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a b s t r a c t 

Above-ground biomass (AGB) estimation is important to better understand the carbon cy- 

cle and improve the efficiency of forest policy and management activities. AGB estimation 

models, using a combination of field data and remote sensing data, can largely replace 

traditional survey methods for measuring AGB. There are, however, critical steps for map- 

ping AGB based on satellite data with an acceptable degree of accuracy, such as choice 

of remote sensing data, the proper statistical modelling method, and remote sensing pre- 

dictor variables, at known field locations. This study sought to identify the optimal op- 

tical and synthetic aperture radar (SAR) remote sensing imagery from five sensors (Plan- 

etScope, Sentinel-2, Landsat 8 OLI, ALOS-2/PALSAR-2, and Sentinel-1) to model 159 field- 

based AGB values from two montane forests under semiparametric (Generalized Additive 

Model; GAM) and non-parametric (eXtreme Gradient Boosting; XGB) approaches using in- 

formation from four groups of predictor variables (spectral bands/polarizations, vegetation 

indices, textures, and a combination of all). The study’s results showed that PlanetScope 

(rRMSE = 69.19%; R 2 = 0.161) was the most precise optical sensor while ALOS-2/PALSAR-2 

(rRMSE = 70.76; R 2 = 0.165) was the most precise amongst the SAR sensors. XGB mod- 

els generally resulted in those with lower prediction errors as compared to GAMs for the 

five sensors. Models having textures of vegetation indices and polarization bands achieved 

greater accuracy than models that incorporated spectral bands/polarizations and vegeta- 

tion indices only. The study recommends that PlanetScope and ALOS-2/PALSAR-2 remote 

sensing data using the XGB-based technique is an appropriate approach for accurate lo- 

cal and regional estimation of tropical forest AGB particularly for complex montane forest 

ecosystems. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
Introduction 

Above-ground biomass (AGB) is crucial factor for forest ecosystems to carry out their ecological functions and is a vital 

indicator of the capacity of forests to sequester carbon. The Global Climate Observing System recognizes AGB as a key 
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quantity when estimating terrestrial carbon stocks as an essential variable in monitoring climate change [11] . An accurate 

estimation of AGB could considerably enhance our understanding of the study of carbon cycling and climate changes on a 

global scale. 

Traditionally, AGB has been accurately quantified at a local scale through field-based inventories. However, over larger 

areas, these inventories become costly and spatially limited, especially in steep, mountainous, and complex terrain [27] . 

In this context, spatially explicit information on AGB is crucial for estimating carbon sequestered and carbon dioxide ex- 

changed. Utilizing remote sensing data, combined with statistical techniques that are calibrated and validated with field 

measurements, enables the derivation of spatially representative maps of forest AGB across larger scales [2] and at lower 

costs [26] . 

Improvements in remote sensing technologies and open-access policies have resulted into various sources of valuable 

satellite remote sensing data in estimating forest parameters including AGB. The Sentinel-2 MultiSpectral Instrument (MSI), 

Landsat 8 Operational Land Imager (OLI), and Sentinel-1 Synthetic Aperture Radar (SAR) imageries offer capabilities for AGB 

modelling by means of both active and passive remote sensing systems. The Japanese Aerospace Exploration Agency (JAXA) 

issues global mosaics of Advanced Land Observing Satellite (ALOS) dual-polarised Phased Array type L-Band SAR (PALSAR) 

backscatter data annually, which have penetrability and pixels that comprise broad information concerning the positioning 

and assembly of forest canopy and stems. This renders the ALOS/PALSAR global mosaics particularly useful for AGB mapping. 

Additionally, PlanetScopes’ high-resolution (4.77 m) satellite imagery has recently been made public via Norway’s Interna- 

tional Climate and Forest Initiative (NICFI), Kongsberg Satellite Services (KSAT), along with its associates Planet plus Airbus 

[50] . PlanetScope data, which covers the tropics only, is meant to advance forest monitoring in these countries in imple-

menting sustainable forest management and REDD + [42] . Identifying the optimal satellite remote sensing sensors for AGB 

modelling in such complex areas is of particular importance. 

Remote sensing data is a critical element in AGB modelling, but it is not enough on its own. To accurately estimate

AGB, three other factors are critical: proper field sample collection (plots of at least 0.25 ha), the selection of appropriate

variables, and the use of modelling algorithms [35] . While spectral bands are commonly used in remote sensing-based 

AGB estimation, studies have shown that the inclusion of vegetation indices and texture variables can significantly improve 

results, particularly in dense tropical forests [ 31 , 46 , 47 ]. For example, research by Lu et al., [34] in the Brazilian Amazon found

that combining spectral bands and textural characteristics improved AGB estimation, particularly in primary forests with 

intricate canopy systems. The visible, near-infrared, and shortwave infrared bands are typically the most effective spectral 

bands for AGB estimation, especially in forests with simple stand structures. (e.g., [ 31 , 33 ]). 

While ordinary least-square (OLS) regression is commonly used for modelling forest structure attributes using remotely 

sensed data due to its ease of implementation and interpretation [45] , it is limited in its ability to capture the complex

non-linear relationship between AGB and remote sensing variables [63] compared to semi-parametric and non-parametric 

methods. In highly dense and multi-layer canopy forests, remote sensing data saturation occurs at AGB values between 

100 and 150 Mg ha −1 indicating a plateauing relationship between AGB and remote sensing information [35] . This satu-

ration problem has led to an increase in the adoption of semi-parametric and non-parametric statistical approaches such 

as Generalized Additive Models (GAM) and machine learning algorithms like Extreme Gradient Boosting (XGB), which can 

handle non-linear relationships and provide more accurate AGB estimates [ 19 , 61 , 66 ]. While these methods have been ex-

tensively studied in temperate forests, research on their applicability to tropical forests, especially those in Africa, is limited. 

As tropical trees have shown decreases in growth and photosynthesis at high temperatures, it is important to explore the 

sustainability of different modelling approaches in these sensitive ecosystems [40] . Despite significant progress in remote 

sensing-based biomass estimation over the past three decades, identifying relevant variables from different remote sensing 

data and developing appropriate estimation models for specific studies remains a challenge. 

Previous research has identified a lack of studies comparing the performance of different sources of remote sensing 

data under semi-parametric and machine learning techniques for predicting AGB [57] . It is crucial to understand how the

selection of the modelling approach and data sources affects the precision of AGB predictions [ 14 , 51 , 54 ]. Furthermore, the

selection of data source and modelling technique should be specific to the features of the forests being examined and 

research objectives [12] . The western block of the Usambara mountains in Tanzania has locally rich biomass forests [41] ,

making it an ideal location to compare various approaches for modelling and mapping biomass from remote sensing bands, 

vegetation indices, and texture metrics from different remote sensing sensors. 

To address this gap, this study evaluated and compared several open-access remote sensing products to determine their 

ability to provide AGB predictions for tropical montane forest ecosystems. Specifically, this research sought to (i) assess the 

performance of semi-parametric (GAM) and machine learning (XGB) techniques in modelling and mapping AGB from Land- 

sat 8 OLI, Sentinel-2 MSI, PlanetScope, ALOS/PALSAR Global mosaic, and Sentinel-1 bands, vegetation indices, and texture 

metrics, (ii) identify the most effective bands/polarizations, vegetation indices and texture metrics for predicting AGB, and 

(iii) produce wall-to-wall spatial prediction AGB maps using the best satellite data and modelling technique. 

Materials and methods 

Study area 

In this study, biophysical data were gathered from forests of the West Usambara mountains, a sizable upland block in 

Tanzania’s Eastern Arc Mountains ( Fig. 1 ). With more than 50% of moist forests confined to this chain, their high carbon stor-
2 
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Fig. 1. Location map of the study area. 

 

 

 

 

 

age potential puts their conservation in a global context. As a result, protocols for monitoring forest above-ground biomass 

would be beneficial in developing conservation and management strategies for the Eastern Arc Mountains and other rele- 

vant forest ecosystems. Covering the entire block was made impossible due to limitations in cost and time resources. Thus, 

one nature forest reserve and one forest reserve, namely Magamba and Shagayu respectively, were selected for this study. 

Because of the West Usambara Mountains’ proximity to both the equator and the Indian Ocean, their climate is oceanic with

bimodal rainfall. Peak rainy months are April and November. The wettest regions experience a maximum annual rainfall of 

20 0 0 mm, while rain shadow regions see less than 600 mm of rainfall. The chosen forests are comparatively drier than the

other moist forests that can be found on the wetter mountain sides to the east, south, and north. 

An overview of the study design 

In this remote-sensing supported forest inventory, the potential for AGB estimation from several open access data sources 

was evaluated. The method can be broken down into four phases: (1) gathering and pre-processing field and remote sensing 

data, (2) extracting remote sensing variable values from plot locations, (3) selection of optimal variables, and (4) creating 

predictive models with various variable setups and evaluating their accuracy through cross-validation ( Fig. 2 ). The phases 

are further explained in the sections that follow. 

Data collection 

Forest inventory data 

A systematic sampling design was undertaken in each forest. A 225 × 900 m grid was created for Magamba Nature 

Reserve, while a 350 × 700 m grid was used for Shagayu Forest Reserve. Sample plot coordinates were extracted at each

grid intersection within the forest. However, due to constraints in terrain and cost, not all plots were recorded, although 

an effort was made to collect data from plots covering various elevational ranges, which is a key determinant of AGB in

mountainous forests. Thus, a total of 159 circular plots were established (Shagayu = 104, Magamba = 55) in March 2020.
3 
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Fig. 2. Methodological framework of estimating AGB using two modelling methods, inventory data and images from PlanetScope (PS), Sentinel-2 (S-2 MSI), 

Landsat 8 (L8 OLI), ALOS-2/PALSAR-2 (A2/P2), and Sentinel-1 (S-1). 

 

 

 

 

 

A Garmin N98 was used to locate the sampling units on the ground. Tree height and diameter at breast height (DBH) were

measured as biophysical characteristics in each sample plot. The survey did not record any trees having a DBH of less than

5 cm. AGB values for each tree were then computed using an allometric model [39] . The total AGB for each plot was then

scaled to a value per hectare based on the corresponding plot area. 

Remote sensing data acquisition and pre-processing 

Three optical (PlanetScope, Sentinel-2 and Landsat 8) and two SAR (ALOS/PALSAR-2 and Sentinel-1) remote sensing 

sources were utilized. The remote sensing imagery utilized to estimate the forest AGB for this investigation is summarized 

in Table 2 . 

Landsat 8 OLI. A single cloud-free Landsat 8 OLI scene from 4 July 2020, with a Path and Row of 167/063, was retrieved

from the USGS GloVis website ( https://glovis.usgs.gov ). Using the RStoolbox package (Leutner et al., 2017) in R, the Level-1
4 
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Table 1 

Statistics of above-ground biomass (Mg ha −1 ) of the two forests. 

Forest Number of plots Mean Minimum Maximum Standard deviation 

Shagayu 104 334.56 4.33 1289.18 235.30 

Magamba 55 225.19 19.05 720.79 174.04 

All 159 296.73 4.33 1289.18 221.74 

Table 2 

Acquired satellite remote sensing data covering Magamba (MG) and Shagayu (SH) forests. 

Satellite Acquisition date Resolution Level Spectra/Polarizations 

Landsat 8 OLI 4 July 2019 30 m L1 TP B02, B03, B04, B05, B06, B07 

Sentinel-2 MSI 12 March 2019 (MG) 16 April 2019 (SH) 10/20 m L1C B02, B03, B04, B05, B06, B07, B08, B8A, B11, B12 

PlanetScope December 2019 4.77 m L1 B, G, R, NIR 

ALOS/PALSAR-2 2020 25 m L1.0 L-band: HH, HV 

Sentinel-1 14 March 2020 10 m L1 GRD C-band: VV, VH 

 

 

 

 

 

 

 

 

 

 

radiometrically and precision terrain-corrected product (U.S. Geological Survey, 2019) was atmospherically corrected from 

Top-of-Atmosphere to surface reflectance using the ‘radCor’ function and finally projected to Arc 1960/UTM zone 37S. The 

blue (B02), green (B03), red (B04), near-infrared (B05), shortwave infrared-1, SWIR-1 (B06), and SWIR-2 (B07) bands were 

included while the coastal aerosol, panchromatic, and thermal infrared bands were not. 

Sentinel-2 MSI. Sentinel-2 MSI radiometrically corrected Level 1C data were acquired on 12 March 2019 and 16 April 2019 

( Table 1 ) from the Copernicus Open Access Hub ( https://scihub.copernicus.eu/dhus/#/home ). The multispectral bands with 

a spatial resolution of 10 m used were; Band 2 (B02) Blue, B03 (Green), B04 (Red), and B08 (Near-Infrared, NIR). The 20 m

spatial resolution bands used were B05 (Red-edge 1), B06 (Red-edge 2), B07 (Red-edge 3), B8A (Narrow NIR), B11 (Shortwave 

infrared, SWIR 1), and B12 (SWIR 2). Using the sen2r package [53] , the Level 1C top of the atmosphere (TOA) reflectance

data were subsequently processed to Level 2A via the European Space Agency’s (ESA) Sen2Cor algorithm [32] to acquire 

bottom of the atmosphere (BOA) reflectance images. To ensure spatial coherence, the 20 m bands were resampled to 10 m

resolution. The study region required two images; thus, mosaicking was used to combine the images before reprojection. 

PlanetScope basemaps. The NICFI distributed imagery, available at https://www.planet.com/basemaps/ , are basemaps (mo- 

saics) covering the tropics with a spatial resolution of 4.77 m. These analysis-ready datasets have four spectral bands (Red, 

Blue, Green, and Near-infrared) [50] . The products are released on a biannual and monthly basis from a temporal perspec-

tive, and for this investigation, tiles from the monthly December 2019 product were used. The only processing performed 

on the PlanetScope imagery was mosaicking and reprojection. 

ALOS-2/PALSAR-2 global mosaic. Global 25 m resolution ALOS-2/PALSAR −2 annual mosaic of the year 2020, which is freely 

available at https://www.eorc.jaxa.jp/ALOS/en/palsar _ fnf/fnf _ index.htm , was acquired. The Japanese Aerospace Exploration 

Agency (JAXA) pre-processes this dual polarization (HH and HV) dataset using l -band SAR imagery of the backscattering 

coefficient obtained by the Advanced Land Observing Satellite-2 (ALOS-2). The mosaic is made up of 10 × 10 ° tiles that have

been pre-processed to remove topographic effects and adjusted for geometric errors [58] . The mosaic tiles were calibrated 

to γ 0 using the following equation: 

γ 0 = 10 × lo g 10 ( DN ) 
2 + CF (1) 

where γ 0 is the gamma-naught in decibels (dB), DN is the digital number in unsigned 16 bits, and CF is a calibration

constant of 83.0 dB. Reprojection and image clipping were then performed on the images in R. 

Sentinel-1. Amongst the SAR data used in this study, was a single Ground Range Detected (GRD) product acquired from the

Sentinel-1A satellite, which is a C-band SAR with a central frequency of 5.405 GHz [38] . The level-1 product with two polar-

izations was acquired on 14 March 2020 and downloaded from the Copernicus Open Access Hub. The GRD data were pre-

processed using the Sentinel Application Platform (SNAP) to obtain the dual-polarised (VV, VH) gamma-naught backscatter 

values. The pre-processing steps included (1) thermal noise removal, (2) calibration, (3) Lee sigma speckle filtering, (4) range 

doppler terrain correction, and (5) conversion to γ 0 dB [13] . Subsequent pre-processing (reprojection and image clipping) 

was carried out in R. 

Vegetation indices and texture metrics 

The atmospherically corrected images from each sensor were then used to create selected vegetation indices ( Table 3 )

and textures ( Table 4 ) in R. The study included five broadband optical vegetation indices (Normalized Difference Vegetation 

Index, Difference Vegetation Index, Ratio Vegetation Index, Green Normalized Vegetation Index, and Enhanced Vegetation 
5 
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Table 3 

Description of vegetation indices used as candidate independent variables for AGB modelling. 

Index Name Expression Sensor Reference 

DVI Difference Vegetation Index NIR-Red L8, S-2, PS Richardson & Wiegand [55] 

EVI Enhanced Vegetation Index 2.5[(NIR- 

Red)/(NIR + 2.4Red + 1)] 

L8, S-2, PS Liu & Huete [23] 

GNDVI Green Normalized Difference Vegetation Index (NIR - Green)/(NIR + Green) L8, S-2, PS Gitelson et al. [17] 

NDVI Normalized Difference Vegetation Index (NIR - Red)/(NIR + Red) L8, S-2, PS Rouse et al. [56] 

RVI Ratio Vegetation Index NIR/Red L8, S-2, PS Pearson & Milton [48] 

CLRE Chlorophyll Red-Edge (RE3/RE1) - 1 S-2 Gitelson et al. [16] 

ND-RE1 Normalized Difference Red Edge (RE2 – RE1)/(RE2 + RE1) S-2 Gitelson & Merzlyak [18] 

ND-RE2 Normalized Difference Red Edge (RE3 – RE1)/(RE3 + RE1) S-2 Barnes et al. [1] 

CPR Cross-polarized Ratio HV/HH 

VH/VV 

A2/P2 

S-1 

Omar et al. [45] 

DpRVI Dual-polarized Radar Vegetation Index 4HH/(HH + HV) 

4VV/(VV + VH) 

A2/P2 

S-1 

Holtgrave et al. [21] 

RFDI Radar Forest Degradation Index (HH-HV)/(HH + HV) 

(VV-VH)/(VV + VH) 

A2/P2 

S-1 

Nicolau et al. [44] 

Table 4 

General description of grey-level co-occurrence matrix (GLCM) texture metrics used in this study. 

Texture Expression Expression 

Mean ( mea ) μi = 

N−1 ∑ 

i, j=0 

iP i, j Mean of grey level (GL) distribution of the image. 

Variance (var ) 
N−1 ∑ 

i, j=0 

iP i, j ( i − μi ) 
2 

GLCM variance is a measure of the dispersion of GL distribution 

Contrast ( con ) 
N−1 ∑ 

i, j=0 

iP i j ( i − j ) 
2 

Contrast indicates the amount of local GL variation in an image. 

Large values indicate the presence of edges, noise or wrinkled 

features. 

Source: Haralick et al., [20] . 

 

 

 

 

 

 

Index) as well as three narrowband indices specific to Sentinel-2 (Normalized Difference Red Edge 1, Normalized Difference 

Red Edge 2 and Chlorophyll Red-Edge). The Sentinel-2 narrowband indices were utilized to assess their AGB modelling ca- 

pability. Furthermore, three indices for the SAR sensors were computed, these were the Cross-polarized ratio, Dual-polarized 

Radar Vegetation Index, and the Radar Forest Degradation Index. Texture metrics were computed using a 3 × 3 window for 

each of the sensors’ bands and vegetation indices. 

Predictor variable selection 

Depending on the satellite sensor, the total pre-selected predictors of bands, indices, and texture variables ranged from 

20 to 54. Variable selection was first carried out to ensure that robust models were created for the various datasets and pre-

dictor variables [36] . The R package VSURF was applied to the original bands/polarizations, indices, and texture datasets to 

determine the appropriate predictors. Random forests are used as the primary classifier in VSURFs wrapper-based technique 

[15] . To decrease the number of features and increase model accuracy, predictor variables are first rated according to a vari-

able importance measure. Low-scoring predictors are then discarded. A ranked list of only the most significant predictors is 

created in the last phase. 

Statistical modelling approaches 

Semi-parametric and non-parametric statistical modelling approaches were used for estimating AGB. The details for each 

approach are given below. 

Generalized additive models 

A generalized additive model (GAM) is based on piecewise polynomials, which describe the contribution of each predictor 

variable. These polynomials are merged into an independent function ( Eq. (2) ) that is bounded by a smoothing spline. In

this study, GAMs were fitted for each satellite sensor using a Gaussian error distribution and a logarithmic link function to

relate the plot level AGB. This model form was preferred as it offers acceptable estimates when true zeros are present in the

estimate of AGB, which has continuous positive values. The R package mgcv [68] was used to carry out the GAM regression.

Each predictor variable that entered the model received a smoothing spline with a smoothing parameter, k, of 3. 

ln (y i ) = b 0 −
n ∑ 

i =1 

f i ( x i ) (2) 
6 
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where, y i is the ground reference AGB (Mg ha −1 ) b 0 is a constant term (the intercept); f i ( x i ) ( i = 1, 2,…, n ) is a smoothing

function for each independent variable. 

Extreme gradient boosting 

XGB is a boosting algorithm that is based on gradient boosting decision trees and random forest methods. In very large-

scale data training, it is a versatile and highly scalable tree structure enhancement model that can handle sparse data, 

significantly increase algorithm performance, and decrease computational memory. The R package xgboost [4] was used to 

implement the XGB. 

Statistical measures for evaluation of model performance 

The accuracy of the models was evaluated using k-fold cross validation, where k = 10 (each model was re-fit 10 times

using 90% of the data, and predictions from the fitted models were compared with observations of the remaining 10% of the

data). The relative root-mean-square error (rRMSE) and coefficient of determination (R 

2 ) were used to assess the model’s 

performance. A higher R 

2 score and a lower rRMSE value typically signify a model’s ability to estimate information more 

precisely. 

RMSE = 

√ 

n ∑ 

i =1 

( ̂  y i − y i ) 

n 

(3) 

rRM SE = 

RM SE 

ȳ 
× 100 (4) 

R 

2 = 1 −
∑ n 

i =1 ( y i − ̂ y i ) 
2 ∑ n 

i =1 ( y i − y i ) 
2 

(5) 

AGB maps 

Finally, the best performing optical and SAR data were used to create spatial prediction maps of the study sites AGB

using the R raster package [10] . 

Results 

Model performance 

A total of 40 models were developed, 20 for both the semiparametric (GAM) and non-parametric (XGB) techniques. Pre- 

dictors selected during variable selection were used in both modelling techniques, with the minimum number of predictors 

being two in a model to a maximum of eight ( Table 5 ). The values for R 

2 and rRMSE across the five datasets using GAM

ranged from 0.051 to 0.152 and 71.23–74.02% respectively. Additionally, the values for R 

2 and rRMSE across the five datasets

using XGB ranged from 0.051 to 0.199 and 69.19–77.67% respectively. Based on the lowest rRMSE, the best model amongst 

the optical sensors was that of PlanetScope using combined predictors (rRMSE = 69.19%) while the best model amongst the 

SAR sensors came from ALOS-2/PALSAR-2 using texture variables (rRMSE = 70.76%). Both models were modelled under XGB 

techniques. 

Predictor variable selection 

For each remote sensing dataset, four categories of predictor variables were prepared. These categories consisted of the 

native bands or polarizations of the sensor (B), derived vegetation indices (VI), textures of the bands/polarizations and veg- 

etation indices (T), and a combination of the sensors bands/polarizations, vegetation indices and textures (C). For the Plan- 

etScope model, variable selection under VSURF returned predictors from the combined category. The selected PlanetScope 

predictors were contrast of EVI (pEVI.con), GNDVI (pGNDVI), and variance of RVI (pRVI.mea) ( Fig. 3 ). Texture variables were

found to be the most significant predictor variables for the ALOS-2/PALSAR-2 model, particularly variance of HH and HV, 

and the mean of HV. 

Estimation and mapping of AGB using selected models 

For the chosen XGB models and remote sensing data, Table 6 displays the estimated mean AGB, 95% confidence interval

(CI), and standard deviation of the mean AGB estimates. The predictions from the ALOS-2/PALSAR-2 and PlanetScope models 

returned mean AGB estimates of 298.16 Mg ha −1 and 276.20 Mg ha −1 respectively. For both models, the spatially predicted

estimates of the mean AGB were within 95% confidence intervals of the mean AGB based solely on the field data (that is,
7 
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Table 5 

Performance of GAMs and XGB models fitted with predictors from the five satellite sensors. Bold text indicates best perfoming models 

with lowest rRMSE. 

Sensor Satellite Category Predictors 

GAM XGB 

rRMSE R 2 rRMSE R 2 

Optical PS Bands pB, pG, pNIR, pR 72.86 0.067 74.05 0.051 

Indices pRVI, pGNDVI 71.43 0.069 73.74 0.113 

Textures pEVI.con, pRVI.mea, pNDVI.con 72.06 0.075 69.56 0.148 

Combined pEVI.con, pGNDVI, pRVI.mea 71.85 0.083 69.19 0.161 

S-2 Bands msiB05, msiB03, msiB06, msiB11 72.55 0.079 71.25 0.137 

Indices msiNDRE2, msiEVI 73.43 0.051 73.98 0.076 

Textures msiB05.var, msiB04.con, 

msiNDVI.con, msiB12.var, 

msiB02.con 

73.22 0.087 71.32 0.116 

Combined msiB05, msiB05.var, msiB04.con, 

msiB11, msiNDVI.con 

72.02 0.077 70.45 0.146 

L8 OLI Bands oliB03, oliB07, oliB06, oliB04, 

oliB02 

73.35 0.083 75.23 0.055 

Indices oliNDVI, oliGNDVI 72.42 0.059 72.17 0.101 

Textures oliEVI.con, oliRVI.con, oliEVI.mea, 

oliGNDVI.con 

72.30 0.112 70.19 0.199 

Combined oliRVI.con, oliNDVI.con, oliEVI.con, 

oliRVI, oliGNDVI, oliGNDVI.con 

72.14 0.152 70.76 0.187 

SAR A-2/P-2 Polarizations aHH, aHV 72.24 0.053 74.48 0.068 

Indices aCPR, aDpRVI, aRFDI 71.40 0.075 73.33 0.076 

Textures aHH.var, aHV.var, aHV.mea 71.23 0.099 70.76 0.165 

Combined aHH.var, aHV.var, aHV.mea, aHH, 

aHV, aCPR, aDpRVI, aRFDI 

71.53 0.110 73.16 0.085 

S-1 Polarizations sVV, sVH 74.02 0.070 77.01 0.073 

Indices sCPR, sDpRVI, sRFDI 72.91 0.051 77.32 0.073 

Textures sVV.mea, sVH.var, sVV.var, 

sCPR.mea, sVH.con, sVV.con 

73.91 0.065 76.84 0.074 

Combined sVV.mea, sVH.mea, sVV.var, sVV, 

sCPR.var, sVV.con 

72.47 0.090 77.67 0.072 

Table 6 

Estimated mean AGB (Mg ha −1 ), lower and upper 95% confidence intervals (CI) for the 

mean AGB estimates in Mg ha −1 , and standard deviation (SD) of the mean estimates (Mg 

ha −1 ) for the selected models. 

Data Mean Lower limit 95% CI Upper limit 95% CI SD 

Inventory 296.73 262.62 331.19 221.74 

ALOS-2/PALSAR-2 298.16 285.28 311.05 97.03 

PlanetScope 276.20 263.71 288.69 97.08 

 

 

 

 

 

262.62–331.19 Mg ha −1 ). In contrast to the estimate from the PlanetScope model, the estimated mean AGB of the ALOS-

2/PALSAR-2 model was closer to the field-estimated mean AGB (i.e., 296.73 Mg ha −1 ). Additionally, the AGB estimations 

based on both models had a higher precision than the field estimate. 

AGB maps of the forests using the best models are presented in Fig. 4 . Visual inspection of the spatially predicted AGB

via the two models shows that, the AGB distribution across the landscape agrees very well with a what is seen through the

false-colour composite of the PlanetScope scene. In plots where the observed AGB was extremely low or close to zero, the

two models tended to overestimate AGB. Furthermore, for plots with exceptionally high biomass values, the models tended 

to underestimate AGB ( Fig. 5 ). 

Discussion 

Accurate and timely estimation of forest biomass using remotely sensed data is critical for suitable for sustainable forest 

management and understanding the global carbon cycle. However, several factors affect the accuracy of AGB estimation 

using remote sensing predictors, including the choice of remote sensing data, modelling methods, and predictor variables. 

This study aimed to address these key factors using field data obtained from tropical montane forests of Tanzania to develop

better approaches for remotely sensed-assisted forest inventories. 

Predictive performance of modelling methods 

In this study two modelling techniques were used to estimate forest AGB, and the non-parametric approach was found 

to perform the best. However, the accuracy of the estimates obtained from these approaches can be influenced by factors 
8 
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Fig. 3. Important predictor variables for the optimal remote sensing data sets. 

 

 

 

such as the forest’s characteristics, inventory sample size, remote sensing data used, and technique of accuracy evaluation. 

To evaluate the effect of remote sensing data and validation metrics on remote sensing-based AGB prediction, we used two 

distinct modelling approaches in this study. 

Although the difference in performance between the two modelling techniques used in this study was marginal, it is 

consistent with findings from other investigations. For instance, Li et al., [28] reported that XGB outperformed random 

forest (RF), and Li et al. [30] , found that XGB performed better than two other algorithms including random forest and

linear regression. Similarly, Pham et al. [49] reported that a hybrid XGB with genetic algorithm (XGB-GA) performed best 

of four machine-learning algorithms assessed for AGB prediction. On the other hand, in some studies, such as those by 

Halperin et al. [19] , Moisen & Frescino [43] , or Soriano-Luna et al. [61] , GAM was found to outperform other modelling

techniques, including linear regression and random forest. These results suggest that the selection of the most suitable 

modelling method appears to be specific to the characteristics of the dataset of a particular area of study. 

Ideal optical and SAR remote sensing data sets 

Our study highlights the potential of optical or SAR-based biomass estimates for enhancing AGB mapping and supporting 

decision-making. amongst the optical models tested, the PlanetScope model contributed the most to improving the accu- 

racy of AGB estimates. Compared to Sentinel-2 and Landsat 8 OLI, PlanetScope’s higher spatial resolution may have enabled 

a better separation of tree species with varying canopy greenness [62] as accounted for by the contribution of GNDVI in the
9 
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Fig. 4. Spatial distribution of AGB using XGB models of (a) ALOS-2/PALSAR-2 and (b) PlanetScope, while (c) is a false colour composite (NIR-R-G in the 

RGB channels) of the PlanetScope image. 

Fig. 5. Observed versus model predictions data for plot level AGB resulting from XGB models of (a) ALOS-2/PALSAR-2 and (b) PlanetScope for the forests. 

Dotted lines represent the 1:1 line and solid lines represent the slope. 
model. Additionally, high-resolution textures derived from PlanetScope imagery provided a more detailed representation of 

vegetation structural components [60] , which led to the greater model precision achieved. These findings align with previ- 

ous studies which reported similar performance of PlanetScope imagery in estimating forest AGB [5] and other vegetation 

properties; such as pasture canopy height [8] . 

For SAR data, our analysis revealed that ALOS-2/PALSAR-2 imagery outperformed Sentinel-1 in terms of AGB estimation 

accuracy. This finding is consistent with previous studies that have shown that longer SAR sensors wavelength (such as the 

L - and P-bands) to be more strongly correlated with forest biomass, with HV-polarized backscatter coefficients being more 
10 
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sensitive to biophysical forest charateristics than C-band and co-polarization bands [ 59 , 65 ]. The variable importance results

presented in Fig. 3 (b) also support the inclusion of HV backscatter coefficients’ in the ALOS-2/PALSAR-2 prediction model. 

Important remote sensing predictor variables 

Accurately estimating AGB from remote sensing data requires a thorough understanding of the relationship between AGB 

and various spectral and polarization information. In this study, we utilized a wide range of SAR and spectral data, including

raw bands/polarizations, band/polarization ratios, vegetation indices, and textures. Previous studies by Li et al. [29] and Pur- 

namasari et al. [52] have demonstrated that these types of data are effective for remote sensing-based biomass estimations. 

Our results show that the best explanatory variables can be chosen from a specified set of variables or groups of variables.

amongst the explanatory variables we examined in this study, we found that mean and variance texture metrics of vege- 

tation indices (for PlanetScope data) and raw polarizations (for ALOS-2/PALSAR-2 data) were the most effective predictors 

for producing precise AGB models. The mean texture measure smooths the image and reduces background interference by 

averaging the values of the grey tones. On the other hand, the variance texture measure is directly related to the high fluc-

tuations in grey tone values, mostly brought on by variances in the forms of leaves across the forest. The texture values in

an image enable the evaluation of the spatial variability in the various plant types, which exhibit distinctive phenological 

patterns connected to structure, development stage, carbon exchange, and vegetative greenness [ 25 , 67 ]. 

The GLCM-based textures can reflect the differences in interconnected traits of tree species such as leaf shape, colour, 

angle, size, and density [8] . Textural measurements can help AGB models make more accurate predictions if the right pro-

cessing methods are employed [47] . Compared to spectral reflectance or band ratios, textures are more effective at capturing 

the diverse forest canopy structures of the forest strata due to their sensitivity to the spatial characteristics of the canopy

shadow [9] . Thapa et al. [64] utilized SAR imagery acquired from the ALOS PALSAR satellite and texture images to estimate

the above-ground carbon stock in Indonesia by multiple linear regression, and they found reduced RMSE values in compari- 

son to the current study. By only using SAR imagery, the authors achieved a regression RMSE of 45.64 Mg C ha −1 . However,

after including the texture variables, the models improved and showed an RMSE between 28.01 and 37.70 Mg C ha -1 . Ad-

ditionally, SAR image textures greatly enhanced biomass mapping using Landsat TM data, according to Cutler et al., [7] and

Huang et al., [22] . Our results support the findings of these studies, indicating that texture metrics of remote sensing data

are valuable predictors for estimating AGB. 

AGB spatial maps of the forests 

The per-pixel agreement between the AGB maps created from PlanetScope and ALOS-2/PALSAR-2 data was fair, except in 

areas where the PlanetScope map had low AGB values. However, when considering the mean AGB for the forests, the pre-

diction from the ALOS-2/PALSAR-2 map appeared to be consistent with the field estimates. Nonetheless, there were several 

reasons for the discrepancy between the two maps, with the models’ inherent limitations being a significant factor. Both the 

ALOS-2/PALSAR-2 and PlanetScope AGB models overestimated AGB in areas with low field values and underestimate AGB in 

areas with high measured AGB ( Fig. 5 ), which is in line with previous research findings [ 3 , 26 , 37 ] and may be due to the

models’ inability to represent the differentiation in forest structure that occurs within the forest. 

The underprediction of AGB in the ALOS-2/PALSAR-2 map could be attributed to the SAR signal becoming saturated 

at high AGB values. SAR saturation has been identified in several previous studies, with the X- or C-band usually being

associated with saturation at significantly lower values than other bands. Similarly, using optical data has been known to 

overestimate biomass, as reported in several optical data types [ 24 , 31 ]. 

Overall, the study’s results were encouraging, with optimal optical and SAR remote sensing data, modelling techniques, 

and predictor variables identified for AGB estimation. The selected models produced reasonable improvements in AGB esti- 

mation based on the identified variables, which were supported by additional research findings (e.g. [ 6 , 28 , 37 ]). The study’s

outcomes revealed that PlanetScope and ALOS-2/PALSAR-2 imagery had reasonable spectral/microwave and spatial features 

for AGB estimation. These findings could support Tanzania’s national REDD + program’s current need for a forest carbon 

stock estimate. Improved forest data from publicly accessible data sources such as PlanetScope and ALOS-2/PALSAR-2 could 

support results-based incentives for those who responsibly manage their forest resources responsibly according to accepted 

standards such as the REDD + initiatives. 

Conclusion 

This study is not the first to estimate forest above-ground biomass using PlanetScope, Sentinel, Landsat, and PALSAR data 

as well as the eXtreme Gradient Boosting technique. It is the first one, though, to compare the predictive power of these

open-access remote sensing data to precisely estimate above-ground biomass in part of Tanzania’s Eastern Arc montane 

forests. Continuous monitoring is required to determine their role in the global carbon cycle, including whether they are 

serving as sources or sinks. The accuracy of estimates was increased by using remote sensing data for AGB estimation. 

Therefore, by increasing precision, the remote sensing-based methodologies used in this study will complement the field- 

based estimates of AGB. The models used in this study’s AGB estimation, however, showed saturation challenges. Future 
11
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research should therefore concentrate on improving these restrictions by employing the synergy of various data sources to 

increase the estimation efficiency of AGB models beyond what was achieved in the current work. 
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