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METHODOLOGY
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Abstract 

Background:  Airborne laser scanning (ALS) has emerged as one of the most promising remote sensing technologies 
for estimating aboveground biomass (AGB) in forests. Use of ALS data in area-based forest inventories relies on the 
development of statistical models that relate AGB and metrics derived from ALS. Such models are firstly calibrated on 
a sample of corresponding field- and ALS observations, and then used to predict AGB over the entire area covered 
by ALS data. Several statistical methods, both parametric and non-parametric, have been applied in ALS-based forest 
inventories, but studies that compare different methods in tropical forests in particular are few in number and less fre-
quent than studies reported in temperate and boreal forests. We compared parametric and non-parametric methods, 
specifically linear mixed effects model (LMM) and k-nearest neighbor (k-NN).

Results:  The results showed that the prediction accuracy obtained when using LMM was slightly better than when 
using the k-NN approach. Relative root mean square errors from the cross validation was 46.8 % for the LMM and 
58.1 % for the k-NN. Post-stratification according to vegetation types improved the prediction accuracy of LMM more 
as compared to post-stratification by using land use types.

Conclusion:  Although there were differences in prediction accuracy between the two methods, their accuracies 
indicated that both of methods have potentials to be used for estimation of AGB using ALS data in the miombo 
woodlands. Future studies on effects of field plot size and the errors due to allometric models on the prediction accu-
racy are recommended.
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Background
Estimation of aboveground biomass (AGB) in tropical 
forests is important for generating information needed 
for sustainable forest management and understanding 
the contribution of tropical forests in the global carbon 
cycle. Particularly in the latter context, estimates of AGB 
are needed as a primary variable for establishing the 
increments or decrements in carbon stored in tropical 
forests, which is typically converted from AGB by using 
a factor of 50 % or less [1]. In the recent decade, reducing 

emissions from deforestation and degradation (REDD+), 
a program under United Nations Framework Conven-
tions on Climate change, has motivated large-scale for-
est carbon inventories in tropical forests. REDD+ aims 
to provide positive incentives for developing countries to 
initiate activities related to reducing carbon emissions, 
sustainable forest management, and enhancement of for-
est carbon stock [2]. Unlike other conservation projects, 
REDD+ is results based, which means that financial ben-
efits rely on forest carbon stock changes that are meas-
ured, reported, and verified (MRV). Thus, establishing 
effective MRV systems that comply with the guidelines 
of the Intergovernmental Panel on Climate Change, is 
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considered as an integral part of REDD+ implementation 
[3].

In Tanzania, the National Forestry Resources Monitor-
ing and Assessment (NAFORMA), which is the national 
forest inventory of Tanzania, has established a total of 
30,773 field plots distributed across mainland Tanzania 
[4]. NAFORMA is expected to be used to produce AGB 
data for the national forest carbon MRV system necessary 
for the implementation of REDD+ activities in Tanzania 
[5, 6]. However, being a field-based inventory, estimates 
of parameters related to AGB and AGB changes derived 
from NAFORMA data are not expected to be sufficiently 
precise to meet the accuracy requirements for a REDD+ 
MRV system. Therefore, the use of remotely sensed 
data as auxiliary information is considered as an option 
towards developing a cost-efficient MRV system in the 
country.

Airborne laser scanning (ALS) has recently received 
much scientific and operational attention for estimating 
AGB than any of the other remote sensing techniques 
[7]. The potential of ALS has previously been reported in 
the Nordic countries where it has been used operation-
ally for management inventories for almost 15 years [8]. 
Recently, promising results from tropical forests [e.g. 9, 
10] have also been reported, which have increased the 
interest in using ALS for REDD+ MRV purposes.

However, large scale AGB assessments with ALS 
remain challenging due to logistics, cost and the data 
volume involved if wall-to-wall coverage is to be 
applied [11]. For such situations, a systematic sampling 
approach using ALS as a strip sampling tool is a viable 
option [12]. Within this approach, a collection of ALS 
measurements are taken along individual flight lines 
that cover only a small portion of the area of interest. 
The flight lines are aligned with a network of ground 
plots [12] which allow the development of statistical 
models relating the ground reference AGB to metrics 
derived from coincident ALS data. These models are 
then used to predict AGB over the entire area covered 
by ALS strips, and subsequently these predictions are 
used for final estimation of AGB for the area of inter-
est using either design-based model-assisted or model-
dependent inferential frameworks [e.g. 13, 14]. Thus, 
the quality of the AGB estimates produced by ALS-
based inventories relies heavily on the development and 
application of predictive AGB models.

A review study by Fassnacht et al. [15] shows that the 
most common prediction methods in ALS-based forest 
inventories are ordinary least square regression, sup-
port vector machines, nearest neighbor-based methods 
(i.e. k-NN and k-MSN), and random forest. Of all the 
methods, ordinary least square regression with stepwise 

variable selection has been most frequently used for 
building models between field measurements and ALS 
metrics [16]. The main advantage of using this type of 
methodology is the simplicity and clarity of the resulting 
models [17], especially when the relationship between 
AGB and the ALS metrics is almost linear. However, fit-
ting and applicability of ordinary least square regression 
models relies on a number of basic assumptions in rela-
tion to the residual distribution which are: independence, 
normality and constant variance [18]. These assump-
tions are barely taken into account in most studies [19], 
especially when dealing with the data that are collected 
from complex field survey designs that involve clustered 
observations, repeated measurements, longitudinal 
measurements, and blocked data. Ignoring the model 
assumptions when fitting ordinary least square regres-
sion models, might lead to spatially correlated errors and 
consequently, invalid significance tests [20].

Linear mixed effects models (LMMs) offer a modeling 
and prediction method that is very effective on clus-
tered or spatially correlated data [21, 22]. In addition to 
accounting for covariates through fixed parameters as in 
ordinary least square regressions, mixed effects models 
can also account for various sources of heterogeneity and 
randomness in the data caused by known and unknown 
factors by means of random parameters. Application of 
LMMs are however limited in ALS-based inventories as 
compared to other prediction methods [23].

Non-parametric approaches, such as k-nearest neigh-
bor (k-NN) are also considered as an alternative to 
ordinary least regression, since they do not rely on any 
distributional assumptions of the data [24]. Thus, k-NN 
is a highly relevant alternative to deal with non-linear 
and possibly diverse relationships between independ-
ent and dependent variables. Furthermore, like other 
nearest neighbor techniques, k-NN allows for both uni-
variate and multivariate predictions of continuous and 
categorical variables [25, 26]. In forest inventory appli-
cations, k-NN approaches have been frequently applied 
in model-dependent frameworks with good results [27] 
and have also been used for mapping of various for-
est attributes [28, 29]. Several studies [e.g. 30–32] have 
compared the performance of k-NN with ordinary 
least square regression (OLS) models in temperate and 
boreal forests, but few studies have compared LMMs 
with k-NN, especially in the context of the ALS-based 
inventory. Of particular interest is application and vali-
dation of such techniques in the tropical dry forests 
of Africa, where the application of statistical methods 
commonly used in ALS-based forest inventories are still 
limited compared with temperate and boreal forests. 
Given the growing potential of the use of national forest 
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inventory data and ALS auxiliary information for sup-
porting REDD+ activities in tropical forests [e.g. 6, 33], 
it is important to explore modeling methods that fully 
utilize the attributes of design as a fundamental step 
towards reliable and accurate estimation of AGB using 
ALS.

Irrespective of the method used, stratification and 
post-stratification have been considered as effective 
tools for improving precision of estimates in ALS-based 
inventories [34]. Stratification according to forest age 
and/or site quality is commonly used in boreal forests 
[e.g. 35, 36]. In highly heterogeneous tropical forests, 
stratification/post-stratification based on vegetation 
types have been considered as a viable and practical 
option [37]. However, due to practical limitations, few 
studies have attempted to assess the effects of stratifica-
tion and post-stratification on the prediction accuracy 
and thus on final estimates in tropical forests. For exam-
ple, in most of the previous studies only a limited num-
ber of field plots were available for AGB modeling due 
to issues such as accessibility and cost. Thus, stratifica-
tion or post-stratification of the study areas has not been 
regarded as viable since it could lead to even smaller 
sample sizes per stratum, making it difficult to fit reliable 
statistical models for each class [38]. In such situations, 
most of the previous studies opted to combine sample 
plot data across classes, for example vegetation types, 
thus ignoring the effect of vegetation types and associ-
ated information.

Our study was conducted in the tropical forests 
of southern Tanzania which is mainly dominated by 
the miombo woodlands, along with some forest, cul-
tivated land, and other vegetation types. Miombo 
woodlands occupy a substantial area of forest land in 
Tanzania (92 %) [4] and extend to six other countries in 
sub-Saharan Africa, including Angola, Zimbabwe, Zam-
bia, Malawi, Mozambique, and Democratic Republic of 
Congo [39]. From a global perspective, miombo wood-
lands have received considerable attention in the last 
decade because of its potential to act as a reservoir of 
belowground and aboveground carbon stocks [40]. Biodi-
versity is also significant in the miombo woodlands with 
an estimate of 8500 species of higher plants and more 
than half of them are endemic [39]. Application of ALS 
in such areas represents the typical challenge that would 
be expected when using ALS data for modelling AGB 
in tropical forests with a high number of species, and 
diverse vegetation and land use types. The main objec-
tive of our study was to assess the performance of para-
metric and non-parametric methods for modeling and 
prediction of AGB using ALS data. As a secondary objec-
tive, we also assessed the effects of post-stratification by 

vegetation and land use types on the prediction accuracy 
of the parametric models.

Results
Performance of the parametric and non‑parametric 
methods
The OLS model with square root transformed response 
variable was selected for building up LMMs. The model 
contained eight explanatory variables consisting of both 
height percentiles and canopy density metrics selected 
using the best subset procedure. The OLS model 
showed cluster effects on the residual distributions as 
illustrated in Fig.  1. Some clusters displayed residuals 
that were above, and some below the zero line, indicat-
ing that cluster effects should be accounted for in the 
modelling. Comparison of the OLS model (Model 1) 
and the LMM (Model 2) using likelihood ratio test sug-
gested a statistically significance difference (p  <  0.001) 
between the two models. Model 2 was considered to 
have better fit with smaller value of AIC as compared to 
Model 1.

Re-fitting Model 2 with different correlation structures 
(i.e., spatial autocorrelation functions and compound 
symmetry correlation structures) did not significantly 
improve model fit. The AIC values did not improve 
when compared to the values in the model without the 
autocorrelation functions (i.e., Model 2). Furthermore, 
the likelihood ratio test indicated that there was no sta-
tistical significance difference between the models with 
and without correlation structure (p  >  0.05). This may 
also indicate that there is no spatial autocorrelation of 
the residuals within the clusters. Modelling the residual 
variance at the cluster level by using variance function 
(varIdent) improved the model performance as measured 
by the AIC. The likelihood ratio test indicated a statisti-
cally significant difference (p  <  0.0001) between Model 
2 and Model 3. The standard errors of the parameters 
for Model 3 were smaller compared to the other models 
(Table 1). The quality of Model 3 was further analyzed by 
comparing an intercept model of Model 3 residuals and 
a similar model with a random intercept by means of the 
likelihood ratio test. The test indicated that the two mod-
els were not statistically significantly different from each 
other (p > 0.05), implying that Model 3 has successfully 
accounted for the dependency and heteroscedasticity 
in the data, therefore the residuals can be considered as 
independent.

The k-NN imputation tested with different values of k 
ranging from 1 to 10, have shown that, k =  10 was the 
optimal choice with relatively smaller RMSECV  % value. 
We further tested the dependency and heteroscedastic-
ity of the residuals obtained from best k-NN imputation 
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(i.e., k = 10), by comparing two residual models using the 
likelihood ratio test (i.e., a residual intercept model and a 
random intercept model). The results from the likelihood 
ratio test showed that there was no statistically signifi-
cant differences between the two models. Comparing the 
results of the best parametric model (i.e., Model 3) and 
the non-parametric (i.e., k =  10) (Table  2), our results 
suggest that the parametric models performed well in our 
dataset as indicated by both R2 and RMSECV %. Graphical 
illustrations for the performances of the two methods are 
presented in Fig. 2.

Effect of post‑stratification on prediction accuracy of the 
parametric models
To account for the effect of post-stratification on model 
accuracy, we assessed the performance of the parametric 
model (i.e., Model 3) on different vegetation and land use 
types (Table 3). The results indicated that there were vari-
ations in the prediction accuracy of the model across the 
categories. The RMSE  % and RMSECV  % of Model 3 (i.e., 
non-post-stratified model) varied from one category to 
another; smaller values of RMSE  % and RMSECV  % were 
reported for vegetation types as compared to land use types.

Fig. 1  Box plot of residuals in the OLS model. The y axis shows the value of the residuals and the horizontal axis the clusters

Table 1  Parameter estimates and standard errors of the tested models

a  PF70 = Percentile of the first echo canopy heights for 70 % (m); PL20 and PL30 = Percentiles of the last echo canopy heights for 20 and 30 % (m); TF0, TF5, and 
TF8 = Canopy densities corresponding to the proportion of first echoes above fraction #0 (1.3 m), #5, and #8 (see text); TL7 and TL8 = Canopy densities corresponding 
to the proportion of last echoes above fraction #7 and #8 (see text)

Covariatea Model 1 Model 2 Model 3

Estimate Standard error Estimate Standard error Estimate Standard error

Intercept 0.8630 0.2520 0.7385 0.2848 0.6702 0.2238

PF70 0.3481 0.0338 0.3515 0.0345 0.3701 0.0273

TF0 3.7779 0.5713 3.8436 0.6003 4.4363 0.4829

TF5 4.0742 1.2839 3.7574 1.2964 1.7055 1.0384

TF8 −6.2178 1.9462 −6.5277 1.9310 −4.1964 1.4833

PL20 0.3191 0.1241 0.2684 0.1232 0.1844 0.1100

PL30 −0.2295 0.1110 −0.1845 0.1096 −0.1059 0.0951

TL7 −12.4990 4.0241 −11.9814 4.0086 −6.8397 2.7174

TL8 18.3840 5.5361 19.5302 5.4729 10.8928 3.7172



Page 5 of 16Mauya et al. Carbon Balance Manage  (2015) 10:28 

Separate random intercept models were fitted for each 
of the categories (Table 4) and compared with the non-
post-stratified model presented in the previous section. 
Generally, the RMSECV % for the post-strata models were 
relatively small compared to the values obtained when 
evaluating the non-post-stratified model across respec-
tive post-strata. The accuracy of the post-strata models 
varied in terms of model fits (i.e., R2) and RMSECV  % 
depending on the vegetation and land use types (Table 4). 
Graphical plots in Figs. 3 and 4 illustrate the performance 
of the post-strata models.

Discussion
Our study aimed at comparing the performance of the 
parametric (LMMs) and non-parametric (k-NN) meth-
ods for predicting AGB using ALS data in the miombo 

woodlands of Tanzania. Effects of post-stratification by 
vegetation and land use types on the prediction accuracy 
of the parametric method were considered as the second-
ary objective. The findings from this study demonstrate 
that both LMMs and k-NN are suitable methods for pre-
dicting AGB using ALS data. To our understanding this is 
one among the early studies attempting to use ALS in the 
miombo woodlands of Tanzania. Thus the findings of this 
study open up methodological insights on the use of ALS 
as tool for AGB assessment in similar type of vegetation 
in sub-Saharan Africa.

Specifically, the findings have shown that LMM is the 
best prediction method; by allowing the specific field 
sampling design to be accounted for in the modeling, 
but also by having slightly higher prediction accuracy 
compared to k-NN. This is not surprising, and has been 

Table 2  Predictors, pseudo R-squared (R2), and  relative root mean square error from  the cross validation (RMSECV  %) 
of the two prediction methods

a  PF10, PF70, and PF80 = Percentiles of the first echo canopy heights for 10 %, 70 %, and 80 (m); PL20, PL30, PL40, PL50, PL60, and PL90 = Percentiles of the last echo 
canopy heights for 20, 30, 40, 50, 60, and 90 % (m); TF0, TF2, TF3, TF5, TF7, and TF8 = Canopy densities corresponding to the proportion of first echoes above fraction 
#0 (1.3 m), #2, #3, #5, #7, and #8;TL2, TL4, TL6, TL7, and TL8 = Canopy densities corresponding to the proportion of last echoes above fraction #2, #4, #6, #7, and #8; 
MaxF and MeanL = Maximum and Mean of the canopy height distributions of the first and last echoes, respectively

Prediction method Predictorsa R2 RMSECV %

LMM (Model 3) PF70, TF0, TF5, TF8, PL20, PL30, TL7, TL8 0.69 46.8

k-NN (k = 10) PL80, TF0, TL2, PF80, TL4, TL8, PS40, TL5, TF2, TL7, TL6, PF70, MaxF, PL90, PL50, MeanL, TF7, PF10, PL60, TF3 0.58 55.9

Fig. 2  Relationship between ground reference and predicted AGB for LMM (a) k-NN (k = 10) (b)
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reported in most of the studies that have attempted to 
compare parametric and non-parametric methods in 
prediction of various forest attributes [e.g. 30, 41, 42]. 
However, the strength of k-NN is that it was able to 
account for the dependence and heteroscedasticity in the 
data. This indicates that it can reliably be used for estima-
tion and making inference when deemed necessary, espe-
cially in the design-based framework of forest inventory 
[e.g. 43, 44] with non-parametric based estimators (e.g. 
difference estimator).

Results based on the LMM illustrate that incorporat-
ing the cluster structure by using variance function in 
the model selection process can result in a model with 
better fit, as supported by the likelihood ratio test. This 

implies that it is the between-cluster variability that 
should be considered when calibrating the ALS models 
using NAFORMA data, rather than the within-cluster 
variability. By modelling the residual variance per cluster 
through an appropriate variance structure (i.e., the varI-
dent structure) we were able to account for this variability 
in the data, which resulted in a model with smaller stand-
ard errors for the parameter estimates as compared to the 
other tested models (Table 1). Smaller standard errors of 
the parameter estimates (Table 1) indicate that the model 
is more efficient when predicting outside the sample. 
Furthermore, smaller standard errors of the parameter 
estimate is an important property in improving precision 
of the estimates, especially when making inference using 

Table 3  Performance of the parametric model (Model 3) on different vegetation and land use types

a  Forest = land spanning more than 0.5 ha with trees that have heights of more than 5 m and a canopy cover of more than 10 %. It does not include land that is 
predominantly under agricultural or urban land use. Woodland = forestland with less dense canopy cover compared to forest. Other cover types = all cover types that 
were neither forest nor woodlands. Production and protection forests = forest areas designated for protection of water (i.e. catchment forests) and that designated 
for production of wood, respectively. Wildlife reserves = forest areas designated for game reserves and game controlled areas. Agriculture and other land use 
types = areas designated primarily for a function other than production, protection or game reserves. Details descriptions of these categories are given in MNRT [60]

Categorya RMSE (Mg ha−1) RMSECV (Mg ha−1) RMSE % RMSECV %

Vegetation type

 Forest 22.7 25.1 25.7 28.4

 Woodlands 29.4 31.6 44.3 47.7

 Other cover types 37.6 38.5 80.2 82.1

Land uses type

 Production and protection forests 30.4 31.1 40.2 41.1

 Wildlife reserves 25.5 26.3 50.2 52.0

 Agriculture and other land use types 33.2 34.0 73.0 74.7

Table 4  Predictors, number of  observations (n), pseudo R-squared (R2), and  relative root mean square error from  the 
LOOCV (RMSECV %) for separate LMM fitted for different vegetation types and land use types

a  Forest = land spanning more than 0.5 ha with trees that have heights of more than 5 m and a canopy cover of more than 10 %. It does not include land that is 
predominantly under agricultural or urban land use. Woodland = forestland with less dense canopy cover compared to forest. Other cover types = all cover types that 
were neither forest nor woodlands. Production and protection forests = forest areas designated for protection of water (i.e. catchment forests) and that designated 
for production of wood, respectively. Wildlife reserves = forest areas designated for game reserves and game controlled areas. Agriculture and other land use 
types = areas designated primarily for a function other than production, protection or game reserves. Details descriptions of these categories are given in MNRT [60]
b  PF20, PF40, PF70, and PF90 = Percentiles of the first echo canopy heights for 20 %, 40 %, 70 %, and 90 (m); PL10, PL20, PL70, and PL90 = Percentiles of the last 
echo canopy heights for 10, 20, 70, and 90 % (m); TF0, TF1, TF4, and TF5 = Canopy densities corresponding to the proportion of first echoes above fraction #0 (1.3 m), 
#1, #4, and #5; TL0, TL4, TL6, TL7, and TL8 = Canopy densities corresponding to the proportion of last echoes above fraction #0 (1.3 m), #4, #6, #7, and #8; MeanF 
and MeanL = arithmetic mean of first or last echo laser canopy heights, respectively (m); MaxF and MaxL = maximum of first or last echo laser canopy heights, 
respectively (m); CVF and CVL = Coefficient of variations for the first and last echo laser canopy heights, respectively

Categorya Predictorsb n R2 RMSEcv %

Vegetation type

 Forest PF20, MaxL, MeanL, PL10, PL40, PL70, PL90, TL9 40 0.85 23.9

 Woodlands PF70, TF0, PL20 391 0.63 45.3

 Other cover types MeanF, PF20, PF60, TF5, MaxL, PL70 58 0.83 68.3

Land use type

 Production and protection forests PF40, PF60, PF70, TF0, TF9, PL20 314 0.64 40.8

 Wildlife reserves CVF, PF20, PF90, TF5 91 0.73 49.8

 Agriculture and other land uses TF1, TF4, MaxL, MeanL, CVL, TL0, TL4 84 0.69 68.0
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Fig. 3  Relationship between ground reference and predicted AGB for LMM in forest (a) woodlands (b) other cover types (c)

Fig. 4  Relationship between ground reference and predicted AGB for LMM in production and protection forests (a) wildlife reserves (b) agriculture 
and other land uses (c)
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model-based estimators [45] which theoretically rely on 
the quality of the model parameters.

Further evaluation of the best non-post-stratified 
model across post-strata, showed that there were varia-
tions in prediction accuracy across different vegetation 
and land use types. This could likely be attributed to the 
difference in stem diameter and the number of trees per 
unit area, which entirely affect the distribution of AGB 
and the characteristics of the ALS data in each of the 
post-strata. When fitting separate models by post-strata, 
our findings showed that that there was a slight gain in 
prediction accuracy compared to the use of non-post-
stratified model in the respective post-strata. This might 
be due to the homogeneity of the respective category, 
which in turns improves the relationship between ALS 
metrics and the ground reference AGB. For example, in 
the post-strata such as forest, or production and protec-
tion forests where the distribution of AGB is character-
ized by trees with high canopy cover and more uniform 
stems, the RMSECV  % were relatively smaller compared 
to other categories. On the other hand, the higher 
RMSECV % value in the agricultural and other land uses 
might be attributed to the fact that most of the trees in 
this category are scattered with sparse canopy, and the 
tree crowns are smaller with some appearing to be in a 
degraded form.

Although post-strata models performed well compared 
to non-post-stratified models, their practical applica-
tion in the miombo woodlands poses a number of chal-
lenges when used for estimation and inference. Based on 
the sampling design described in this study, the use of 
post-strata models would require having thematic maps 
for the land use classes and vegetation types. Such maps 
are not trivial to produce, and our results (not presented) 
indicated that the classification accuracies vary substan-
tially among these categories. Thus, since the difference 
between the non-post-stratified model and the post-
strata models were modest, we would rather recommend 
the non-post-stratified model (which disregards the land 
use and vegetation types) to be more adequate for most 
applications that will involve large-scale AGB estimation 
supported by ALS data, at least until high quality the-
matic maps are made available.

Generally, the finding of our study in terms of model 
quality criteria such as R2 and RMSECV % for non-post-
stratified and post-strata models are in line with most of 
the published studies from tropical forests [46–49]. The 
majority of these studies reported R2 ranging from 64 % 
[50] to 90  % [51]. Similarly, a study by Asner et  al. [47] 
across four tropical regions in Panama, Peru, Madagas-
car, and Hawaii reported R2 ranging from 0.68 to 0.85. 
Recently, a study from the tropical rainforest of Tanzania 
by Hansen et  al. [9] reported RMSECV  % ranging from 

32.3 to 36.8 % for models with different forms and differ-
ent sets of predictor variables. However, direct compari-
son with these results should be taken with caution due 
to the wide range of variations existing in the tropical for-
ests, along with the different sample sizes and plot sizes 
used in different studies.

Even though we are convinced that our findings reflect 
the potential performance of ALS-based AGB models in 
dry tropical forest conditions, but there might be ways to 
further improve the quality of the models. For instance, 
the plot size used in our study was relatively small com-
pared to what has been used in the studies that reported 
higher prediction accuracy [e.g. 47, 52]. Most of these 
studies used plot sizes that are even twice as large as 
used in the current study. For example, Mauya et al. [53] 
reported a decrease in RMSECV % from 63.6 to 29.2 % for 
plot sizes ranging from 200 to 3000 m2 in a high-biomass 
rainforest. The increase in prediction accuracy for studies 
based on larger plots might be attributed to the so-called 
spatial averaging of the errors, because both the field 
observations and the ALS data capture more of the spatial 
variation and are closer to the average value [e.g. 9, 54]. 
Furthermore, the relative and negative influence of plot 
positioning error on the prediction accuracy is reduced 
for the larger plot sizes, because the overlap between the 
field and ALS-data becomes larger as plot size increases 
[55]. In addition, plot boundary effect which has poten-
tial to cause discrepancies between field and ALS-based 
measurements, is reported to be relatively smaller for the 
larger plots compared to the smaller plots [53].

The concentric design of the field plots used in the 
current study also introduced errors in the relationships 
between AGB estimated on the plots and the ALS data. 
With this design, small trees are measured only in the 
center of a field plot while the largest trees are measured 
across the entire plot. However, smaller trees are also 
found in the outer part of a plot, and these trees will be 
measured by the laser but not recorded in the field data. 
Measuring all trees across a plot would clearly improve 
model fit. However, this study focused on the already 
existing design and data established by NAFORMA, 
thus it was also important to demonstrate how the 
NAFORMA data would be used with ALS auxiliary infor-
mation. Similarly, miombo woodlands are dominated by 
a lower herbaceous layer of the vegetation which was not 
accounted for in the field measurements but were cap-
tured by the ALS data. Although a threshold of 1.3  m 
was applied to the ALS data to define the “canopy” layer, 
it is likely that the ALS data contains height observa-
tions reflected from vegetation that are not recorded by 
the tree measurements. This has certainly introduced 
additional errors into the models and reduced their per-
formance. Lastly, it should be mentioned that the errors 
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associated with the allometric models used to compute 
AGB (which were ignored in this study) will tend to affect 
the accuracy of the ALS-based prediction models. A gen-
eral model by Mugasha et  al. [56] that combines all the 
tree species was used to compute AGB on the ground 
plots. Given the high number of tree species it is likely 
that the uncertainty of the field-based reference values is 
substantial. To what extent this error affects the predic-
tion accuracy of the ALS-based models is still unknown 
in the miombo woodlands and should be the focus of 
future research.

Conclusion
To conclude, our study demonstrated that predicting 
AGB using ALS data can be reliably done in the miombo 
woodlands of Tanzania. Our results on the comparison 
of the prediction methods have shown that LMM is the 
most appropriate method for AGB prediction using ALS 
data, as indicated by RMSECV  %, but also by consider-
ing its strength of accounting for the complex sampling 
design of the NAFORMA program. The prediction accu-
racy of k-NN was relatively smaller compared to LMM, 
yet it can be used when there is a need for using non-par-
ametric method. Post-stratification by vegetation types 
seemed to favor the prediction accuracy compared to 
land use types. However, the non-post-stratified model 
has relatively more advantages due to its versatility and 
practical limitations of using post-strata models. Thus, 
we suggest using LMM (i.e., Model 3) that combines 
all the post-strata for applications involving large-scale 
AGB estimation in the future. Lastly, our study identi-
fied important knowledge gaps and directions of future 
research, such as assessing the effects of field plot size 
and the use of on-plot protocols which is based on com-
plete census of all the trees in a plot, rather than a sample 
according to tree size. Finally, a better understanding and 
quantification of the effects of allometric model errors on 
overall uncertainties of ALS-based models and AGB esti-
mates is a fundamental topic for future studies.

Methods
Study area
The study area is located in Liwale district (9°54′S, 
37°38′E) (Fig.  5a), Lindi region, Tanzania, and has a 
total size of 15,867 km2 (Fig. 5b). The mean annual tem-
perature of Liwale district ranges between 20 and 30 °C. 
Rainfall pattern is bi-modal with a dry season from June 
to October. A short rainy period usually starts in late 
November and lasts until January. There is dry spell in 
February followed by a longer wet season which lasts 
from March until May. The mean annual rainfall ranges 
from 600 to 1000 mm [57]. The study area contains typi-
cal miombo flora of high trees with shrubs and grasses 

on the forest floor. In general, the area is characterized by 
a high species diversity associated with typical miombo 
tree species such as Brachystegia sp., Julbernadia sp., and 
Pterocarpus angolensis.

Sampling design
The field plots used in this study were initially established 
by NAFORMA in 2011. The sampling design used by 
NAFORMA is double-sampling for stratification which 
was designed based on a simulation study described 
by Tomppo et  al. [6]. The first-phase sample consists of 
clusters of plots on a 5 × 5 km grid over mainland Tan-
zania. The first-phase clusters were stratified based on 
predicted growing stock, time consumption for cluster 
measurements and slope of the terrain [6]. All together, 
the first-phase clusters that contain 6–10 plots (Fig.  5c) 
per cluster were assigned to 18 pre-defined strata. The 
second-phase samples were systematically selected from 
the first phase sample, with different sampling intensi-
ties in each of the 18 strata following an optimal alloca-
tion procedure [58] and with cost functions tailored for 
each stratum. Greater sampling intensity was allocated 
to strata with large predicted growing stock, and smaller 
sampling intensity to strata with small predicted growing 
stock. Only the clusters selected during the second phase 
of sampling were measured in the field. The distance 
between field plots within a cluster was 250 m, while the 
distance between clusters varied from the shortest pos-
sible distance (5 km) to 45 km.

Field measurements
NAFORMA field plots were revisited during the first 
quarter of 2012. The aim of the field work was to accu-
rately record the positions of the field plots and update 
the field information to have temporal consistence 
between field measurements and the time of acquiring 
ALS data. Measurements on the plots followed the same 
procedure used by NAFORMA in 2011. The circular 
plots of 15 m radius were identified. Diameter at breast 
height (dbh) was measured using caliper or diameter 
tape, following the lower dbh thresholds in accordance 
with the concentric circle plot design. The radii of the 
concentric circles were 2, 5, 10, and 15  m, respectively. 
Trees with dbh ≥ 1, ≥ 5, ≥ 10, and ≥ 20 cm, respectively, 
were measured and assigned to these concentric plots.

Species names were recorded for every tree measured 
for dbh. Every fifth tree in the cluster was selected as a 
sample tree and measured for height using Suunto hyp-
someter. The heights of the remaining trees were pre-
dicted using diameter-height models that were developed 
based on the sample trees. Differential Global Navigation 
Satellite Systems were used to calculate the coordinates of 
the center point of each sample plot. Two Topcon Legacy 
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40-channels dual frequency receivers observing both 
pseudo-range and carrier phase of the Global Positioning 
System (GPS), along with the Global Navigation Satel-
lite System (GLONASS) were used as rover (on the plot) 
and base station, respectively. Based on the positional 
standard errors reported by Pinnacle [59], the estimated 
accuracy of the planimetric plot coordinates ranged from 
0.004 to 1.334 m, with an average of 0.194 m.

Tree AGB was estimated using allometric models for 
miombo woodlands developed by Mugasha et  al. [56]. 
The AGB estimates of the individual trees were then 
summed for each plot, and scaled to per-hectare val-
ues according to their respective plot area determined 
by dbh-thresholds. The plots were grouped accord-
ing to their respective stratum, land use, and vegetation 
types following the procedure described by NAFORMA 
in MNRT [60]. In this study, we narrowed the land use 
classes and the vegetation types described in MNRT [60] 
into three categories to simplify the interpretation of the 
results, but also to have enough samples for each cate-
gory (Table 5). The land use classes were grouped into: (1) 
production and protection forests; (2) wildlife reserves; 
(3) agricultural and other land use types. Similarly, the 

vegetation types were grouped into: (1) forest; (2) wood-
lands; (3) other cover types.

ALS data
Acquisition of the ALS data was carried out along 32 par-
allel strips with an average width of 1374 m, which were 
systematically distributed over the study area in an east–
west direction. The ALS strips were spaced 5 km apart, 
following the NAFORMA 5 ×  5  km grid. A Leica ALS 
70 airborne laser sensor (Leica Geosystems AG, Swit-
zerland), carried by a Cessna 404 aircraft, was used to 
acquire the data from 10 February to 7 March 2012. The 
measurements were acquired from an average flying alti-
tude of approximately 1320 m above ground, at an aver-
age ground speed of 77.2  ms−1. The scanning rate was 
36.5  Hz and the instrument operated at a pulse repeti-
tion frequency of 193 kHz. The average point density was 
around 1.8 points m−2.

Processing of the ALS data started by classifying the 
ALS echoes into ground or vegetation echoes using the 
progressive irregular triangular network densification 
method [61, 62] implemented in the TerraScan software 
[62]. A triangular irregular network (TIN) was created 

Fig. 5  Map showing location of the study area in Liwale, southern Tanzania (a), distribution of clusters of field plots and ALS strips in the study area 
(b) and the cluster structure with distribution of individual field plots within a cluster (c)
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using the ALS echoes classified as ground echoes. The 
heights above the ground surface were then calculated 
for all vegetation echoes by subtracting the TIN height 
at their respective xy-positions. Up to five echoes were 
registered per pulse, but we used only the three echo cat-
egories “single”, “first of many”, and “last of many”. The 
“single” and “first of many” echoes were pooled into one 
dataset denoted as “first” echoes, and correspondingly, 
the “single” and “last of many” echoes were pooled into a 
dataset denoted as “last” echoes.

For each echo category, height distributions were first 
created as described by Næsset [63]. A height thresh-
old of 1.3 m was applied in order to separate trees from 
falsely classified ground features and low vegetation. Sub-
sequently, heights at ten percentiles (0th, 10th,…,90th) of 
these height distributions were computed to represent 
canopy height distribution and labeled PF0, PF10,…, 
PF90 (first echoes) and PL0, PL10,…, PL90 (last echoes), 
respectively. Furthermore, measures of the canopy den-
sity were also computed for first and last echoes. The 
range between the lowest ALS canopy height (>1.3  m) 
and the 90th percentile height was divided into 10 layers 

of equal height. Canopy densities were then computed as 
the proportion of echoes above each layer to total num-
ber of first echoes and labeled TF0 (>1.3 m), TF1,…, TF9. 
Density variables for the last echo distributions were cal-
culated in the same way and labeled TL0, TL1,…,TL9. 
Furthermore, mean (MeanF and MeanL), maximum 
(MaxF and MaxL) and coefficient of variation (CVF and 
CVL) of the canopy height distributions were also com-
puted for both first and last echoes.

Statistical analyses
An overview
Three statistical techniques were used to develop rela-
tionships between the ground reference AGB and the 
ALS metrics. These included OLS, LMMs, and k-NN 
technique.

1.	 Candidate explanatory variables from the ALS met-
rics were selected and three OLS model forms relat-
ing ground reference AGB and ALS metrics were fit-
ted and tested.

Table 5  Summary of field data

Number of plots for the different strata and post-strata together with minimum, maximum, and mean ground reference AGB values with their corresponding standard 
deviation
a  Stratum 1–6 refers to the strata to which field plots belongs as described in the text and elaborated by Tomppo et al. [6]; Forest = land spanning more than 0.5 ha 
with trees that have heights of more than 5 m and a canopy cover of more than 10 %. It does not include land that is predominantly under agricultural or urban land 
use. Woodland = forestland with less dense canopy cover compared to forest. Other cover types = all cover types that were neither forest nor woodlands. Production 
and protection forests = forest areas designated for protection of water (i.e. catchment forests) and that designated for production of wood, respectively. Wildlife 
reserves = forest areas designated for game reserves and game controlled areas. Agriculture and other land use types = areas designated primarily for a function 
other than production, protection or game reserves. Details descriptions of these categories are given in MNRT [60]

Categorya Number of plots AGB (Mg ha−1)

Minimum Maximum Mean Standard deviation

Stratification

 Stratum 5 116 3.9 158.2 45.9 29.8

 Stratum 6 81 2.2 179.2 51.3 41.7

 Stratum 7 90 2.4 270.3 84.7 61.3

 Stratum 8 119 0.3 349.9 79.4 53.7

 Stratum 9 23 0.3 125.6 38.7 35.4

 Stratum 10 6 0.3 56.1 16.0 20.5

 Stratum 11 16 55.1 186.9 87.9 32.4

 Stratum 12 38 34.3 182.7 85.2 35.6

Post-stratification

 Vegetation type

  Forest 40 27.8 232.2 88.3 39.6

  Woodlands 391 0.3 349.9 66.3 48.4

  Other cover types 58 0.3 270.3 46.9 53.7

 Land use type

  Production and protection forests 314 0.3 349.9 75.6 49.5

  Wildlife reserves 91 0.3 190.6 50.8 39.0

  Agriculture and other land uses 84 270.3 45.5 48.1

  All 489 0.3 349.9 65.8 49.2
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2.	 The best selected model form from step 1 was used 
to build LMM with random effect at the cluster level.

3.	 To account for spatial dependence within the clus-
ters we introduced LMMs with different correlation 
structures and compared with the LMM fitted in step 
2.

4.	 LMM with variance structure at the cluster level was 
also fitted. The model was compared with the LMM 
fitted in step 2 using likelihood ratio testing. The best 
selected model (i.e., from step 1 to 4) was further 
evaluated using a cross validation procedure.

5.	 Finally, the k-NN imputations were fitted and com-
pared with the best model selected from the proce-
dure described above using measures of reliability 
based on cross validation.

Parametric methods
Model development (OLS)
OLS are among the most common methods for mod-
eling and predicting AGB in ALS-based forest inventory. 
As part of the model development procedure, we first 
applied an automated approach to select candidate pre-
dictor variables using the “regsubset” function from the 
leaps package [64] in the R statistical software [65]. The 
“regsubset” regression performs “all subsets” where all 
possible variable combinations are considered and ranked 
based on different scoring criteria (adjusted R2, Mallow’s 
Cp statistics, BIC, etc.) [66]. In this study we used Mal-
low’s Cp statistics [67], a combination of predictors that 
minimizes the Mallow Cp over all possible subsets, was 
considered as the best subset for model development. 
The variable selection was repeated for log-transformed 
variables and square root transformed response variable. 
Thus, three types of OLS models were finally fitted and 
tested. Of all the three model forms, square root trans-
formation (Eq. 1) was selected as the best based on our 
initial test results (not presented), i.e.,

where yj is the ground reference AGB of the jth sample 
plot, xj1…,xjk are the k predictor variables (i.e. ALS met-
rics), β0,…,βk are the parameter estimates, n is the num-
ber of sample plots and ɛj is the plot level residuals.

Model development (LMM)
The sampling design employed by NAFORMA imposes 
a hierarchical data structure by which the field plots 
are nested within the clusters. In such a case, LMM is 
considered as an ideal tool for development of predic-
tive models [22, 68] that accounts for spatial depend-
ence of the plots within the clusters. LMM consists of 

(1)

√
yj = β0 + β1xj1 + · · · + βkxjk + ǫj

j = 1 . . . n ǫj ∼ N
(
0, σ 2

ǫ

)

two main parts; fixed and random effects. The fixed 
effects are common to all subjects, while random effect 
parameters are specific to each subject [69]. The predic-
tor variables of the OLS model (Eq. 1) were used as the 
fixed effects and the cluster number, or identity was used 
as the grouping variable (random effect), which can also 
be regarded as subject. The standard form of LMM as 
applied in this study is:

where yij is the ground reference AGB of jth sample plot 
in the ith cluster, xij1, . . . , xijk are k fixed effects, β0, …  , βk 
are the fixed effects parameters, ni is the number of sam-
ple plots within the cluster j and M is the number of 
clusters. We assumed that cluster level random effects bi 
were independent of the plot level residuals ɛij.

To evaluate the significance of the random effect we re-
fitted the OLS model using generalized least square func-
tion, in order to compare the OLS with the LMM using 
the likelihood ratio tests, as described by Zuur et al. [68].

To account for the non-constant variance and spatial 
autocorrelation that might not have been accounted for 
by the random effect, we further refitted the LMM with 
variance and correlation structures and compared with 
the LMM (i.e., the random intercept model). The details 
for this procedure are described below and elaborated 
further by Zuur et al. [68].

LMMs with correlation structures
We fitted five different LMMs using maximum likelihood 
estimation (ML), each assuming different spatial autocor-
relation structures (i.e., linear, ratio, exponential, spheri-
cal, and Gaussian). This was aimed at testing the effect of 
spatial autocorrelation to account for field plot proxim-
ity within the clusters. In addition, we also tested com-
pound symmetry correlation structure, assuming that 
correlation among plots within a cluster is constant but 
might vary from one cluster to another. The LMMs that 
incorporate spatial autocorrelation and compound sym-
metry correlation structures were compared with LMM 
without correlation structure (i.e., the random intercept 
model) using a likelihood ratio test. Details of these cor-
relation structures are fully described in Pinheiro, Bates 
[69].

LMM with variance structure
To account for variation (i.e., heteroscedasticity due to 
cluster) not accounted for by the random effects, we also 
re-fitted the LMM (i.e., the random intercept model) 

(2)

√
yij = β0 + β1xij + · · · + βkxijk + bi + ǫij

i = 1, . . . ,M j = 1, . . . , ni

bi ∼ N
(
0, σ 2

b

)
ǫij ∼ N (0, σ 2

ǫ )
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assuming that the residuals were independent on cluster 
level. In this case, we used the varIdent variance func-
tion implemented in the nlme package [69]. The model 
was fitted using ML, and compared with LMM (i.e., the 
random intercept model) using the likelihood ratio test to 
determine the effect of cluster information on the model 
accuracy. Finally, the best model as indicated by the like-
lihood ratio test was refitted using restricted maximum 
likelihood (REML). To ensure that our modelling strat-
egy has accounted for heteroscedasticity due to cluster 
structure, the residuals from the best model were fur-
ther analyzed by fitting a residual intercept model (i.e., 
null model) and a residual random intercept model. The 
two models were compared using a likelihood ratio test 
to determine if we still have an effect of cluster structure 
in the residuals. Pseudo R-square (R2) computed as the 
square of the Pearson correlation coefficient between 
observed and predicted values was used to assess the 
quality of the model fit.

Accuracy assessment
To enable a fair comparison of the best LMM and non-
parametric imputations (presented below), the prediction 
error of the best LMM was estimated by using leave-one-
cluster-out cross validation (LOCOCV) [70]. Owing to 
the number of clusters used in the current study and the 
lack of an independent validation dataset, LOCOCV was 
therefore applied. The predicted values of AGB obtained 
from the LOCOCV (i.e., SQ̂RT (AGB)) were corrected 
for bias (caused by the square root transformation) using 
the method by Gregoire et al. [71] according to

where MSE is the mean square error of the model. 
Relative root mean square error from the LOCOCV 
(RMSECV %) was used as a criterion for assessing model 
accuracy and calculated as

where yi and ŷi denote ground reference AGB and pre-
dicted AGB for plot i, respectively, and ȳ denotes mean 
ground reference AGB for all plots. RMSECV  % is a 
good measure of how accurately the model predicts the 
response and is the most important criterion for fit if the 
main purpose of the model is prediction [72].

Non‑parametric method
k ‑NN imputation
Imputation using k-NN is a non-parametric method 
that has often been used for predicting various attrib-
utes in forest inventories supported by remotely sensed 

(3)ÂGBcorrected = (SQ̂RT (AGB))2 +MSE

(4)RMSECV % =

√∑n
i=1

(
yi − ŷi

)2
/n

y
× 100

auxiliary information [e.g. 73, 74]. In k-NN terminology 
it is typically distinguished between reference and target 
datasets. The population units for which observations 
of both response and explanatory variables are available 
is labeled as the reference set; the set of the population 
units for which only the explanatory variables are avail-
able is termed as the target set. In our study, the refer-
ence set contained both ground reference AGB and the 
ALS metrics, while the target set contained only the ALS 
metrics.

The similarity between the ith target observation and 
jth reference observation was quantified by means of the 
Euclidian distances calculated in the feature space as:

where xi and xj are the feature vectors. Hence, the simi-
larity between the target and reference observations will 
increase as the dij distances decrease, and consequently 
the nearest neighbor of the ith target observation is the 
reference observation located at the shortest Euclidian 
distance in the feature space.

The imputed value ŷi is expressed as a weighted sum of 
the responses taken from the nearest k reference obser-
vations as follows:

where yij
i, j =  1,  2,…k is the set of the response variable 

observations for the k reference set elements that are 
nearest to the ith target set elements in the feature space. 
The k-weights associated with the response in Eq. 6 were 
obtained as

In order to reduce the data redundancy and improve 
the overall interpretability, a variable selection procedure 
was applied by using varSelection function in yaImpute 
package [75] of the R software [65]. Model fitting was 
done by using knnreg function in caret package [76]. For 
k-NN imputations, selection of k has an influence on the 
accuracy of the imputation. Large values of k are not rec-
ommended since this will shift the predictions towards 
the sample mean. For this study we tested the values of 
k ranging from 1 to 10 and selected the value with lowest 
RMSECV % obtained from the cross validation. Specifi-
cally, we used LOCOCV, where one cluster at time was 
used as the target set while the remaining clusters were 
used at the reference set. To assess the ability of the k-
NN to account for the dependence and heteroscedasticity 

(5)dij =
√
(xi − xj)

′
(xi − xj)

(6)ŷi =
k∑

j=1

wij y
i
j

(7)wij = dij




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j=1

dij


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due to cluster structure, we computed the residuals from 
the LOCOCV, then we fitted a residual intercept model 
and compared with residual random intercept model 
using likelihood ratio test. Lastly, we compared k-NN and 
LMM using RMSECV %.

Assessing the effect of post‑stratification on prediction 
accuracy
To account for the variation in prediction accuracy that 
might be attributed to the differences in vegetation and 
land use types, the best LMM (i.e., LMM with variance 
structure) was further evaluated for different vegeta-
tion and land use types. Both relative root mean square 
errors from model predictions (RMSE %) and LOCOCV 
(RMSECV %) were calculated and presented for each cat-
egory of vegetation and land use type. Specific LMMs 
(i.e., random intercept models) were fitted for the post-
strata as defined by vegetation and land use types. The 
models were evaluated using LOCOCV. For each of the 
post-stratum model, R2 and RMSECV  % were computed 
and compared with the RMSECV % obtained when eval-
uating the non-post-stratified model for the respective 
post-stratum.
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