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Abstract  

This paper presents updated climate change projections for Tanzania based on Coupled 

Model Intercomparison Project phase 5 (CMIP5) using Mid-Century Representative 

Concentration Pathway (RCP) 8.5. A total of twenty global circulation models (GCMs) were 
downscaled based on the eleven Tanzania climatological zones using thirteen synoptic 

weather stations. For each climatological zone, the skill score test of the 20 GCMs was done 

against the observed rainfall and the threshold of 80% except for one zone, which used 

threshold of 75%, to select GCMs for projecting future rainfall and temperature. It was found 
that in all the climatological zones the number of GCMs which performed above the 

threshold ranged between five and twelve. Rainfall and temperature of skilled GCMs were 

then downscaled by Delta method and then evaluated for uncertainty. The skill score test 

showed that climatological zones in the western part of Tanzania had higher skills and higher 
agreement compared to zones located in the eastern side. Stations in the bimodal rainfall 

zones such as Musoma and Same showed high level of uncertainty in the projected future 

rainfall and temperature. Temperature uncertainty was ± 0.4
o

C for Same, Musoma and 

Dodoma stations followed by Songea and Mbeya at ± 0.3
o

C. On average, temperature was 

projected to increase by about 0.9
o

C and also rainfall to increase but mainly in the month of 
April in the central and southern zones.  

 

Key words: CMIP5, Delta method, Temperature, Rainfall, Uncertainty. 

1. Introduction  

Climate change is recognized as a global 

problem. Therefore, it is imperative for nations 

to view the world’s climate in broad 

cooperative perspectives to fully understand its 

nature and behaviour, and to predict its future 

course. Predicting future climate well ahead 

can help to improve decision making in a wide 

range of activities. More important is perhaps 

the widely accepted precautionary principle of 

‘taking measures to anticipate, prevent or 

minimize the causes of climate change and 

mitigate its adverse effects’ URT, (2003). 

Climate change is now a global issue posing 

challenges to the very survival of mankind and 

sustainable development. The adverse impacts 

of climate change are now evident almost 

everywhere URT, (2007).  

GCMs are increasing becoming popular in 

simulation of future climate of Tanzania. 

Studies by Mwandosya et al., (1999); Matari et 

al., (2008) used Green House Gas Scenario 

(GHG) which involves Generic doubling 

concentration of carbondioxide (CO2 ) and 

incremental change in various combinations of 

temperature and precipitation in the atmosphere 

by 2100 in simulating the future climate in 

Tanzania. These projections did not involve 

GCMs; therefore the complex global 

circulations were involved in predicting future 

climate (White et al., 2011). Kilembe et al., 

2011 predicted the climate change in Tanzania  
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using CMIP3 climate models, CMIP3 used in 

the IPCC Fourth Assessment Report; involve 
the use of Special Report Emission Scenarios 

(SRES) which are A(s) and B(s) family of 
scenarios. The SRES(s) are distinguished by 

their consideration on global population, 
technology advancement, economic 

development and world integration to 
mention the few (AR4, 2007), but the 

Coupled Model Intercomparison Project 
Phase 5 (CMIP5) used in the IPCC Fifth 

Assessment Report (AR5, 2013); coordinated 

by the World Climate Research Programme 
in support of the IPCC AR5, is the most 

recent of these activities, and builds on 
CMIP3. The efforts for CMIP5 are 

enormous, with a larger number of more 
complex models run at higher resolution, 

with more complete representations of 
external forcings, more types of scenario and 

more diagnostics stored (Reto Knutti & Jan 

Sedláček, 2013).  

Although climate has been predicted in 

various areas in Tanzania, but the 

performances associated with climate models 
used in prediction has not been detailed 

reported especially for the current GCMs 
(CMIP3 and CMIP5). Notter et al., 2012 

studied the hydrological impacts of climate 
change in Pangani Water basin in Tanzania, 

with focuses on climate forcings from 
individual General Circulation Model (s) 

under the criteria of just being the dries or the 
wettest. GCM simulated temperature can be 

relatively consistent between GCMs; the 

same is not true for rainfall. Indeed, 
projections of future rainfall from different 

GCMs often disagree even in the direction of 
change (Randall et al., 2007). Therefore there 

is a need to address the important issue of 
GCM performance score in predicting past 

climate before it is entrusted to be used in 
future rainfall prediction. GCM performance 

test can be done by several methods which 

compare observed and historical prediction of 
GCMs; some of these methods are mean and 

variance method, Root Mean Square Error 
(RMSE) and a season lag skill score test. 

Mwandosya at el., (1998) researched on the 

impact of climate change on stream flows in 

Ruvu River Sub-basin; GCMs were selected 
by measuring their performance using the 

root mean squared error (RMSE) method. 
RMSE computes the error in the magnitude 

of GCMs against the observed data, thus the 
shift in seasons is not captured because the 

error is lumped in to the final value, but a 
season lag skill score test measures the 

relative lag between the GCM seasonal 
rainfall distributions and the observed data.  

If a climate model that has been shown to 

already simulate seasonal variability that 
currently exists and will remain in the future 

(but becomes more likely to occur 
probabilistically), then we have identified 

that the model has skill in simulating future 
seasonal variability. Clearly, this confidence 

declines as the overlap between the present 
and future seasonal variability is reduced 

further into the future. Until the overlap 

becomes critically small, however, an 
impacts modeller could use how well a model 

simulated the whole seasonal variability of a 
set of variables as criteria for those models to 

use in future impacts assessments.  

However even for the skilled GCM, its 
projection cannot be used without being 

downscaled because of the course resolution. 

Most of the GCMs have a resolution of 1.3
o 

x 

2.7
o 

latitude and longitude scale. There are 
many methods available for downscaling 

GCM projections to the specific region or 
study area of interest, for discriminating 

between mean changes and changes in 

climatic variability and for ensuring 
consistency between climate change 

scenarios. The method ranges from complex 
procedures like dynamical and statistical 

downscaling to simple approaches like bias 
correction methods. However Fowler et al., 

(2007) reported that simple methods have 
been used for downscaling and found to be 

effective. The most common bias correction 
methods is the simple delta method (SDM), 

also called linear delta method.  

All the skilled bias corrected GCMs; each 
one has equal chance of predicting future 
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rainfall. However, since each one has its own 

future rainfall in terms of magnitude and 
direction thus it is very uncertain to use either 

of them on its own. Therefore the uncertainty 
in GCMs’ rainfall projections has to be 

considered. Even the use of the driest and the 
wettest GCMs represents the uncertainty, but 

this kind of uncertainty does not include the 
fact that each skilled GCM has its very right 

of degree of applicability. The Median 
Confidence Interval (MCI) from the Median 

of projection is a convenient approach to 

estimate the band of uncertainty because it 
involves all the GCMs in estimating the 

parameters. In this study the CMIP5 climate 
were used to predict the mid century climate 

of Tanzania with incorporation of 
uncertainties associated with differences in 

projections among the skilled GCMs.  

2. Material and Methods  

2.1Materials  

The climate of Tanzania (Figure 1) is 

characterized by two main rain seasons 
namely the long rains and the short rains 

which are associated with the southward and 
northwards movement of the ITCZ (URT, 

2011). The long rains (Masika) begin in the 

mid of March and end at the end May, while 
the short rains (Vuli) begin in the middle of 

October and continues to early December. 
The northern part of the country including 

area around Lake Victoria Basin, North-
Eastern Highland and the Northern Coast 

experience bimodal rainfall regime, whereby 
the first maximum occur in the period of 

March, April and May (MAM) while, the 

second maximum in the period of October, 
November and December (OND). Central, 

South and Western areas have a prolonged 
unimodal rainfall regime starting from 

November continue to the endof April. 
Annual rainfall varies from 550 mm in the 

central part of the country up to 3690 mm in 
some parts of south-western highlands 

(Chang’a et al., 2010).  

There are about twelve rainfall zone falling in 
the two regimes (figure 1), with each rainfall 

zone having homogeneous rainfall within it 

zone. Table 1, shows the summary of rainfall 
amount in the rainfall zones taken from the 

zone rainfall stations.  

Data use in this study were monthly rainfall 
data of thirteen rainfall stations (for eleven 

rainfall zones) obtained Tanzania 
Meteorological Agency (TMA) and GCM 

precipitation data from the Climate Model 
Inter-comparison Project Phase 5 (CMIP5) 

data base.  

2.2Methods  

Due to large inconsistence in precipitation as 

compared to temperature, thus only 
precipitation was used in selection of GCMs. 

Therefore measurement of the performance 
of the GCMs in predicting the rainfall 

seasonality during the control period was 

done using the skill score equation as shown 
in Equation 1  

. 

 

[1]  

 
 

Where,    is season skill score for 

month j, GCMk; GCMjk is baseline mean  
monthly precipitation for month j and  
GCMk; GCMMAPk is Baseline mean annual 

precipitation for GCMk; OBSj is observed 
mean monthly precipitation for month j; and 

OBSMAP is observed mean annual 
precipitation. 
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Figure 1: Map of Tanzania rainfall zones 
 

Table 1: Summary of monthly rainfall amount (mm), 1980-2010 

 
 

 

After obtaining the skilled GCMs for 

future projection of rainfall, the emission 
scenario of RCP 8.5 was selected for mid  
 

and end century terms because, the RCP 8.5 
was selected because it has the highest rising 

rising radiative forcing pathway 
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leading to 8.5 W/m2 (~1370 ppm CO2 

equivalent), the highest baseline of 
greenhouse gas emissions, the highest 

increase in the use of cropland and 
grasslands and increase in atmospheric air 

pollution emissions by 2100. The underlying 
scenario drivers and resulting development 

pathways are based on the A2 scenario 
(CMIP3) detailed in Riahi et al. (2007). 

Thereafter the baseline (1980 – 2009) was 
suggested because it incorporates some of 

the strongest natural variability of climate, 

including the strongest El Nino Southern 
Oscillation (ENSO) warm event in 

1997/1998 to a strong La Nina cold event in 

1999/2000 (Anyamba et al., 2002).  

Delta method was used for down-scaling the 

GCMs. It involved downscaling of GCM by 

the use of interpolation of the large grid. 
After the grids have been interpolated to 

specific point of interest, ratio of means of 
precipitation between the future projection 

of GCM and its baseline was applied to the 
observed data to result into future 

precipitation. SDM for downscaling 
precipitation is expressed formally by 

Equation 2 (Prudhomme et al., 2002). 

 
 

Where, is the projected future 

GCMk precipitation for month j; is the 

observed precipitation   data for 

month, j;  is the mean of 

future GCMk precipitation at month, j in the 

future data set and  is the 

mean of baseline GCMk precipitation at 

month, j in the baseline record  

Downscaling of temperature by SDM 

(Equation 3) involves interpolation of 

grids to specific point of interest and then 

the difference of means between the future 
and baseline temperature is applied to the 

observed temperature to obtain the 

predicted temperature (Prudhomme et al., 

2002).  

 
 

 

Where, T                 is the projected future 

GCMk temperature for month j; 
, is the observed temperature data for month 

j; is the mean of future 
GCMk temperature at  month, j in the future 

data set and  is the mean of 
baseline GCMk temperature at month, j in 

the baseline record. The Median Confidence 
Interval (MCI) from the Median (Equation 

4) of projected climate was found to be a 

convenient approach to estimate the band of 
uncertainty because it involves all the GCMs 

in estimating the parameters. For n 
equals one (1), there are no uncertainty 

bounds; for the case of n equals two (2) the 
bounds are the two values; for n equals three 

(3) the uncertainty bounds are the first and 

the last values from the ordered sample; but 
for n greater or equals to four (4), then 

Equation 5 is the appropriate for 
computation of uncertainty bounds. Using 

BPMCI in estimation of MCI, the sample 
must be ordered. For calculating the 

confidence interval the median and a 

distribution-free estimate of the variance of 
the median are determined. The following 

are the formulas used in estimation of 
median and its corresponding uncertainty 

bounds using MCI from the ordered sample 
of n items (Bonett and  Price, 2002). For 

estimation of median, from a sample space; 
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For estimation of lower and upper 
uncertainty bounds, from the sample 

space; 
 

 

Where, the value of  from Table 1 in 

Bonett and Price (2002) depends on the size 

of the sample in question, and in question, 
and is the level of significance. 

3. Results and discussion  

3.1 Skill score test  

In this test probabilities were developed for 
observed data for each zonal climate station 

and the GCMs’ precipitation variables 

interpolated to that station. Then the skill 

score tests were done for each station 
against various GCMs using Equation 1. A 

threshold of 80% was used as suggested by 

Perkins, 2007. The same procedure was used 

for testing the skills of all GCMs against the 
zonal rainfall stations. Figure 2 show the 

performance of  all the GCMs against each 

zonal climate station. It was found that most 

of the rainfall zones have more than a GCM 

which meet the threshold.  

Some of GCMs showed small spatial 

uncertainty in simulating the past observed 

precipitation in for all the rainfall zones in 
the country (Figure 3), but unfortunately 

they did not have the average or minimum 

performance equal or above the threshold 

therefore the option of suggesting the use of 
some common GCMs for most part of the 

country did not succeed. Therefore treating 

each rainfall zone separately with its GCMs 

(regardless of whether any of the GCM at a 
rainfall zone appears inferior at another 

rainfall zone) was the only option left. 
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Figure 2: Skill score of GCMs against Observed precipitations  
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Figure 3: Skill score of GCMs across the country  

3.2 Prediction with uncertainty  

3.2.1 Temperature across the country  

Table 2 shows that all the CMIP5 climate of 

the country. Although some southern models 

predicts increase in temperature at and 

northern parts like Songea shows the an 
average of 0.9 oC by the year 2050 highest 

change in temperature, but the across the 

country; the southern and predicted 

temperatures are relatively low northern 

parts of the country (Figure 1) as compared 

to baseline condition of some shows the 

highest change of temperature central parts 
like Dar es Salaam and as compared to the 

the central part (inland) Mahenge.  

 

Table 2: Annual temperature at mid century period  

Station  Baseline  Prediction  Change  Uncertainty  

 (°C)  (°C)  (°C)  (°C)  

Bukoba  21.9  22.7  0.8  ± 0.2 

Musoma  23.2  24.1  0.9  ± 0.4 

Same  22.8  23.7  0.9  ± 0.4 

Tabora  24.0  24.9  0.9  ± 0.2 

Lake Manyara  19.1  19.9  0.8  ± 0.2 

Dodoma  25.1  26.0  0.9  ± 0.4 

Sumbawanga  23.9  24.7  0.8  ± 0.2 

Mahenge  27.2  28.1  0.9  ± 0.2 

Dar es Salaam  26.6  27.3  0.7  ± 0.1 

Mbeya  21.1  22.0  0.9  ± 0.3 

Songea  22.8  23.8  1.0  ± 0.3 

Mtwara  26.6  27.5  0.9  ± 0.2 
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3.2.2 Rainfall across the country  

The CMIP5 climate models predicts is decrease 

in rainfall by 26% in the northern part of the 

country(Same, Musoma and Bukoba) and Dar 

es Salaam by year 2050 (Table 3). However the 

uncertainty of GCM’s precipitation is also 

higher in these areas. The central part of 

Tanzania year predicted to have high increase 

in rainfall by 9% whereas the southern part is 

predicted to have increase in rainfall by about 

13%. 

 

Table 3: Annual precipitation at mid century period  

                           Baseline  Prediction  Change  Uncertainty  

                               (mm)  (mm)  (mm)  (%)  (mm)  (%)  

Bukoba  2020  1943  -76  -4  ±  68  ±  3  

Musoma  894  884  -10  -1  ±  147  ±  17  

Same  532  531  -1  0  ±  143  ±  27  

Tabora  949  1030  82  9  ±  17  ±  2  

Lake Manyara  987  1051  65  7  ±  153  ±  15  

Dodoma  595  658  62  10  ±  42  ±  6  

Sumbawanga  899  1005  106  12  ±  11  ±  1  

Mahenge  2344  2449  105  4  ±  80  ±  3  

Dar es Salaam  1097  1081  -17  -2  ±  55  ±  5  

Mbeya  951  1074  123  13  ±  19  ±  2  

Songea  1069  1258  189  18  ±  50  ±  4  

Mtwara  1066  1155  89  8  ±  50  ±  4  

 

Figure 4, shows that the level of uncertainty is also higher in the north eastern part of the country 
as compared to other areas, the uncertainty is highly found in months with rainfall. The southern 

part of the country also shows presence of uncertainty, but this one expresses the shift of starting 

of rain seasons.  

54 
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Figure 4: Predicted precipitation with uncertainty  

3.3 Comparisons of previous studies 

against CMIP5 prediction 

 
Mwandosya et al., (1998) predicted rise in 
mean daily temperature, on average, by 3 to 

5oC, and a rise in mean annual  temperature on 

average by 2 to 4 oC (Table 4) throughout the 
country. The study by Matari et al., (2008) 

indicates that the mean annual temperatures 
are projected to rise by 1.7 oC over north 

eastern areas of the country 
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The climate projection by Kilembe et al., (2013) 

expresses that the CNRM-CM3 and ECHAM 5 

models projects median increase of 2.1°C. The 

CSIRO Mark 3 and MIROC 3.2 models also 

exhibit median temperature increases of around 

1.0°C. The MIROC 3.2 model seems to exhibit 

spatial variability, which ranges from 0.5°C to 

2°C across the country (Table 4).  

In this study the mean annual temperature is 

predicted to rise by 0.7 to 1.0
o

C across the 

country (Table 4); the study involved the use 

CMIP5 climate models with emission scenario, 

RCP8.5. Despite the differences in climatology 

of projections, but the changes from the baseline 

temperatures have been reduced as the capacity 

of modeling the circulation systems increases; 

from 2CO2 to CMIP3 and then CMIP5 (Table 4).  

 

Table 4: Comparison of Climate change prediction in Tanzania  

                                                                                    Mid term (2050)  End term (2100)  

Authors  GCMs  Temperature  Rainfall  Temperature  Rainfall  

  change (oC)  change (%)  change (oC)  change (%)  

Mwandosya et al., (1998)  2CO2  - - 2.0 ~ 4.0  5 ~ 45  

Matari et al., ( 2008)  2CO2  - - 1.7 ~ 2.5  -6 ~ 17  
Kilembe et al., (2011)  CMIP 3  1.0 ~ 2.1  -100 ~ 300 *  - - 

This study  CMIP5  0.7 ~ 1.0  -4 ~ 18  - - 

 

* figures in millimetre of rainfall  

 

The rainfall prediction by Mwandosya et al., 

(1998) indicates that bimodal rainfall pattern 

will have increased rainfall ranging from 5 to 

45% and unimodal rainfall will experience 

reduced rainfall ranging from 5 to 15% (Table 

4). Matari et al., (2008) indicated that there will 

be increase in annual precipitation over the 
whole country by 10% (Table 4).  

Using CMIP3 climate models, the projected 

change of rainfall in Tanzania ranges between -

100 and 300 mm per year (Table 4). Kilembe et 

al., (2013) reported that MIROC 3.2 model 

projects increase in precipitation of around 200 

to 300 mm per year. The ECHAM 5 model 

projects that most of Tanzania will not have 

significant change in rainfall except around Lake 

Victoria, where rainfall is projected to increase 

by between 100 and 200 mm per year. The 

CRNM-CM3 model predicts rainfall dropping 

by around 100 mm per year around Lake 

Victoria; the model also predicts an increase of 

50 –100 mm per year for the southern half of the 

country.  

CMIP5 projection of rainfall in this study shows 

that rainfall will range from -4 to 18 % 

throughout the country (Table 4); this is 

equivalent to projection changes from -76 to 189 

mm (Table 3) of rainfall. In comparison with 

2CO2 the prediction of rainfall decrease and 

increase do not differ much, but CMIP3 results 

are comparable in the decrease in rainfall but the 

difference is twice as much for the case of 

increase in rainfall (Table 4).  

4. Conclusion  

CMIP5 climate models show that the western 

part of Tanzania had higher skill scores and 

higher agreement compared to zones located in 

the eastern side. Stations in the bimodal rainfall 

zones showed high level of uncertainty in the 

projected future rainfall and temperature. On 

average, temperature was projected to increase 

by about 0.9
o

C and also rainfall to increase  
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but mainly in the month of April in the 

central and southern zones.  

CMIP5 climate projections which were 

developed using a new set of RCPs climate 
forcing scenarios (van Vuuren et al., 2011) 

reflect recent advancements in integrated 

assessment modeling to characterize future 

developments in global greenhouse gas 
(GHG) emissions. Therefore, CMIP5 

projections represent a new opportunity to 

improve our predictions of future climate in 

localized environment in Tanzania.  
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7. Appendices 

Appendix 1: GCMs performance for each rainfall zone in Tanzania. 

Station  Minimum  Average  Maximum  Number of GCMs  

 Score  Score  Score (%)  (Score >= 80%)  

 (%)  (%)    

Bukoba  73  81  86  14  

Dar es Salaam  65  73  80  1  

Dodoma  55  73  91  7  

Kigoma  81  88  93  20  

Lake Manyara  62  72  82  2  

Mahenge  66  80  89  14  

Mbeya  69  78  86  10  

Mtwara  60  79  89  11  

Musoma  62  76  86  6  

Same  62  74  87  5  

Songea  60  75  88  5  

Sumbawanga  74  83  88  15  

Tabora  78  86  91  18  

 

Appendix 2: Rainfall prediction with uncertainty at Bukoba Stations  
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