscaling technique for daily minimum 

temperature, daily maximum temperature, daily rainfall, and NCEP reanalysis. The predicted maximum 
and minimum temperatures based on NCEP reanalysis as predictors were compared against the observed 
maximum and minimum temperature values using dataset of the period between 1979 and 2004. Figure 2 

presents scatter plots between observed maximum and minimum daily temperatures, and SOM-based and 
NCEP reanalysis predicted values. 

Figure 2. 



The predicted maximum and minimum air temperatures based on NCEP reanalysis compared well with 
the observed values with R2 values of 0.94 and 0.95 for the maximum and minimum air temperatures, 

respectively. With regard to rainfall verification, Table 2 presents the comparison between derived 
seasonal rainfall parameters from the predicted daily rainfall using NCEP reanalysis and observed rainfall 

for the March-April-May (MAM).  The same comparison for the October-November-December (OND) 
season is presented in Table 3. 

Table 2. 

Table 2 shows that there was no significant difference (α = 0.05) for most of the rainfall parameters with 
exception of the minimum rainfall. The SOM-based technique significantly under-predicted the minimum 
rainfall obtained in the period between 1979 and 2004 with observed value being 118.0 mm and predicted 

value being 28.04. Even the seasonal rainfall, minimum 2 mm and 10 mm rainfall events were under-
predicted but were statistically not significant. However, since one of the observed climate change 
behavior is the increase of extreme events, therefore inability of models to pick some of these extreme 

behavior might have an impact on the overall assessment of the ability of these models in climate change 
projection. 

Table 3. 

During OND the mean rainfall parameter values agreed very well (α = 0.05) between observed and 
predicted rainfall (Table 3). However, the SOM technique significantly under-predicted the maximum and 
minimum seasonal rainfall, and the 10 mm rain events. Also, with no statistical significance under-

predicted the maximum number of the 2 mm rain events (38 vs. 28) but over-predicted the minimum 
events (2 vs. 6).   Further observations show that seasonal rainfall was also under-predicted, and the 

observed data had more variability compared to rainfall derived using NCEP reanalysis and SOM 
technique. This again has similar implications as has been indicated in the MAM season with regard to 
extreme events; however, the OND has more disagreement with predicted conditions compared to MAM. 

The possible reason might be that MAM has more reliable and stable rainfall compared to OND as it has 
also been pointed out by Enfors and Gordon (2007). 

3.2 Evaluation of the GCMs-based predictions for daily temperature and rainfall 

The SOM-based model for predicting daily minimum and maximum temperature and rainfall verified in 
3.1 was used to downscale the same daily parameters using NCEP reanalysis between years 1979 and 

2000, with the aim of evaluating GCMs predictions. Daily rainfall and temperature data were downscaled 
using SOM-based models using the four GCM controls between years 1979 and 2000, then compared with 

NCEP reanalysis to determine how well the GCMs explain the current weather conditions. Figure 3 
presents comparison of the downscaled maximum temperature predictions based on the GCM models. The 
results show good maximum temperature prediction by all the four models with R2 values ranging 

between 0.75 and 0.89; however, there was a slight tendency of the models to over-predict temperature 
values between 28oC and 30oC and under-predict temperatures beyond that window. The minimum 
temperature predictions also followed a similar trend. 

Figure 3. 

Comparison between derived parameters from downscaled daily rainfall based on NCEP reanalysis and 

GCMs controls for the period from 1979 to 2000 is presented in Table 4 for the MAM season. The same 
comparison for the OND season is presented in Table 5. The seven rainfall parameters used for the 

comparison were the seasonal rainfall amounts, >2 mm rains, >10 mm rains, dry spell runs, seasonal start 
dates, end dates, and the seasonal length. 

Table 4. 

During the MAM season the CGCM, ECHAM, and CNRM performed better than IPSL since all the seven 
parameters had no significant difference (α = 0.05) with the NCEP reanalysis parameters (Table 4). The 



IPSL had significantly longer end dates (175.8 vs. 149.1 days) and seasonal length (77.6 vs. 101.0 days). 
Also, the seasonal total rainfall was much lower for ECHAM compared to NCEP reanalysis (168.2 vs. 

208.1 mm) even though the difference was not statistically significant. However, this under-prediction by 
ECHAM might be significant because already the mean amount predicted by the SOM technique using 

NCEP reanalysis was lower (Section 3.1). 

Table 5. 

During OND season the CGCM, IPSL, and ECHAM corresponded well with the NCEP reanalysis (Table 

5) with all the seven parameters having no significant difference (α = 0.05). The CNRM model had the 
least performance during OND with four out of seven parameters being significantly different from the 
NCEP reanalysis (Table 5). However, it predicted well the start dates, end dates, and seasonal length. 

ECHAM and CNRM predicted much better the end dates and length of the season, respectively, compared 
to other models.  

In general, all the four GCMs (IPSL, CGCM, CNRM, and ECHAM) downscaled data corresponded well 

with the NCEP reanalysis downscaled data with some slight weaknesses in the two models, which are 

IPSL showing weakness during MAM and CNRM showing weakness during OND. However, the two 
models are very strong in predicting the other parameters, which were seen not to be statistically different. 
Table 6 provides guidance if one has to choose priorities on GCM models and their abilities in predicting 

specific parameters. Table 6 indicates that in most cases a combination of GCM models provide better 
prediction of a given variable rather than one GCM model for all or for one specific parameter. 

Table 6. 

3.3 Projected rainfall changes 

3.3.1 Future-A (2046 – 2065) 

This section present results of the SOM-downscaling of the GCMs simulated data for future climate for 

the period from 2046 to 2065, referred here as future-A. The values were compared against their 

corresponding GCM controls or baseline (i.e. 1961 to 2000) in order to determine the change in the 
rainfall patterns. Results of the future-A projections for the MAM season are presented in Table 7. The 
corresponding future-A projections for the OND season are presented in Table 8. 

Table 7. 

The projections based on the downscaled GCM data for MAM season shows an increase in seasonal 

rainfall amounts, decrease in dry spells, earlier start dates, later end dates, and longer seasonal lengths 
during all the two seasons (Table 7). The CGCM, IPSL, and CNRM models indicated a significant 

increase in rainfall amounts (69.4, 61.0, and 49.6 mm, respectively). The same models showed a 
significant increase in the >2 mm rainfall events where as a significant increase in >10 mm rainfall events 
is shown by CGCM and IPSL models only. The four models had an average of about 56 mm increase in 

rainfall (22.9% increase), 2-days less dry-spells, 2- to 3-days earlier start dates, 5-days later end dates, and 
8-days longer seasons. 

Table 8. 

During OND a trend very similar to that of MAM was observed (Table 8). Rainfall is expected to increase 

by 43.5 mm, which is a 26.2% increase. On average, the start dates were 5 days earlier; end dates 35 days 
later; seasonal length 40 days more, and dry spells decreased by 2 days. The most significant changes 

during OND were recorded by the CGCM and ECHAM_5 models, followed by IPSL and CNRM models. 
The CGCM showed significant increase on the end dates and seasonal length, CNRM and ECHAM 
showed a significant increase in the >2 mm and >10 mm rainfall events; but also ECHAM showed a 

significant increase in the rainfall amount compared to its baseline. The increase in the seasonal end date 
has more significance because of the dry spells that exist in mid January and February, which separate the 
two seasons, i.e. vuli and masika. There is likeliness of the two seasons to merge at that time if the 



projected climate changes will not be reversed. Furthermore, the significant increase in the >2 mm and 
>10 mm events as shown by some GCM models signify that extreme events will increase. Also, the non-

significant decrease in dry spell indicates that the research and development on techniques for soil 
moisture conservation should continue.  

3.3.2 Future-B (2081 – 2100) 

The future-B rainfall projections are presented in Tables 9 and 10 for the MAM and OND seasons, 
respectively. On average, the GCM models predicted much more significant changes on future-B 

compared to the future-A period. During the MAM there was a significant increase in rainfall amounts as 
indicated by the CGCM (153 mm), IPSL (104.2 mm), CNRM (101.6 mm), and ECHAM (93.8 mm), with 
an average of 113 mm (46.5% increase). These models also predicted that on average there will be 3 days 

decrease in dry spells, 6 days earlier start dates, 10 days later end dates, and 16 days longer seasons (Table 
9).   

Table 9. 

During OND the CGCM and IPSL had 5 out of 7 parameters that were significantly different (α = 0.05). 
The CNRM had 4 out of 9 while ECHAM had 3 out of 7 significantly different parameters. The increase 
in rainfall is estimated to be 58 mm (35.8%-increase) compared to observed rainfall between 1961 and 
2000. This implies that more changes will occur during OND than during MAM. 

Table 10. 

The rainfall projection results indicate that GCM models that corresponded well with the NCEP reanalysis 

during control period also predicted significant increases in the rainfall parameters of both future-A and 
future-B. A greater increase in the OND seasonal length (21-60 days on future-A, and 11-80 days on 

future-B) suggests that the OND may join with the MAM to form one longer rainy season  (unimodal) 
with a few to no dry spells in between. The projected decrease in dry-spells and increase in the rainfall 
amounts indicates that the rainfall distribution within specific season will be more stable and crops 

needing more rains could be grown in those areas. However, increased rainfall amounts also could 
increase nutrient leaching resulting in more fertilizer requirements (Watson et al., 1998). All models 
predict fairly stable seasonal start dates, but highly variable and increased end dates. 

3.4 Projected temperature changes 

Figure 4 presents the projection of annual temporal maximum temperature changes by different GCM 

models for the future-A (2046 to 2065). Results of projected maximum temperature for the future-A and 
future-B are presented in Table 9. The projected minimum temperatures are presented in Table 10. 

The CCCMA model showed that as the year progresses, on average, the temperature change 
increases moderately. The greater temperature change occurs around early October. The CNRM model 

showed a constant increase in temperature from January to July; the greater change in temperature 
occurring in September/October. The IPSL model shows on average the temperature will increase. The 
ECHAM model indicates that the temperature increase from January to May will be lower compared to 

temperature increase from June to December, with small minor dipping around October. In summary, 
three models (CCCMA, CNRM and ECHAM) indicate that second half of the year will have a greater 
temperature change compared to the first half. The time of occurrence coincide with the start of the vuli 
season. 

Figure 4. 

In Table 9, the GCM models indicated 2 and 4 degrees increase in the annual maximum temperatures 
during the future-A and future-B, respectively. The annual minimum temperature was also projected to 
increase by 2.1 and 4.3 degrees in future-A and future-B, respectively (Table 10). All the GCM models 

had fairly equal maximum temperature predictions with mean maximum temperatures ranging between 
30.6°C and 31.4°C during future-A, and 32.3°C and 33.7°C during future-B. Models that indicated the 



largest maximum temperature change during future-A were IPSL (2.3°C), and CNRM (2.2°C). For the 
future-B, the models were IPSL (4.5°C), CNRM (4.4°C), and ECHAM_5 (4.1°C). 

Table 11. 

Table 12. 

For the minimum temperature projections, again the models had fairly equal predictions with annual 
minimum temperatures ranging between 19.5°C and 20.3°C for future-A, and between 21.1°C and 22.7°C 

during future-B. The largest changes in minimum temperatures during future-A were recorded by IPSL 
(2.4°C) CNRM (2.3°C), and CGCM (2.2°C). During future-B the largest minimum temperature changes 
were recorded by IPSL (4.9°C), CNRM (4.7°C), ECHAM_5 (4.5°C), and CGCM (3.9°C).  Results 

obtained concur with IPCC fourth assessment report (FAR) (Meehl et al., 2007), which shows that 
temperature in the area will increase by 1.5 to 2.0 degrees for future-A and by 3.0 to 4.0 degrees for 
future-B based on SRES A2 scenario. The FAR also indicates an increase of about 0.3 mm/day for 

precipitation for the period 2080 to 2099 based on SRES A1B scenario. In this study, the increase is 
estimated at 0.46 mm/day based on SRES A2 scenario, which correspond well with the FAR. This value 

was obtained by summing projected mean increase for MAM (113 mm) and for OND (58 mm) and 
dividing by 365 days. Therefore, crop maturity time will likely decrease because of temperature increase; 
however, an increase in temperature may also be associated with increased risk of crop damage from pests 

and diseases (Watson et al., 1998). 

4. Conclusions 

The validity of using SOM-based downscaling technique was investigated together with evaluation of 
GCM models (CGCM, CRNM, ISPL and ECHAM) for projecting climate change in Same, a location in 

the North-Eastern Tanzania. The SOM-based downscaling predicted well the maximum and minimum 
temperatures based on NCEP reanalysis data (R2 = 0.94-0.96). Also, the mean and maximum rainfall 
based on NCEP reanalysis data compared well with the observed values; however, the minimum rainfall 

was underestimated (28.0 vs. 118.0 mm) during MAM and was overestimated (46.6 vs. 17.5 mm) during 
OND. The SOM-based downscaling using GCM control data compared well with the NCEP reanalysis 
data for temperature and rainfall during both the masika (MAM) and vuli (OND) seasons, indicating that 

the SOM technique and GCMs can be used for climate change projections. 

 Future rainfall projections by the GCM models indicated an increase in rainfall amounts, decrease 

in dry spells, earlier start dates, later end dates, and longer seasonal lengths, during all the two seasons. 
During MAM season of future-A (2046-2065) the models indicated an average of 56 mm increase (26.2% 

increase) in rainfall, 2 days less dry-spells, 3 days earlier start dates, 5 days later end dates, and 8 days 
longer seasons. The GCM models that corresponded well with the NCEP reanalysis during control period 
also predicted significant increases in the rainfall parameters of both future-A and future-B. A greater 

increase in the seasonal length during OND (40 days on future-A, and 62 days on future-B) gives an 
indication of the possibility for the OND and MAM seasons (bimodal) to form one longer rainy season 
(unimodal). 

 The maximum and minimum air temperatures are projected to increase by 2.0°C and 2.1°C, 
respectively, during future-A, and by 4.0°C and 4.3°C, respectively, during future-B. The projected 

increase in rainfall amounts and the maximum and minimum air temperatures will favor crops that require 
more rains. Therefore, more detailed studies are required to investigate the suitability of existing 

agronomic practices and alternative options for future climates. This can be achieved by employing crop 
simulation models such as APSIM, PARCHED-THIRST, and DSSAT so as to simulate daily events and 
how different crops and crop varieties respond to future climates. 
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Tables: 

Table 1. Description of the four GCM models used in the study. 

Acronym Model Source 

IPSL Ipsl_cm4 Institut Pierre Simon Laplace 

ECHAM mpi_echam5 Max Planck Institut für Meteorologie 

CGCM cccma_cgcm3_1 Canadian Centre for Climate Modelling and Analysis 

CNRM cnrm_cm3 aMétéo-France/Centre National de Recherches 
Météorologiques model 

Table 2. Comparison between observed and NCEP re-analysis rainfall for the 1979-2004 during 

March-April-May (MAM) season. 

 Mean Std* Maximum Minimum 

Observations Obs** NCEP Obs NCEP Obs NCEP Obs NCEP 

Seasonal rainfall (mm) 243.3 193.8 89.4 89.9 442.6 476.2 
118.0 

a 28.04 b 

2 mm rainfall events 19.1 17.1 4.1 4.9 27.0 29.0 10 4 
10 mm rainfall events 7.2 5.7 7.2 5.6 15.0 13.0 3 0 
Maximum dry spell (days) 21.3 20.5 6.4 4.4 43.0 36 12 14 

Seasonal start dates (DOY) 69.6 71.5 11.8 13.2 88 86 52 52 
Seasonal end dates (DOY) 146.6 149.2 19.1 10.4 180 167 115 127 
Seasonal length (days) 77.0 77.7 18.7 15.5 108 106 41 42 

*Std      –  standard deviation 
**Obs  –  observed; a and b = significant at P<0.01 and P<0.05, respectively; DOY = day of the 

year 

Table 3. Comparison between observed and NCEP re-analysis rainfall for the 1979-2004 during 
October-November-December (OND) season. 

 Mean Std Maximum Minimum 

Observations Obs** NCEP Obs NCEP Obs NCEP Obs NCEP 

Seasonal rainfall (mm) 162.0 128.2 121.6 64.6 596.4 a 292.7 b 17.5 a 43.66 b 
2 mm rainfall events 14.0 12.5 8.4 5.6 38 28 2 a 6 b 
10 mm rainfall events 5.3 4.1 4.4 2.8 20a 12b 0 0 

Maximum dry spell (days) 24.4 25.5 7.9 5.3 43 36 14 16 
Seasonal start dates (DOY) 302.7 299.8 18.7 21.3 331 333 279 268 
Seasonal end dates (DOY) 413.0 423.5 43.2 58.2 504 543 374 374 

Seasonal length (days) 109.8 122.5 43.2 59.7 198 262 46 55 

*Std     –  standard deviation 

**Obs –  observed; a and b = significant at P<0.01 and P<0.05, respectively; DOY = day of the 
year 



Table 4. Comparison between NCEP reanalysis and GCM models rainfall for the 1979-2000 

during March-April-May (MAM) season. 

Parameters 

NCEP 

reanalysis 

GCM Models 

CGCM CNRM IPSL ECHAM 

Seasonal rainfall (mm) 208.1 197.2 182.3 207.1 168.2 

2 mm rainfall events 17.9 18.0 16.5 18.7 15.7 
10 mm rainfall events 6.2 6.4 6.2 6.5 5.3 
Maximum dry spell 

(days) 20.0 21.0 21.9 19.0 21.0 
Seasonal start dates 
(DOY) 71.5 69.0 76.5 74.8 64.1 

Seasonal end dates 
(DOY) 149.1 158.0 160.9 175.8 a 146.5 
Seasonal length (days) 77.6 89.1 84.4 101.0 b 82.4 

 a and b = significant at P<0.01 and P<0.05, respectively; DOY = day of the year 

Table 5. Comparison between NCEP reanalysis and GCM models rainfall for the 1979-2000 
during October-November-December (OND) season. 

Parameters 
NCEP 

reanalysis 

GCM Models 

CGCM CNRM IPSL ECHAM 

Seasonal rainfall (mm) 132.3 135.2 201.0 a 144.5 164.6 
2 mm rainfall events 13.0 13.9 17.0 b 13.2 15.2 
10 mm rainfall events 4.2 4.4 7.0 b 4.9 5.5 

Maximum dry spell (days) 25.0 27.2 21.1 b 24.6 21.9 
Seasonal start dates (DOY) 300.7 306.3 295.4 311.9 298.2 
Seasonal end dates (DOY) 428.4 387.4 396.3 381.9 442.7 

Seasonal length (days) 127.7 118.6 128.3 98.6 175.4 

a and b = significant at P<0.01 and P<0.05, respectively; DOY = day of the year. 

Table 6. Preferential choices of GCM models that their averages provide better prediction of a 

specific rainfall parameter, and which correspond well with values obtained using 
NCEP reanalysis. 

Parameter MAM models 
Avg 

values OND models 
Avg 

values 

Seasonal rainfall (mm) CGCM, IPSL  202.2 CGCM, IPSL 139.9 

2 mm rainfall events 
CGCM, IPSL, 
CNRM,ECHAM 17.2 CGCM, IPSL 13.6 

10 mm rainfall events CGCM, IPSL, CNRM 6.4 CGCM, IPSL 4.7 

Maximum dry spell 
(days) 

CGCM, IPSL, CNRM, 
ECHAM 20.7 CGCM, IPSL 25.9 

Seasonal start dates 
(DOY) 

CGCM, IPSL, CNRM, 
ECHAM 71.1 

CGCM,ECHAM,CN
RM 300.0 

Seasonal end dates 

(DOY) ECHAM 146.5 ECHAM 442.7 

Seasonal length (days) ECHAM, CNRM 83.4 CNRM 128.3 

 Avg – average; DOY = day of the year 



Table 7.  Projected rainfall changes of GCM models’ downscaled data during March-April-May 

for the 2046 – 2065 period. 

GCM 
models 

Rainfall parameters* 

>2mm 
rainfalls 

>10mm 
rainfalls 

Seasonal 

rainfall 
(mm) 

Max. dry 
spell (days) 

Start 

dates 
(days) 

End dates 
(days) 

Seasonal 

length 
(days) 

CGCM 3.5 b 2.7 ab 69.4 ab -2.3 0.1 11.1 11.1 
CNRM 3.6 b 1.8 49.6 b -2.8 -4.3 -0.5 3.9 
IPSL 2.8 b 2.6 ab 61.0 ab -0.7 -2.8 2.4 5.1 

ECHAM 3.3 1.4 42.4 -0.9 -3.2 8.4 11.5 

Average 3.3 2.1 55.6 -1.7 -2.6 5.4 7.9 

*  Negative value indicates a decrease and positive value an increase in the observed parameter; a and b = 
significant at P<0.01 and P<0.05, respectively. 

Table 8.  Projected rainfall changes of GCM models’ downscaled data during October-

November-December for the 2046 –2065 period. 

GCM 
models 

Rainfall parameters* 

>2mm 
rainfalls 

>10mm 
rainfalls 

Seasonal 

rainfall 
(mm) 

Max. dry 

spell 
(days) 

Start dates 
(days) 

End dates 
(days) 

Seasonal 

length 
(days) 

CGCM 2.3 1.1 32.8 -2.3 -1.7 56.9 ab 59.5 ab 
CNRM 4.2 b 2.6 b 57.2 -2.9 -8.5 10.8 20.7 
IPSL 2.1 1.2 30.6 -0.9 -0.4 40.1 39.6 

ECHAM 3.6 b 2.7 ab 49.6 b -2.1 -9.2 33.8 42 

Average 3.0 1.9 42.5 -2.1 -4.9 35.4 40.4 

* Negative value indicates a decrease and positive value an increase in the observed parameter; a and b = 
significant at P<0.01 and P<0.05, respectively. 

Table 9. Projection of precipitation changes by different GCM models during the 2081 – 2100 
(Future-B) periods for March-April-May season. 

GCM 
models 

Rainfall parameters* 

>2mm 
rainfalls 

>10mm 
rainfalls 

Seasonal 
rainfall 
(mm) 

Max. dry 
spell 

(days) 
Start dates 

(days) 
End dates 

(days) 

Seasonal 
length 
(days) 

CGCM 6.2 ab 5.6 ab 153 ab -3.6 b -2.7 13.8 16.4 
CNRM 5.7 ab 4.1 ab 101.6 ab -3.0 -8.0 10.0 18.0 

IPSL 4.9 ab 4.5 ab 104.2 ab -1.6 -5.7 4.2 9.8 
ECHAM 6.2 ab 3.0 ab 93.8 ab -4.4 b -7.4 b 14.3 21.7 b 

Average 5.7 4.3 113.1 -3.1 -5.9 10.6 16.5 

*  Negative value indicates a decrease and positive value an increase in the observed parameter; a and b = 
significant at P<0.01 and P<0.05, respectively. 



Table 10. Projection of precipitation changes by different GCM models during the 2081 – 2100 
(Future-B) periods for October-November-December season.  

GCM 

models 

Rainfall parameters* 

>2mm 

rainfalls 

>10mm 

rainfalls 

Seasonal 
rainfall 

(mm) 

Max. dry 
spell 

(days) 

Start dates 

(days) 

End dates 

(days) 

Seasonal 

length (days) 

CGCM 3.9 ab 1.6 b 49.7 ab -3.4 -6.1 60.1 ab 65.1 ab 

CNRM 3.7 2.1 b 61.2 b -2.8 -4.7 74.2 ab 80.3 ab 
IPSL 3.0 b 1.8 b 49.6 ab -3.0 -9.1 59.4 b 67.5 ab 
ECHAM 4.7 ab 3.2 ab 71.6 ab -2.6 -0.7 35.5 36.0 

Average 3.8 2.2 58.0 -2.9 -5.1 57.3 62.2 

*  Negative value indicates a decrease and positive value an increase in the observed parameter; a and b = 
significant at P<0.01 and P<0.05, respectively. 

Table 11. Projection of annual maximum temperature changes (oC) by different GCM models in 
2046 to 2065 and 2081 to 2100. 

Periods Temperature variables CGCM CNRM IPSL ECHAM average 

Control period 
(1961-2000) 

Mean temperature 29.1 29.1 29.1 29.1 29.0 
Standard deviation 3.0 2.9 2.9 2.8 2.9 

Maximum temperature 38.7 38.7 38.7 38.7 38.4 

Min temperature 19.4 19.9 19.4 19.9 19.6 

Future-A 

(2046-2065) 

Mean temperature 31.1 31.2 31.4 30.8 31.0 

Standard deviation 3.0 2.9 3.0 2.8 2.9 

Maximum temperature 39.4 41.1 41.3 40.6 40.6 

Min temperature 22.1 22.1 21.6 22.0 21.8 

Future-B 
(2081-2100) 

Mean temperature 32.6 33.5 33.7 33.2 33.1 

Standard deviation 3.0 3.1 3.1 2.8 3.0 

Maximum temperature 40.9 42.6 42.9 41.5 41.7 

Min temperature 22.9 24.2 24.3 23.3 23.3 

Change 
Future-A (2046-2065) 2.0 2.2 2.3 1.7 2.0 

Future-B (2081-2100) 3.5 4.4 4.5 4.1 4.0 

Table 12. Projection of annual minimum temperature (oC) changes by different GCM models in 

2046 to 2065 and 2081 to 2100. 

Periods Temperature variables CGCM CNRM IPSL ECHAM average 

Control period 
(1961-2000) 

Mean temperature 17.8 17.8 17.8 17.8 17.8 

Standard deviation 2.0 2.0 2.0 2.0 1.9 
Maximum temperature 22.7 22.2 22.7 22.7 22.4 

Min temperature 10.0 10.0 10.6 10.6 10.4 

Future-A 

(2046-2065) 

Mean temperature 20.0 20.2 20.3 19.7 19.9 
Standard deviation 2.0 2.0 2.1 1.9 1.9 

Maximum temperature 24.5 24.7 24.8 24.2 24.3 
Min temperature 12.2 12.0 12.8 12.7 12.4 

Future-B 
(2081-2100) 

Mean temperature 21.6 22.5 22.7 22.3 22.0 

Standard deviation 2.0 2.1 2.1 2.0 2.0 
Maximum temperature 26.8 28.2 27.7 27.0 27.2 

Min temperature 13.1 15.1 14.4 15.3 14.3 

Change Future-A (2046-2065) 2.2 2.3 2.4 2.0 2.1 



 Future-B (2081-2100) 3.9 4.7 4.9 4.5 4.3 



Figures: 

Same district  

 

Figure 1.  Map of Tanzania showing Same district area. 
   (Source: http://dspace.dial.pipex.com/suttonlink/350map.html). 
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Figure 2. Comparison of the observed and predicted (a) maximum and (b) minimum 

temperatures based on SOM technique and NCEP reanalysis for Same region. 
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Figure 3. Comparison between NCEP reanalysis and GCM models maximum temperature 

predictions for the period between 1961 and 2000 for a) CCCMA, b) CNRM, c) 
ECHAM, and d) IPSL controls. 
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Figure 4. Projection of annual temporal maximum temperature changes by different GCM 

models for the 2046 to 2065 period. 


