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Models to estimate forest degradation in terms of removed volume and biomass from the extraction of wood fuel and logging using
stump diameter (SD) are lacking.The common method of estimating removals is through estimating diameter at breast height (D)
by applying equations relating measured D and SD. The estimated D is then used to estimate biomass and volume by means of
allometric equations, which utilize D. Through this sequence of procedures, it is apparent that there is an accumulation of errors.
This study developed equations for estimating volume, aboveground biomass (ABG), and belowground biomass (BGB) using SD
in miombo woodlands of mainland Tanzania. Volume models were developed from 114 sample trees while AGB and BGB models
were developed from 127 and 57 sample trees, respectively. Both site specific and regional models were developed. Over 70% of
the variations in BGB, AGB, and volume were explained by SD. It was apparent that SD is inferior compared to measured D in
explaining variation in volume and BGB but not AGB. However, the accuracy of BGB and volume estimates emanating directly
from SD were far better than those obtained indirectly, i.e., volume or BGB estimates obtained from estimated D from SD, since
the latter is affected by accumulation of regression equation errors. For improved accuracy of ABG, BGB, and volume estimates,
we recommend the use of site specific models. However, for areas with no site specific models, application of regional models is
recommended. The developed models will facilitate the addition of forest degradation as a REDD+ activity into the forthcoming
FREL.

1. Introduction

Miombo woodlands are lands dominated by deciduous trees
of the genera Brachystegia, Julbernadia, and Isoberlinia [1,
2]. They cover an area of approximately 2.7 million km2
equivalent to 9% of the African land area spanning across ten
countries in southern and eastern Africa including Tanzania
[1, 3–6]. In Tanzania, woodlands cover about 93% of the total
forest area of 48.1 million ha [7, 8]. Miombo woodlands can
be divided into dry (annual precipitation <1000 mm) and
wet miombo (annual precipitation>1000 mm). Dry miombo
are found in Zimbabwe, central Tanzania, southern areas
of Mozambique, Malawi, and Zambia [6]. Wet Miombo are
found in eastern Angola, northern Zambia, central Malawi,
and south western Tanzania [6].

Miombo woodlands offer both direct and indirect bene-
fits. Direct benefits include energy (fuel wood and charcoal),
construction and craft materials, medicines, employment,
income, food (fruits, mushrooms, honey, and edible insect),
and fodder for animals. These benefits are either for domestic
consumption or for local sale [3, 5]. On the other hand, indi-
rect benefits encompass soil nutrient inputs through nutrient
cycling and through nitrogen fixation and environmental
services such as soil and water conservation, biodiversity, and
carbon sequestration [9–12].

Miombo woodlands are under pressure from increasing
demands for land-based products and services. This has
led to forest degradation and deforestation [13, 14]. Forest
degradation jeopardizes the capacity of forests to function
as regulators of the environment. Consequently, increasing
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flooding, erosion, reduced soil fertility, and loss of plant
and animal diversity have been common [13]. Sustainable
provision of goods and services from the miombo wood-
lands requires effective forest management efforts, which
ultimately may make a significant contribution to national
goals for Reduction of Emission from Deforestation and
Forest Degradation “plus,” the role of conservation, sus-
tainable management of forests, and enhanced carbon stock
(REDD+). Implementation of REDD+ as a carbon credit
market approvals among others requires measurement and
monitoring of carbon emissions from forest degradation and
deforestation.

While deforestation is relatively easy to estimate, forest
degradation is more challenging [8]. Recently, Tanzania
has engaged in developing Forest Reference Emission Level
(FREL) standards [14]. Deforestation and conservation are
the only REDD+ activities among the five activities, which
have been included in the Tanzania FREL. Degradation has
not been included due to inadequate data for establishing
baselines and monitoring. Forest degradation is taking place
throughout the country. Monitoring degradation by means
of remote sensing techniques poses a significant challenge
since degraded forests frequently maintain a closed canopy.
The main drivers of forest degradation are extraction of
wood fuel (charcoal and firewood), logging, grazing, and
wildfire. Techniques to estimate forest degradation need to
be developed following a stepwise approach. One of the
techniques is the use of Stump diameter (SD) which may be
included during forest inventories as a means of assessing
forest degradation.

Diameter at breast height (D) and total tree height have
often been used as standard predictors of biomass (both
above- and belowground biomass) and volume [3–5, 15].This
is because these variables are highly correlated with biomass
and volume. The common method of estimating removals is
through estimating D by developing equations relating D and
SD from sample trees measured for both D and SD [16–18].
The estimated D is then used to estimate biomass and volume
by means of allometric equations. Through this sequence
of procedures, it is apparent that there is an accumulation
of errors from the estimation of D to the estimation of
biomass or volume [16, 19–21]. In this case, it is considered
more precise to estimate biomass and volume directly from
SD. In addition, the recent National Forest Monitoring and
Assessment (NAFORMA) included SD for monitoring forest
degradation. Therefore, having biomass/volume – SD allo-
metric equations will facilitate the estimation andmonitoring
of forest degradation in Tanzania associated with extraction
of wood fuel and logging.

Todate, there is only one biomass/volume– SDallometric
equation that was developed from limited sample trees (30
trees) from only a single site in Tanzania [22]. Topography,
soil, climate, and species are the main factors, which affect
stand architectural variability in miombo woodlands [22].
Therefore, adequate sample trees collected fromdifferent sites
are imperative to cover the variability in SD,D, andHof trees.
Thus, this study developed aboveground biomass (AGB),
belowground biomass (BGB), and volume-SD allometric
equations that utilize SD as the sole predictor for estimating
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Figure 1: Study sites (Manyara, Lindi, and Tabora) locations as seen
in the map of Tanzania. Modified from [5].

removal and emission from forest degradation associated
with extraction of fuel wood and timber in miombo wood-
lands.

2. Materials and Methods

2.1. Study Area Description. The data for developing biomass
and volume models were collected in Tanzanian miombo
woodlands of Manyara, Lindi, and Tabora regions (Figure 1).
In Manyara region, data were collected in Ayasanda and
Duru Haitemba Village Land Forest Reserves. The dominant
miombo woodlands tree species in these reserves include
Albizia versicolor, Brachystegia microphylla, Julbernardia glob-
iflora Brachystegia spiciformis, Brachystegia boehmii, Com-
bretum collinum, Parinari curatellifolia, Markhamia obtusi-
folia, Tamarindus indica., and Senegalia nigrescens (Acacia
nigrescens). Likewise, Brachystegia spp., Julbernadia spp.,
and Pterocarpus angolensis are common miombo wood-
lands trees found in Angai Village Forest Reserve in the
Lindi region. Furthermore, in Tabora region, the data were
collected in Nyahua Forest Reserve in which Pterocar-
pus angolensis, Afzelia quanzensis, Dalbergia melanoxylon,
Burkea africana,Pterocarpus tinctorius, and Swartzia mada-
gascariensis are the common tree species. Details on locations
and conditions of the study sites are described in Table 1.

The weather conditions for all sites may be divided into
three categories, i.e., a hot dry season from mid-August to
the end of October, a hot wet season from November to the
beginning of April, and a relatively cool dry season fromApril
to mid-August. Furthermore, two rainfall regimes exist. In
the southern, southwestern, central, and western parts of the
country, including Lindi and Tabora, the rainy season starts
in mid-November and ends in mid-May. In the north and
in the northern coastal zone, including Manyara, the rain
is distributed over two shorter periods (October–December
and March–May).
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Table 1: Study sites descriptions.

Region Forest Location
Dominant soil

Type Altitude (m) Mean annual temperature (∘C) Mean annual
rainfall (mm)

Min Max

Manyara Ayasanda and
Duru Haitemba 4∘20󸀠S, 35∘47󸀠E Clay alluvial

soils 1 300–1 800 15 26 854

Lindi Angai Villages
Forest Reserve 9∘47󸀠S, 37∘55󸀠E Sandy loam soils 330–600 20 31 873

Tabora Nyahua Forest
Reserve 5∘18󸀠S, 32∘58󸀠E Sandy clay loam

soils 1 096–1 103 17 30 771

Table 2: Stump diameter descriptive statistics of volume, above- and belowground biomass data.

Component Site Stump diameter (cm)
n Mean Min Max

Volume

Manyara 36 37.08 5 80
Lindi 39 34.25 4.5 82
Tabora 39 37.05 1.8 102
All 114 36.10 1.8 102

AGB

Manyara 40 38.31 2.4 80
Lindi 47 38.48 1.9 114
Tabora 40 37.27 1.8 102
All 127 38.05 1.8 114

BGB

Manyara 19 33.25 5 55
Lindi 19 36.61 10.2 72
Tabora 19 48.94 13 102
All 57 39.60 5 102

2.2. Data Collection

2.2.1. Sampling Design. This study utilized a data set that was
collected to develop biomass and volume models utilizing
D and H [3, 5]. Additionally, SD of the sampled trees was
measured. The SD was measured over bark immediately
under the cutting point (felling cut). When a tree was
irregular, the SD was measured at a higher point where a
regular shape commenced but must be below D. Circular
sample plots of 15 m radius were distributed within the
study sites where 40 plots in each site were systematically
established making a total of 120 plots across all three sites.
Tree size and species distribution of this inventory were used
as the target distribution for the selection of sample trees.
One or two trees in each plot were selected for destructive
sampling in order to match the target distribution. Some of
the sampled trees were selected outside the plot area, i.e., large
trees that were not present inside the plot.

2.2.2. Destructive Sampling. Before felling, species of each
sample tree was recorded and the tree was measured for
D and SD. The SD was measured at least 30 cm from the
ground. In case of irregularity of the stump, wemoved further
above up to a point where irregularity ends. However, the
measured point was always breast height.The selected sample
trees were divided into two main parts, i.e., aboveground
and belowground components.The aboveground component
included all biomass above a point of SD measurement.

Aboveground Component. The aboveground component
(Table 2) was divided into three sections, merchantable stem
and branches including tops (up to a minimum diameter
of 2.5 cm) and twigs (with diameter less than 2.5 cm). For
small trees with D < 10 cm, no merchantable stem part was
considered. For trees with D ≥ 10 cm, no specific minimum
diameter was set to distinguish between merchantable stem
biomass and branch biomass, but the decision was based on
a subjective judgment of the length of the stem that could
be used to produce timber. Leaves were excluded from twigs
and thus not included in the modelling. Stems and branches
were trimmed and cross cut intomanageable sections ranging
from 1 to 2.5 m in length and weighed for green weight. Mid-
diameter and length were measured for each log section. At
least two sample disks (depending on the length) from stem
and branches were extracted and weighed for determination
of the dry to green weight ratio (DG-ratio). Twigs were
collected into separate bundles and the green weight of each
twig was recorded. Small sample disks were collected from
each bundle, labelled, and measured for green weight ready
for drying in laboratory.

Belowground Component. For the belowground component
(57 sample trees) (Table 2), areas around the sample tree
were excavated to expose all of the roots emanating from the
root crown.Three main roots (largest, medium, and smallest
in diameter) were selected and excavated in full, measured
for diameter at the branching point from the root crown,
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Table 3: Descriptive statistics of volume, above- and belowground biomass.

Site AGB (Kg) BGB (kg) Volume(m3)
n Mean Min Max n Mean Min Max n Mean Min Max

Manyara 40 1126 0.77 5143 19 199 2.90 643 36 1.26 0.0015 7.87
Lindi 47 1463 0.12 10418 19 308 17.20 1130 39 1.21 0.0016 5.79
Tabora 40 1149 0.19 8790 19 486 18.72 2355 39 1.42 0.0002 7.53
All 127 1258 0.11 10418 57 331 2.89 2356 114 1.30 0.0002 7.87

Figure 2: Belowground tree section illustrating different parts of the
root (stump, root crown, main roots, and side roots). ∗The points at
diameter of main roots mark the beginning of main roots and the
end of root crown. ∗∗The points at diameter of side roots mark the
beginning of side roots and the end of main root. Adopted from [3].

and weighed. Up to three side roots were selected from the
excavatedmain roots,measured for diameter at the branching
points from the main root, and weighed. Other side roots
from the excavated main roots were measured for diameter
at the branching point. For trees with a tap root, excavation
was done until reaching a diameter corresponding to the
largest selected main roots (down to 4 m depth). Diameter
was measured and the remaining portion was treated as a
side root (Figure 2). All main roots that were not excavated
weremeasured for diameter at the branching point of the root
crown. The root crown was also recorded for green weight.
Details on excavation and sampling procedures for BGB are
described in [3].

In order to obtain estimates of the dry weights of the
belowground components, at least two samples were taken
from all main and side roots and at least two from the
root crown. All were weighed for green weight, labelled, and
prepared for the laboratory procedures. In the laboratory,
all above- and belowground samples were oven-dried to a
constant weight at 105∘C for stems, branches, and twigs for
at least 48 hours and weight was recorded after every 6 hours
until they maintain constant weight.

2.3. Data Analysis

2.3.1. Determination of Tree Volume. Each log section volume
was calculated by multiplying the cross-sectional area at
the midpoint of each log by its length. The volume of the

merchantable stem and branches for a tree was obtained
by summing the volumes of the respective sections for that
specific tree. Total tree volume was finally obtained through
summation of the volumes of the merchantable stem and the
branches. Summary statistics for total observed volume over
sites are shown in Table 3.

2.3.2. Determination of Aboveground Biomass. Dry to green
weight (DG) ratioswere determined for each tree component,
i.e., stem, branches, and twigs [3]. The mean DG for each
tree component was computed. The dry weight of each
component (merchantable stem, branches, and twigs) was
obtained as a product of mean DG-ratio and the green weight
of the respective tree component. Finally, total AGB was
computed as the sum of the dry weights of merchantable
stem, branches, and twigs. Summary statistics for the AGB
for each site are presented in Table 3.

2.3.3. Determination of Belowground Biomass. Dry to green
weight (DG) ratios were determined for each belowground
components, i.e., root crown, main roots, and side roots
[3]. Since few sample roots were measured for green weight
in the belowground section, it was necessary to develop a
greenweight-root diameter relationship to be able to establish
the green weight of unexcavated roots, which were only
measured for diameter. Once the green weight of each root
was determined, green weight of each section (main roots,
side roots, and root crowns) was converted to biomass by
multiplying its green weight and its respective DG. The BGB
of a tree was obtained by summing the dry weights of the
roots and that of the root crown. Details on the procedures
and uncertainty associatedwith these equations are described
in [3]. Summary statistics for BGB for each site are shown in
Table 3.

2.3.4. Model Development. Prior to model fitting, and to
avoid blind fittings, response variables were plotted against
the explanatory variable to examine the patterns and extent
of variance for each site and for the combination of sites.
The scatter plots (Figures 3, 4, and 5) displayed a positive
nonlinear relationship between volume/biomass and SD. As
a rule of thumb, a best model emanates from fitting several
models since tree allometry differs due to biotic and abiotic
factors [3–5, 19, 23, 24]. Since all trees during data collection
were cut to a height of at least 30 cm above ground level,
the stump height was not included in the models as an
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Figure 3: Scatter plots of sample trees volume distribution versus stump diameter for the three sites and all sites combined.

independent variable. We fitted three model forms, i.e., one
nonlinear and two linear models.

𝑌 = 𝑎 × 𝑆𝐷𝑏+ @ (1)

𝑌 = 𝑎 + 𝑏 × 𝑆𝐷2+ @ (2)

𝑌 = 𝑎 + 𝑏 × 𝑆𝐷 + 𝑐 × 𝑆𝐷2+ @ (3)

where Y is volume (m3 tree−1), AGB, or BGB (kg tree−1); SD
is stump diameter (cm); @ is the error term (or residual); and
a, b, and c are the regression parameters to be estimated.

Modelling data used in this study represent a hierarchical
structure, i.e., three sites and tree species nested into sites. In
this case, a nonlinear mixed effect modelling approach was
considered ideal for developing predictive models that would
account for dependence of the species within sites and for
preservation of original scale. The list of species is presented
in the Appendix. Preliminary findings showed a significant
improvement ofmodelwithmixed effect compared tomodels
without mixed effect. In addition, to account for variation
(i.e., heteroscedasticity due to SD) not accounted for by the
random effects, we also included a power variance function
structure, i.e., varPower, implemented in the nlme packages
of R software for nonlinear and linear models [25, 26]. Model
(1) (nonlinear) was fitted with an nlme function while models

(2) and (3) (linear models) were fitted with the lme function
in the nlme package [27] in R software (R Development
Core Team 2018). We developed regional as well as site
specific AGB, BGB, and volume models. Models were fitted
by allowing random effects on all model parameters (see (1)).
With the inclusion of random effects, (4) emerged.

𝛽1 + 𝑅𝑖 (4)

where 𝛽1 represents model parameters a, b, and c and
expresses the difference in parameter 𝛽1 of site i and tree
species j from the mean value obtained from (1), (2), and (3)
or typical site or tree species and Ri is the random effects.

2.3.5. Model Selection and Evaluation. To select the best
models for volume, AGB, and BGB, we computed Root Mean
Square Error (SE%), Coefficient ofDetermination (R2),Mean
Prediction Error percentage (E%), and Akaike Information
Criterion (AIC). Models with small values of SE%, E%,
AIC, and high R2 were considered to have a good fit. Mean
prediction error percentage (E%) was computed using (5)
based on fixed effects parameters only. However, with an
increase in model parameters, SE% tends to be smaller and
R2 becomes higher regardless of the contribution of the added
parameters. Therefore, to address this problem we used AIC
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Figure 4: Scatter plots of sample trees belowground biomass distribution versus stump diameter for the three sites and for all sites combined.

to select the best model (see (6)). The selected models were
further examined by using residual plots.

𝐸% =
@ (100 × [(𝑌𝑖 − 𝑌𝑖) /𝑌𝑖])

𝑛
(5)

where Y is observed AGB, BGB, or volume; 𝑌̂ is predicted
AGB, BGB, or volume; and n is the number of observations
(i.e., number of trees).

𝐴𝐼𝐶 = −2 × ln (𝐿) + 2 × 𝑘 (6)

where L is the value of the likelihood and k is the number of
parameters.

In addition, we tested the previously developed volume,
BGB, andAGBmodels from similar data sets except that their
independent variables were D and total tree height. The aim
was to gauge the strength of SD relative to D. We further
evaluated the performance of regional models to the studied
sites using E%.

3. Results

3.1. VolumeModels. Table 4 presents parameter estimates and
performance criteria of the fitted volume models. Parameter
estimates of all fitted models were significantly different from
zero (p < 0.05). Model (1) was consistently the best in all
cases, i.e., smallestAIC andE%, and thereforewas selected for
further evaluation. For the selected models, the coefficient of

determination (R2) was found to be greater than 70% except
for Tabora (62%). With the exception of Manyara (absolute
E% = 0.85%), E% were found to range from 9.6% to 11.8%.
Residual plots of selected models are shown in Figure 6.
Residual plots did not show any pattern that indicates model
bias.

3.2. Above- and Belowground BiomassModels. Theparameter
estimates and performance criteria of the AGB and BGB
models are presented in Tables 5 and 6, respectively. Model
(1) was consistently the best for AGB in all cases based on the
lowest E% and AIC (Table 7). Since selection was based on
modelswith smallest AIC, model (1) was selected for all cases.
Coefficient of determination (R2) of the selected regional
AGB model was 0.92, while R2 for the selected site specific
models ranged from 0.88 to 0.94. The E% of the selected
models ranged from 9.7% to 11.1%. Residual plots of selected
AGB models are shown in Figure 7. Residual plots did not
show any pattern to indicate model bias.

All parameter estimates for BGB models were signifi-
cantly different from zero. Except for Manyara where model
(3) had a good fit, model (1) performed well in Lindi and
Tabora and for the regional model (Table 6). These models
had lower AIC and lower E% values and therefore were
selected for further evaluation. The selected BGB model for
Tabora, Manyara, and Lindi had R2 of 0.86, 0.71, and 0.86,
respectively.The E% of the selected models ranged from 3.2%
to 13.6%. Residual plots of selected models are shown in
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Figure 5: Scatter plots of sample trees aboveground biomass distribution versus stump diameter for the three sites and for all sites combined.

Figure 8. Residual plots did not show any pattern indicating
model bias.

3.3. Evaluation of Previously Developed Models. The predic-
tion power of the previously developed volume and biomass
models for Miombo woodlands which utilize D as sole
independent variable was also tested on the current data
set (Table 7). The tested volume and biomass models were
developed from similar data [3, 5]. The E% for AGB, BGB,
and volume model over the sites ranged from -2.7 to 11.8, -3.9
to 12.5, and 1.1 to 2.0, respectively. These values were slightly
higher than those produced by the current developedmodels.

3.4. Performance of Developed Regional Models to Study Sites.
Performance of the regional models relative to study sites
results is presented in Table 8.The findings show that regional
models E% were not significantly different from zero (p >
0.05) except for Tabora region.

4. Discussion

4.1. Modelling Data. This study developed volume and
biomass models using a comprehensive data collected from
three regions rich in miombo woodlands in Tanzania, i.e.,
Tabora, Lindi, and Manyara. Sampling was guided by the

observed species distributions fromprevious systematic sam-
ple plot inventories carried out in each site so that the most
frequently occurring genera of miombo woodlands, such
as Brachystegia, Pterocarpus, Julbernadia, and Combretum,
were as representative as possible (see the Appendix). Such
considerations were not made in the development of models
[18, 22] that are currently applied for removed volume and
biomass estimation in the miombo woodlands of Tanzania.
The data covered a wide range of growth conditions such
as climate, topography, and soils. In addition, the data also
covered a large number of observations (AGB = 127; BGB =
57; and volume = 114) and wide range of tree sizes (minimum
SD of 1.8cm to maximum SD of 102 cm) for modelling which
ensured that the majority of volume and biomass variation
is explained by SD. Trees of large sizes were also included
to avoid extrapolation beyond the data ranges. The inclusion
of larger trees is of particular importance for mature forests
because large trees account for the largest part of the volume
and biomass and drives the model fits [3, 5, 6]. With such
data set characteristics, we are confident that the developed
models are superior to the previously developed volume and
biomass model from a single site and limited data in eastern
Tanzania that also utilized SD as a sole predictor [21, 22].

4.2. Volume Models. Model (1) was selected in all cases (site
specific and for regional models). Similar model forms had
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Table 4: Volume model coefficients and performance.

Site Model forms Model coefficients AIC SE SE% E% R2
a b c

Tabora
= 𝑎 × (𝑆𝐷)𝑏 0.000031 2.78805 -41.0 0.72 45.7 -11.79 0.62
= 𝑎 + 𝑏 × (𝑆𝐷)2 -0.00234 0.00054 -1.257 1.01 63.93 -67.2 0.79

= 𝑎 + 𝑏 × (𝑆𝐷) + 𝑐 × (𝑆𝐷)2 0.00443 -0.0034 0.00059 -24.66 0.98 61.96 -14.5 0.80

Manyara
= 𝑎 × (𝑆𝐷)𝑏 0.000035 2.77406 1.348 0.51 42.10 -0.85 0.89
= 𝑎 + 𝑏 × (𝑆𝐷)2 -0.0129 0.00050 23.85 1.06 88.12 -13.55 0.536
= 𝑎 + 𝑏 × (𝑆𝐷) + (𝑆𝐷)2 0.0205 -0.0077 0.00079 9.75 0.79 65.04 -9.51 0.75

Lindi
= 𝑎 × (𝑆𝐷)𝑏 0.000026 2.8908 -39.2 0.81 56.2 -9.6 0.789
= 𝑎 + 𝑏 × (𝑆𝐷)2 -0.0137 0.00059 2.132 0.88 61.39 -17.0 0.749

= 𝑎 + 𝑏 × (𝑆𝐷) + 𝑐 × (𝑆𝐷)2 0.0385 -0.01237 0.00098 -27.2 0.53 36.6 -9.80 0.91

Regional
= 𝑎 × (𝑆𝐷)𝑏 0.000032 2.7992 -90.16 1.01 71.7 -10.5 0.709
= 𝑎 + 𝑏 × (𝑆𝐷)2 -0.00294 0.00056 30.7 0.99 70.4 -48.3 0.719

= 𝑎 + 𝑏 × (𝑆𝐷) + 𝑐 × (𝑆𝐷)2 0.00557 0.0041 0.00066 -41.8 0.91 64.6 -15.3 0.76
Note: Bold type indicates selected model.

also fitted well to the same data utilizing D as the explanatory
variable [3, 5]. When comparing R2 with other studies, [21]
found R2 ranging from 0.70 to 0.81 which are in line with
those obtained in the present study. This also suggests that
SD may explain over 70% of variation in tree volume.

The lower E% which was also not significantly different
from zero indicates that the developedmodels were unbiased
(Table 4). Generally, based on E%, models for individual

sites were superior to regional models as expected since by
combining all data sets there is an increase of volume, AGB,
and BGB variations which were not able to be explained by
only SD [3, 5]. Evaluation of previously developed volume,
AGB, and BGB models shows that E% was slightly lower
than those of earlier models except for Manyara. This trend
suggests that D is a slightly better explanatory variable than
SD when estimating standing trees volume. However, when
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Figure 7: Residual plots of selected sites and regional belowground biomass models.
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Figure 8: Residual plots of selected sites and regional aboveground biomass models.
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Table 5: Aboveground biomass model coefficients and performance.

Site Model Model coefficients AIC SE SE% E% R2
a b c

Tabora
= 𝑎 × (𝑆𝐷)𝑏 0.0391 2.6491 485.9 483.22 42.9 -11.1 0.925
= 𝑎 + 𝑏 × (𝑆𝐷)2 -1.3626 0.3755 524.9 986.72 87.6 -39.6 0.687

= 𝑎 + 𝑏 × (𝑆𝐷) + 𝑐 × (𝑆𝐷)2 3.0632 -2.4073 0.4559 501.8 848.17 75.3 -13.4 0.76

Manyara
= 𝑎 × (𝑆𝐷)𝑏 0.0605 2.5490 511.7 649.61 44.4 9.3 0.88
= 𝑎 + 𝑏 × (𝑆𝐷)2 -1.4551 0.35343 544.3 1319.70 90.2 -10.3 0.52
= 𝑎 + 𝑏 × (𝑆𝐷) + (𝑆𝐷)2 5.5304 -3.1894 0.5021 516.3 1035.86 70.8 -9.7 0.70

Lindi
= 𝑎 × (𝑆𝐷)𝑏 0.02821 2.7508 552.8 482.84 42.0 -9.7 0.94
= 𝑎 + 𝑏 × (𝑆𝐷)2 -0.7873 0.2337 620.5 1640.49 142.7 -10.3 0.28

= 𝑎 + 𝑏 × (𝑆𝐷) + 𝑐 × (𝑆𝐷)2 1.9440 -1.6667 0.3871 598.9 1300.21 113.1 8.3 0.55

Regional
= 𝑎 × (𝑆𝐷)𝑏 0.03785 2.6700 1541.1 551.00 43.8 -7.9 0.92
= 𝑎 + 𝑏 × (𝑆𝐷)2 -1.1067 0.3194 1679.6 1419.02 112.8 -14.9 0.49

= 𝑎 + 𝑏 × (𝑆𝐷) + 𝑐 × (𝑆𝐷)2 2.9345 -2.2779 0.4551 1614.6 1124.65 89.4 -8.96 0.68
Note: Bold type indicates selected model.

Table 6: Belowground biomass model coefficients and performance.

Site Model forms Model coefficients AIC SE SE% E% R2
a b c

Tabora
= 𝑎 × (𝑆𝐷)𝑏 0.0882 2.1386 222.8 87.69 44.05 -13.59 0.86
= 𝑎 + 𝑏 × (𝑆𝐷)2 -10.1727 0.1590 228.2 90.88 45.65 -13.31 0.85

= 𝑎 + 𝑏 × (𝑆𝐷) + 𝑐 × (𝑆𝐷)2 -5.8520 -0.3781 0.1651 230.2 89.98 45.2 -13.31 0.85

Manyara
= 𝑎 × (𝑆𝐷)𝑏 0.1434 2.0144 199.6 122.52 39.72 -8.36 0.78
= 𝑎 + 𝑏 × (𝑆𝐷)2 0.7040 0.1546 199.0 122.12 39.59 -9.27 0.79
= 𝑎 + 𝑏 × (𝑆𝐷) + (𝑆𝐷)2 -8.9545 1.9007 0.0945 196.2 141.96 46.02 -3.18 0.71

Lindi
= 𝑎 × (𝑆𝐷)𝑏 0.08147 2.1896 211.2 180.71 37.18 -13.42 0.89
= 𝑎 + 𝑏 × (𝑆𝐷)2 0.1553 0.1454 212.6 259.78 53.45 6.15 0.77

= 𝑎 + 𝑏 × (𝑆𝐷) + 𝑐 × (𝑆𝐷)2 41.0525 -4.9379 0.25975 212.6 157.47 32.4 -10.84 0.91

Regional
= 𝑎 × (𝑆𝐷)𝑏 0.1056 2.1035 623.5 154.01 46.5 -12.2 0.86
= 𝑎 + 𝑏 × (𝑆𝐷)2 -0.8040 0.1526 624.9 164.67 49.72 -11.41 0.84

= 𝑎 + 𝑏 × (𝑆𝐷) + 𝑐 × (𝑆𝐷)2 0.9476 -0.3688 0.1631 626.5 158.98 48.0 -12.04 0.85
Note: Bold type indicates selected model.

Table 7: Evaluation of some previous developed models for estimation of tree volume/biomass.

Site Component Reference Equation E%

Tabora
AGB Mugasha et al. (2013) = 0.0739 × 𝐷2.5764 -3.9
BGB Mugasha et al. (2013) = 0.1849 × 𝐷2.0318 -2.7

Volume Mauya et al. (2014) = 0.00032 × 𝐷0.8289 2.0

Manyara
AGB Mugasha et al. (2013) = 0.1603 × 𝐷2.3396 -12.5
BGB Mugasha et al. (2013) = 0.3789 × 𝐷1.7904 -11.8

Volume Mauya et al. (2014) = 0.00005 × 𝐷1.013 1.1

Lindi
AGB Mugasha et al. (2013) = 0.0981 × 𝐷2.4897 -10.1
BGB Mugasha et al. (2013) = 0.1608 × 𝐷2.0754 -8.8

Volume Mauya et al. (2014) = 0.0001 × 𝐷0.9416 0.2

Regional
AGB Mugasha et al. (2013) = 0.1027 × 𝐷2.4798 -8.9
BGB Mugasha et al. (2013) = 0.2113 × 𝐷1.9838 -7.8

Volume Mauya et al. (2014) = 0.00016 × 𝐷2.463 -0.6
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Table 8: Performance of regional AGB, BGB, and volume models
for study sites.

Site E%
BGB AGB Volume

Manyara -8.0 -7.7 -9.1
Lindi -9.5 -10.5 -0.7
Tabora -19.4 -21.2 31.4

estimating removed volume, the most viable option is to
utilize a model with SD as sole predictor. Furthermore,
the findings show that application of regional models for
all components was limited to Manyara and Lindi where
prediction errors were not significantly different from zero.
It is not clear why prediction was poor in Tabora. However,
differences in tree allometry, especially at root collar, may
explain the difference.

4.3. Aboveground Biomass Models. Model (1) was selected in
all cases with lower AIC and E%. This goodness of fit and
flexibility of this model form have been reported by other
scholars [3, 5, 6, 22, 24]. It is apparent in most cases that
models are applied outside their modelling data. However,
modelswhich are simple (e.g.,model (1) with few coefficients)
are flexible and mostly unbiased relative to more complex
models (with large number of coefficients) which are more
specific and therefore biasedwhen applied outside their range
[28].

The selected site specific and regional models for AGB
had R2 values ranging from 0.91 to 0.93. These values are
similar to previously reported values for models developed
for miombo woodlands that utilize SD as the predictor [22]
and lowland forest in Dindili forest reserve in Morogoro that
utilize D as the predictor [29] with R2 ranging from 83%
to 89%. This implies that, for miombo woodlands, SD is
adequate to explain majority of variation in AGB, as does
D. This is further supported by residual plots, which did
not show any indication of model bias. In addition, E%
obtained from evaluation of previous model to the current
data set were similar to the E% obtained for the models
developed in the current study (Tables 5 and 7). Therefore,
the conventional approach of estimating degradation (trees
removal) by first estimating D from SD and then applying
estimated D to estimate AGB may jeopardize the estimates
accuracy more than using SD directly as suggested in this
study.

4.4. Belowground Biomass Models. Model (1) for all sites and
for the regional models was selected as the preferred model
except for Manyara region. The inconsistency of model (1)
performance for Manyara region was also reported by [3]
for BGB. In comparison with R2 values reported by [3], i.e.,
R2 ranging from 0.89 to 0.94, R2 reported in this study was
relatively lower. Similarly, E% values also followed that trend.
For example, the current regional model had an E% of 12.2%
while the previous regional model using D as the predictor

had an E% of -7.8%. This suggests that not all variation in
BGB explained by D can adequately be explained by SD. In
addition, the accuracy of BGB estimates dropped when using
SD as the predictor rather than D.

There are several studies, which have modelled BGB with
SD as the explanatory variable to make a concrete com-
parison. However, [30] reported findings that are contrary
to the current findings. They found in Pinus densiflora in
Samcheok that root collar diameter had a higher correlation
with BGB than D.The fact that this study dealt with multiple
tree species growing in different environmental conditions,
i.e., soil depth, different moisture stress (climate) [30], and
topography, may explain the inconsistency between the two
studies.

5. Conclusion

Predicting volume and biomass directly from SD is useful
in situations where D is not available. This study developed
robust volume, AGB, and BGB models utilizing SD as the
predictor that can be used to estimate forest degradation
carried out through tree cutting in miombo woodlands.
These models will facilitate the addition of forest degra-
dation as a REDD+ activity in the forthcoming FREL.
It was apparent that SD was inferior to D in explaining
variation in volume and BGB but not AGB. However, the
accuracy of BGB and volume estimates emanating directly
from SD are far better than those obtained indirectly, i.e.,
volume or BGB estimates obtained from estimated D from
SD, since the latter are affected by the accumulation of
regression equation errors. For improved accuracy of ABG
and BGB and volume estimates, it is recommended that
site specific models be used. However, for areas where no
site specific models exist, application of regional models is
recommended.
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Table 9: Tree species used in modelling.

Site Tree species SD (cm)
Manyara Brachystegia microphylla 55
Manyara Brachystegia microphylla 45
Manyara Lannea schimperi 32
Manyara Julbernadia globiflora 77
Manyara Strychnos spinosa 34
Manyara Brachystegia microphylla 55
Manyara Brachystegia microphylla 51
Manyara Julbernadia globiflora 30.9
Manyara Brachystegia microphylla 53
Manyara Grewia sp. 8
Manyara Julbernadia globiflora 46
Manyara Brachystegia microphylla 10
Manyara Brachystegia microphylla 37
Manyara Vernonia exserstiflora 5
Manyara Julbernadia globiflora 36
Manyara Lannea schimperi 32
Manyara Brachystegia spiciformis 29
Manyara Brachystegia spiciformis 9.5
Manyara Brachystegia microphylla 22.7
Manyara Brucea antidysenterica 34.5
Manyara Brachystegia microphylla 78
Manyara Rhus vulgaris 2.4
Manyara Brachystegia spiciformis 40
Manyara Brachystegia microphylla 68
Manyara Julbernadia globiflora 80
Manyara Brachystegia spiciformis 32
Manyara Julbernadia globiflora 28
Manyara Julbernadia globiflora 54
Manyara Brachystegia microphylla 69
Manyara Brachystegia microphylla 67
Manyara Albizia antunesiana 63
Manyara Julbernadia globiflora 40
Manyara Grewia sp. 31.5
Manyara Julbernadia globiflora 29
Manyara Brachystegia microphylla 26.3
Manyara Brachystegia spiciformis 10.9
Manyara Brachystegia microphylla 17
Manyara Julbernadia globiflora 52
Manyara Lannea schimperi 25.7
Manyara Brucea antidysenterica 16
Lindi Pterocarpus angolensis 72
Lindi Dichrostachys sp. 18
Lindi Lonchocarpus laxiflorus 11
Lindi Pterocarpus angolensis 37
Lindi Deinbollia borbonica 18
Lindi Pterocarpus angolensis 32
Lindi Pterocarpus angolensis 41.7
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Table 9: Continued.

Site Tree species SD (cm)
Lindi Pterocarpus angolensis 60
Lindi Pterocarpus angolensis 28.1
Lindi Pterocarpus angolensis 54
Lindi Pterocarpus angolensis 29.8
Lindi Brachystegia boehmii 29.2
Lindi Julbernadia globiflora 46.5
Lindi Zanha africana 27.5
Lindi Pterocarpus angolensis 16.7
Lindi Brachystegia spiciformis 71
Lindi Ficus natalensis 11.5
Lindi Sterculia appendiculata 65.2
Lindi Brachystegia boehmii 29
Lindi Brachystegia spiciformis 82
Lindi Pseudolachnostylis maprouneifolia 41
Lindi Vangueria acutiloba 12
Lindi Lonchocarpus bussei 6.2
Lindi Sterculia appendiculata 33
Lindi Pseudolachnostylis maprouneifolia 24.2
Lindi Bridelia scleroneura 65
Lindi Brachystegia spiciformis 25
Lindi Cordyla africana 54
Lindi Afzelia quanzensis 48
Lindi Diplorhynchus condylocarpon 29
Lindi Deinbollia borbonica 32
Lindi Ficus natalensis 34.2
Lindi Lonchocarpus laxiflorus 2.4
Lindi Deinbollia borbonica 1.9
Lindi Hugonia castaneifolia 30.2
Lindi Julbernadia globiflora 54
Lindi Deinbollia borbonica 86
Lindi Afzelia quanzensis 39
Lindi Annona senegalensis 18.2
Lindi Brachystegia spiciformis 114
Lindi Brachystegia spiciformis 98
Lindi Deinbollia borbonica 19
Lindi Combretum apiculatum 24.2
Lindi Dodonaea viscosa 80
Lindi Lonchocarpus bussei 10.2
Lindi Brachystegia spiciformis 43
Lindi Julbernadia globiflora 4.5
Tabora Acacia robusta 41.5
Tabora Terminalia sericea 34
Tabora Afzelia quanzensis 31
Tabora Combretum zeyheri 25
Tabora Combretum molle 12.5
Tabora Pericopsis angolensis 92
Tabora Isoberlinia globiflora 82.8
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Table 9: Continued.

Site Tree species SD (cm)
Tabora Bridelia scleroneura 51
Tabora Schrebera koiloneura 22
Tabora Combretum zeyheri 13
Tabora Brachystegia boehmii 55.3
Tabora Lannea amaniensis 27
Tabora Lannea schimperi 28
Tabora Unknown 29
Tabora Brachystegia boehmii 70
Tabora Pterocarpus angolensis 32.7
Tabora Brachystegia boehmii 51.7
Tabora Albizia antunesiana 45.9
Tabora Brachystegia spiciformis 102
Tabora Brachystegia spiciformis 89
Tabora Dalbergia melanoxylon 17.2
Tabora Screrocaria birrea 36
Tabora Pericopsis angolensis 36.5
Tabora Psorospermum febrifugum 3.8
Tabora Antiaris toxicaria 5.5
Tabora Tamarindus indica 4.3
Tabora Brachystegia spiciformis 77
Tabora Lonchocarpus bussei 17
Tabora Cordyla africana 1.8
Tabora Garcinia sp. 19
Tabora Dalbergia melanoxylon 12
Tabora Swartzia madagascariensis 46
Tabora Erythrophleum africanum 25
Tabora Bridelia scleroneura 55
Tabora Kigelia africana 39
Tabora Combretum zeyheri 25
Tabora Strychnos pungens 6.5
Tabora Brachystegia spiciformis 60
Tabora Xeroderris stuhlmannii 35
Tabora Dichrostachys glomerata 34
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