
Journal of Information Security, 2023, 14, 1-15
https://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2023.141001 Nov. 30, 2022 1 Journal of Information Security

Secure Web Application Technologies
Implementation through Hardening Security
Headers Using Automated Threat Modelling
Techniques

Maduhu Mshangi Mlyatu1*, Camilius Sanga2

1NECTA, Dar es Salaam, Tanzania
2Sokoine University of Agriculture, Morogoro, Tanzania

Abstract
This paper investigates whether security headers are enforced to mitigate cy-
ber-attacks in web-based systems in cyberspace. The security headers examined
include X-Content-Type-Options, X-Frame-Options, Strict-Transport-Security,
Referrer-Policy, Content-Security-Policy, and Permissions-Policy. The study
employed a controlled experiment using a security header analysis tool. The
web-based applications (websites) were analyzed to determine whether secu-
rity headers have been correctly implemented. The experiment was iterated
for 100 universities in Africa which are ranked high. The purposive sampling
technique was employed to understand the status quo of the security headers
implementations. The results revealed that 70% of the web-based applications
in Africa have not enforced security headers in web-based applications. The
study proposes a secure system architecture design for addressing web-based
applications’ misconfiguration and insecure design. It presents security tech-
niques for securing web-based applications through hardening security head-
ers using automated threat modelling techniques. Furthermore, it recom-
mends adopting the security headers in web-based applications using the
proposed secure system architecture design.

Keywords
Secure Web Applications, Security Headers, Systems Security, Secure Web
Architecture Design

1. Introduction

Security headers adoption and implementation have raised attention on how they

How to cite this paper: Mlyatu, M.M. and
Sanga, C. (2023) Secure Web Application
Technologies Implementation through Har-
dening Security Headers Using Automated
Threat Modelling Techniques. Journal of
Information Security, 14, 1-15.
https://doi.org/10.4236/jis.2023.141001

Received: September 25, 2022
Accepted: November 27, 2022
Published: November 30, 2022

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2023.141001
https://www.scirp.org/
https://doi.org/10.4236/jis.2023.141001
http://creativecommons.org/licenses/by/4.0/

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 2 Journal of Information Security

are fused in web-based systems security design. Its enforcement in combination
with security web applications technologies’ best practices [1] during system de-
sign has not been given attention. Security threats and cyber attacks are accelerated
by insecure design and security misconfiguration [2] of web-based applications.
Security controls are missing or ineffective security controls [3] [4] [5] are de-
fined during the system development lifecycle. Design flaws (vulnerabilities) are
introduced [6] by insecure design which cannot be fixed by correct configura-
tions or perfect implementations of the system [7]. The analysis of business risks
and threats is not taken into account during system design and its systems de-
velopment life cycle in general. Business profiling is overlooked; business profil-
ing is not carried out, and security concern is an afterthought during the system
development life cycle [4]. Perfect implementation and security configuration are
not given proper attention during the systems development life cycle. One of the
security designs and implementations which is overlooked is the correct configu-
rations of security headers [8] [9] in web-based applications.

Security precautions are not defined in security header response parameters in
web-based systems. This results in security holes/weaknesses or threats to web-
based systems. These vulnerabilities can be eliminated, minimized, or corrected
by implementing security headers [5] in web-based systems. This involves con-
figuring and setting correct security header responses in web-based systems in-
frastructure. It provides another security tier layer [3] by helping to minimize or
eliminate intrusions and security vulnerabilities and threats in web-based sys-
tems. Whenever a browser sends requests for a page from a web server, the serv-
er responds with the content along with HTTP security response headers [10].
Among the security headers in web-based applications are X-Content-Type-
Options, X-Frame-Options, Strict-Transport-Security, Referrer-Policy, Content-
Security-Policy, and Permissions-Policy. To enhance the security of web-based
applications, you should correctly configure these security headers. This is achieved
through defining parameters or handling communication web-based sessions
over HTTPS, or setting and defining web-based content which is loaded by Ja-
vaScript. Correct configurations in these security headers are always forgotten or
incorrectly configured. This results in a misconfigured information system and a
vulnerable system to cyber-attacks. Security misconfiguration creates security
vulnerabilities, dangerous gaps, or mistakes that open the systems to cyberat-
tacks. According to the OWASP top 10 [2], this type of misconfiguration is among
the top risks in the list of critical web application security risks. The misconfi-
gured systems are vulnerable if are missing appropriate security hardening in any
part of the information systems infrastructure (such as web-server, database level,
operating system, network, etc.) or improperly or incorrectly configured permis-
sions or privileges of services.

1.1. Problem Statement

Web-based applications are developed without incorporating security headers

https://doi.org/10.4236/jis.2023.141001

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 3 Journal of Information Security

during system design; leaving the system vulnerable to attacks. Injection flaws
(such as cross-site scripting, and SQL injections) are introduced during system
design; cannot be fixed during systems implementations. The security controls
that are not defined during system design leave the system vulnerable to cy-
ber-attacks. The insecure design is contributed by ineffective or lack of business
profiling using automatic threat modelling tools during the systems develop-
ment lifecycle. This led to the failure to determine the optimal level of system
security design required to withstand various cyber-attacks. The insecure design
gap is widened by misconfigurations of the secure web applications technologies’
best practices such as hardening security headers in information systems. It in-
troduces security holes, dangerous gaps, or mistakes that leave the system open
to cyber attacks.

1.2. Objective of Study

This study aims to investigate the security headers implementations landscape in
web-based information systems in Africa’s top 100 Universities/Colleges, and
proposes a secure web-based system architecture design using threat modelling
techniques.

2. Related Work

Security headers introduce another additional layer of security for preventing
cyber-attacks such as cross-site scripting [6], click-jacking; session hi-jacking.
Among these securities, headers are X-XSS security header, Content-Security-
Policy, X-Frame-Options, and Strict Transport Security header (HSTS). Various
research is still going on how to adopt security headers as an additional security
layer against cyber attacks [10] [11]. The debate has been on how to configure
them for maximum security. Previous studies have found that some security
headers should be disabled (removed) [2]. Other researchers are arguing that
disabling or removing some security headers and reverting to old configurations
introduces risks. Thus, some browser developers do not have a plan for imple-
menting them [11] [12]. One of the security headers that have raised debates is
X-XSS protection [12].

X-XSS protection security header is responsible for protecting against cy-
ber-attacks such as Cross-Site Scripting attacks [11] [13]. The optimal configura-
tion for X-XSS is the protection header has changed from blocking (X-XSS au-
ditor has been removed in modern browsers like Chrome, and Edge); other
browsers like Firefox have not implemented X-XSS protection. There is a contra-
dictory idea of whether to implement them or not; Chrome is reverting X-XSS
protection to filter mode. Researchers are arguing that setting the browser to the
default filter mode introduces cyber-attack risks [12]. X-XSS-Protection: 0; Condi-
tion 0 will disable the XSS filter. X-XSS-Protection: 1; Condition 1 enables the
filter when an XSS attack is positive. X-XSS-Protection: 1; mode = block. Condi-
tion 1 is used with block mode; which blocks accessing the page with XSS mali-

https://doi.org/10.4236/jis.2023.141001

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 4 Journal of Information Security

cious codes [11]. The optimal alternative to X-XSS-Protection is to implement a
Content-Security-Policy security header.

The Content Security Policy (CSP) header implements an additional layer to
prevent web-based attacks [1]; among these attacks are Cross-Site Scripting
(XSS) and code injection attacks [13]. This is achieved by employing a whitelist-
ing method that informs the browser where to fetch the images, scripts, and,
CSS. The value of CSP can be set with the following directives: default-src,
script-src, media-src, and img-src. These directives, define the sources where the
browser should load various types of resources [10]. [11] argued that for ensur-
ing the security of web-based applications, CSP should be defined as default-src
“none”; connect-src “self”; script-src “self”; img-src “self”; style-src “self”;
frame-ancestors “self”; form-action “self”. How full adoption of CSP is still ques-
tionable; web applications are vulnerable to cyber-attacks due to failure to im-
plement CSP and other security headers (such as X-Frame-Options).

The X-Frame-Options HTTP response header is used to indicate if a browser
is permitted to execute a page [8] in a “frame”, “iframe” or “object” HTML tag.
Sites and applications can use this to dodge clickjacking attacks, by ensuring
their content cannot be embedded into other sites [10]. A clickjacking attack is
an interactive interface-based user tricking attack. The user’s minds set are ma-
nipulated to click on the hidden web application (links, action icons, or con-
tents) using embedding techniques such as iframe. They are logically forced to
transact in snare-based web applications rather than the required ones. Click-
jacking attacks are an increasing threat to applications due to the failure to im-
plement and correctly configure the X-Frame-Options security header. Click-
jacking can lead to loss of confidentiality and disclosure of users “private sensi-
tive data [1] [3] [14]. It can compromise users’ e-mail, webcam cameras, and us-
ers’ devices” audio speakers and; in turn, steal sensitive information [2] [14].
The X-Frame-Options should be set to deny or same-origin. This allows only the
resources that are in the set of the same-origin policy to the frame of the original
resources to be accessible by users of the web application [11]. The directive
when set to the value of denying; rejects any resources hosted locally or in a re-
mote location for creating snare environments for tricking the users [8] [10].
The directives for X-Frame-options for some parts of the application can be set
to allow contents from a specific URL; this permits only the specified URL for
framing the given page [2]. Thus, to ensure security against cyber-attacks X-
Frame-Options and other security headers (such as the X-XSS-Protection head-
er, and X-Content-Type-Options header) should be correctly configured.

The X-Content-Type-Options header provides an option for disabling MIME-
type sniffing in web-based applications. MIME-type sniffing is the functionality
of a web browser to inspect web contents to determine the file type format for
uploaded files from users. This functionality can be misused to execute XSS attacks
[13] on the given web application. This type of sniffing attack is speculating what
content type the server response will be; instead of trusting what the header’s con-
tent type value states. The browsers can be tricked to execute malicious code such

https://doi.org/10.4236/jis.2023.141001

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 5 Journal of Information Security

as XSS resulting in controlling the web-based applications depending on the access
of the actual user of the web-based application. The MIME sniffing attacker facili-
tates an attack to gain access to the system and performs functions that can be
performed by a real user of the given compromised system. To prevent, a content
sniffing attack; the value of X-Content-Type-Options header should be confi-
gured to “nosniff” [15]. The browser will no longer “sniff” the content of the file
received; instead it will use the value from the Content-Type header. This secu-
rity header should be configured correctly in conjunction with other security
headers such as the Strict Transport Security header.

A Strict Transport Security header (HSTS) forces browsers only to be accessed
through HTTPS protocol instead of HTTP [15] [16]. If the web-based applica-
tion allows connection through HTTP before redirecting to HTTPS it can result
in man-in-the-middle attacks. This enables the attackers to intercept the com-
munications between the user browser and the server. The requests for the user
or responses from the server can be eavesdropped on by the attacker resulting in
loss of confidentiality (viewing unencrypted traffics) or integrity (modifying the
traffics). When the Strict-Transport-Security response header is configured; the
web application is only forced to use the HTTPS protocol [16]. HSTS can be
configured as Strict-Transport-Security: max-age = “expire-time”; max-age =
“expire-time”; includeSubDomains; max-age = “expire-time”; preload. The
“max-age” value is high enough to keep the website cached for the entire dura-
tion. For example for two years, it can be set as Strict-Transport-Security: max-age
= 63,072,000; includeSubDomains; preload [17].

A study by [8] argued that the increase in the number of threats requires ef-
fective enforcement of security policies from the server to the client side. Pre-
vious studies [10] [13] [18] revealed that security breaches in web applications
are the result of misconfiguration in web application infrastructure. Among
these misconfigurations are incorrect configurations and usage of security head-
ers in web application servers. One of the misconfigurations is in Content Secu-
rity Policy (CSP) header. The misconfiguration in CSP can make web applications
vulnerable to cross-sitting scripting. This can result in the loss of integrity and
confidentiality of data and information systems. The previous studies by [10]
found that CSP is used in less than 0.2% of the sites, and oftentimes incorrectly.
They also investigated other relevant security-related headers. In particular, they
found that X-XSS-Protection, X-Frame-Options, and Strict-Transport-Security
headers were implemented, respectively, in about 4.4%, 4.1%, and 1% of the
websites they analyzed. Despite the low adoption rate of HTTP security-related
headers found by [8] [10], their results show a noticeable failure in integrating
security headers during systems design. This results in the insecure design of
web-based applications.

3. Research Methods and Materials

The study employed a controlled experiment using an automated security head-
er analysis tool. The web-based applications (websites) were analyzed for wheth-

https://doi.org/10.4236/jis.2023.141001

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 6 Journal of Information Security

er security headers have been correctly implemented. The experiment was ite-
rated for 100 universities in Africa [19] which are ranked high. The sample size
consisted of 100 universities that have been ranked high.

3.1. Sampling Techniques

The study sample was selected using purposive sampling. The purposive sam-
pling technique was employed to get a depth understanding [20] of the status
quo of the security headers implementations. The sample frame comprised 100
universities in Africa universities ranked high including universities from Tan-
zania which are accredited by TCU. The purposive sample frame comprised two
strata; one stratum comprised 70 top-ranked African universities and 30 from
Tanzania accredited by TCU [21]. The two strata were combined to form a sam-
ple frame size of 100 ranked high universities in Africa.

3.2. Data Analysis Techniques

The data analysis was done using a controlled experiment that involved the
analysis of web-based applications/websites for 100 top-ranked universities in
Africa. The analyzed HTTP response headers and rated web-based systems were
rated into F, E, D, C, B, A and A+; where F is the lowest; and A+ is the highest.
The score rating of F means that an institution has not implemented security
headers in the given system; E to B means that an institution has implemented
some of the security headers in the given web-based application/website. Score A
or A+ means that institution has implemented most of the required security
headers. A security rating score of D to F implies that a given website/web-based
application is open to cyber-attacks such as cross-site scripting, SQL injections,
and session hijacking.

3.3. Experiment for Evaluation Security of Web-Based
Applications

3.3.1. Preparation of Experiment
The following materials were prepared for conducting the controlled experiment
for:

1) List of web-based applications/websites for institutions in Africa;
2) Laptop with Intel Core i7 processor, 2.3 GHz, 16 GB RAM, 64-bit proces-

sor, Windows 10 Pro. with Internet connectivity;
3) Security headers analysis tool [22].

3.3.2. The Objective of the Experiment
The experiment aimed to evaluate the security of web-based applications/websites
using a security header security analysis tool; a case study of higher learning in-
stitutions. The top 100 ranked universities in Africa were considered for this
study.

3.3.3. Condition of the Experiment
The study analyzed security headers for a given website/web application to deter-

https://doi.org/10.4236/jis.2023.141001

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 7 Journal of Information Security

mine whether security headers have been implemented or not. The security headers
responses for Strict-Transport-Security Referrer-Policy, X-Frame-Options, Con-
tent-Security-Policy, Permissions-Policy, and X-Content-Type-Options security
headers were recorded.

3.3.4. Conducting the Experiment
The given website or web application was analyzed to determine the security
level and readiness implementations of security headers. The experiment was
executed in circular fashion iterations for 100 universities. The results are pre-
sented in table form for each security header employed in the experiment. The
results are presented in section 4.

4. Results and Discussions

This section presents results findings for analysis of security in web-based appli-
cations for the top 100 universities, colleges, and higher learning institutions in
Africa. The results and their discussions are presented for 6 security headers;
namely: X-Content-Type-Options, X-Frame-Options, Strict-Transport-Security,
Referrer-Policy, Content-Security-Policy, and Permissions-Policy as follows.

4.1. X-Content-Type-Options

The results for security header analysis of misconfigurations of security header:
X-Content-Type-Options were carried out for 100 top-level universities in Afri-
ca. The results revealed that 70% of the web-based applications in Africa have
not been correctly configured. The content-Type-Options security header is
shown in Table 1. Its correct configuration helps to prevent sniffing of the MIME
type for web-based applications through the browser. MIME stands for Mul-
ti-purpose Internet Mail Extensions. MIME types are means of determining file
types in web-based applications used by web browsers while communicating
with the server hosting the application.

MIME sniffing is used by some web to examine the content of a particular as-
set. This can cause security risks by allowing attackers to send an XSS (Cross-Site
Scripting) attack. To stop this vulnerability set X-Content-Type-Options: nosniff
in the web-server configuration file. This will force the browser to disable MIME
sniffing and stop analyzing MIME type) and use the correct MIME type which is
sent by the server hosting the application.

4.2. X-Frame-Options

The results revealed that 70% of the web-based applications in Africa have not

Table 1. Compliance for -content-type-options security header.

X-Content-Type-Options %

No 70

Yes 30

https://doi.org/10.4236/jis.2023.141001

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 8 Journal of Information Security

correctly configured the X-Frame Options security header as shown in Table 2.

4.3. Strict-Transport-Security

The results revealed that 90% of the web-based applications in Africa (Tanzania
inclusive) have not correctly configured the X-Frame Options security header as
shown in Table 3. Thus, 10% of web-based applications have been configured
with the Strict-Transport-Security option. The risks involve intercepting en-
crypted unencrypted traffic requests during the http redirect to HTTPS by prohi-
biting loading http requests. It forces all requests to HTTPS eliminating the chance
of intercepting or redirecting the original web request to malicious web applica-
tions. When it is correctly set; it mitigates man-in-the-middle cyber-attacks (such
as downgrade cyber-attacks; cookie hijacking attacks). The setting checked is
Strict-Transport-Security: max_age = “expire time in seconds”. This configura-
tion is done on the web server; for example, Strict-Transport-Security “max-age
= 93,084,000; includeSubdomains”.

4.4. Referrer-Policy

The results revealed that 96% of the web-based applications in Africa (Tanzania
inclusive) have not correctly configured the X-Frame Options security header as
shown in Table 4. Thus, 4% of web-based applications have been configured
with Referred Policy security header option.

4.5. Content-Security-Policy

The results revealed that 96% of the web-based applications in Africa (Tanzania
inclusive) have not correctly configured the content security policy security
header as shown in Table 5. Thus, 4% of web-based applications have been

Table 2. Compliance for X-frame options.

X-Frame-Options %

No 70

Yes 30

Table 3. Compliance with strict-transport-security.

Strict-Transport-Security %

No 90

Yes 10

Table 4. Compliance with referred policy.

A Referrer Policy %

No 96

Yes 4

https://doi.org/10.4236/jis.2023.141001

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 9 Journal of Information Security

Table 5. Compliance with content security policy.

Content-Security-Policy %

No 96

Yes 4

Table 6. Compliance with permission policy.

Permissions Policy %

No 100

Yes 0

configured with a content security policy security header.

4.6. Permissions-Policy

The results revealed that 100% of the web-based applications in Africa (Tanzania
inclusive) have not correctly configured the content security policy security
header as shown in Table 6. Thus, this depicts the permissions policy that has
not been adopted in Africa (Tanzania inclusive) as one security header for im-
proving the security of data and information in web-based applications.

5. Proposed Secure Web-Based Architecture Design

The study proposes a secure web-based architecture design; it comprises of se-
cure web browser (for the clients), a secure web server, and threat modelling au-
tomatic system integration as shown in Figure 1. The secure web-based archi-
tecture design uses a structured business process to identify security require-
ments. It analyzes vulnerabilities and threats through the business process to es-
tablish security requirements [23]. It uses a process flow diagram and process
map to visualize users’ systems interactions by portraying the web-based appli-
cations’ use cases systems interactions such as how the user is identified and au-
thenticated securely. It includes various technical controls that make up the use
case: forms, cookies, sessions, or other coding elements/controls building up the
given use case for the particular web-based applications and their communica-
tions boundaries. The web server is hardened by correctly configuring the secu-
rity headers. Among these securities, headers are X-XSS protection, permission
policy, referrer policy, x-content-type option, strict transport security, and
x-frame options security header.

The descriptions of components of secure web-based architecture design are
as follows:

1) Security threat modelling
This assists to highlight design faults that leave the systems vulnerable to cy-

ber-attacks. Among these security threat modelling frameworks/models are
STRIDE, PASTA, TRIKE, VAST, DRED, and OTAVE. The steps in security
threats modelling for secure web-based design are: step 1-Diagram the application:

https://doi.org/10.4236/jis.2023.141001

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 10 Journal of Information Security

Figure 1. Secure web architecture design.

break down the system into components and visualize using process flows
showing interactions, actors, and protocols involved. Step 2: identify the assets to
be protected. Step 3: identify the various threats affecting each identified asset
based on system components. Step 4: assess risks: business risks profiling; risks
are defined based on the threats affecting assets for the information system. Step
5: mitigate the threats/risks: the risks are mitigated throughout the system de-
velopment lifecycle based on business risk profiling; this results in a secure sys-
tem design architecture. Step 6: validate the threat model: by using automated
tools [24] [25]; the system is validated if the identified threats/risks have been
mitigated to an acceptable optimal level. If not, steps one to five is repeated and
iterated until a secure system design is achieved based on security requirements.

2) Security requirements and security controls
Define security controls [3] for ensuring confidentiality, integrity, availability,

https://doi.org/10.4236/jis.2023.141001

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 11 Journal of Information Security

and non-repudiation security requirements based on the threat modelling analy-
sis. These security controls are subjected to threat modelling by mitigating the
identified risks/threats by hardening the given web-based information system.

3) Harden system security
This involves hardening the information system based on the defined security

controls through threat modelling. Security headers and other security controls
are correctly configured according to security requirements in an iterative fa-
shion until the secure system’s optimal level is reached.

4) Security headers configuration
The configurations of security headers are based on security requirements for

the given web-based application; its description is as follows.
a) X-content-Type-option
{X-Content-Type-Options: nosniff}
The X-Content-Type-Options should be set to “nosniff to mitigate MIME

sniffing in the client web browser. This mitigates the exploitation of data in re-
sponse to requests from the web server while clients access resources from the
web server. Its exact syntax slightly varies from one operating system’s distribu-
tion to another.

b) X-Frame-Options
The X-Frame-Options security header is used to indicate whether or not a

web-based application accessed via the browser by the client should be allowed
to render a web page in a “frame” or when “iframe” is employed. Web applications
use this security header to protect against Clickjacking attacks [18]; it ensures that
the contents are not embedded into other web pages. X-Frame-Options security
header has three options values which can be set: DENY, SAMEORIGIN, or
ALLOW-FROM URI. DENY: stops any web-based domain application from en-
closing the content; this is recommended setting for mitigating cyber-attacks such
as clickjacking attacks [18] [26]. SAMEORIGIN allows only the current web ap-
plication to frame its content. ALLOW-FROM URL: permits the specified “URL”
to frame the defined URL. Syntax: {X-Frame-Options: DENY; X-Frame-Options:
SAMEORIGIN}

c) Strict-Transport-Security
HTTP Strict transport security header (HSTS) forces the web-based applica-

tion to be accessible only through HTTPS connections [16]. HSTS addresses
passive attackers, active attackers in the network, and imperfect web developers
(such minimal requirements gathered; minimal system architecture design as
users of the system do not know what they want initially until developing a pro-
totype for them to see). The passive attacks addressed by HSTS include network
traffic analysis (using tools such as Wireshark), eavesdropping attacks (exploit-
ing Wi-Fi networks), footprint attacks (collecting information about the net-
work, and systems using tools such as search engines, google hacking, social en-
gineering techniques). HSTS attempts to address man-in-the-middle attacks
through invalid or expired certificates. HSTS does prevent phishing and malware
attacks which can be achieved through creating awareness among employees

https://doi.org/10.4236/jis.2023.141001

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 12 Journal of Information Security

about the danger; limiting sensitive information; disable directory listing.
Syntax:
Strict-Transport-Security: max-age=<expire-time>
Strict-Transport-Security: max-age=<expire-time>; includeSubDomains
Strict-Transport-Security: max-age=<expire-time>; preload
For example:
{Header set Strict-Transport-Security: max-age = 31,536,000; includeSubDo-

mains; preload}
max-age = “expire-time”: The time (in seconds) the browser should remember

the web-based application is accessible through HTTPS only.
includeSubdomains: this is the option; when is set it implies that this rule ap-

plies to all the domain and their subdomains for a web-based application.
Preload (option): This directive enables the owner of the web-based applica-

tion to directly preload their domains and their subdomains. It leads to privacy
violations of cookie values; login cookies are leaked. Preloading has some usabil-
ity limitations: removing subdomains added in error takes time as you should
wait for removal to complete its propagation; changing the max-age directive is
possible after the original specified maximum age time expires; some systems
use only http; when all sub-domains are forced to HTTPS, it can cause usability
challenges.

d) Referrer-Policy: {Keywords: *, none, self, hosts}
The Referrer-Policy security header controls the amount of referrer informa-

tion which are sent through the Referrer-Policy security header with each re-
quest in web-based applications.

Referrer-Policy: strict-origin-when-cross-origin
e) X-XSS-Protection: {Header set X-XSS-Protection “1; mode = block”}
X-XSS protection security header is protecting web-based applications against

cyber-attacks such as Cross-Site Scripting attacks. The optimal configuration for
the X-XSS protection header has changed from blocking (X-XSS auditor has
been removed in modern browsers like Chrome, and Edge); other browsers like
Firefox have not implemented X-XSS protection.

Syntax: {
X-XSS-Protection: 0; X-XSS-Protection: 1; X-XSS-Protection: 1; mode=block;
X-XSS-Protection: 1; report=<reporting-uri>}
f) Permissions-Policy
The referrer (or “referrer”) header is sent to a server when you visit a website

and were previously on another website. The target site can use that header to
see where you came from.

Syntax:
{Referrer-Policy: no-referrer
Referrer-Policy: no-referrer-when-downgrade
Referrer-Policy: origin
Referrer-Policy: origin-when-cross-origin
Referrer-Policy: same-origin

https://doi.org/10.4236/jis.2023.141001

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 13 Journal of Information Security

Referrer-Policy: strict-origin
Referrer-Policy: strict-origin-when-cross-origin
Referrer-Policy: unsafe-URL

}
no-referrer: The Referer header is excluded: sent requests do not include any

referrer information.
no-referrer-when-downgrade: Send the origin, path, and query string in Re-

ferer when the protocol security level stays the same or improves (http→hhtp;
http→https; https→https). Referer headers are not sent to the less secure end-
point for web-based requests (https→http; https→file).

The descriptions of these descriptive:
origin: Send only the origin in the Referer header. For example, a document at

https://example.com/page.html will send the referrer to https://example.com/.
origin-when-cross-origin: When performing a same-origin request to the

same protocol level (HTTP → HTTP, HTTPS → HTTPS), send the origin, path,
and query string. Send only the origin for cross-origin requests and requests to
less secure destinations (HTTPS → HTTP).

same-origin: Send the origin, path, and query string for same-origin requests.
Don’t send the Referer header for cross-origin requests.

strict-origin: Send only the origin when the protocol security level stays the
same (HTTPS → HTTPS). Don’t send the Referer header to less secure destina-
tions (HTTPS → HTTP).

strict-origin-when-cross-origin (default): Send the origin, path, and query
string when performing a same-origin request. For cross-origin requests send
the origin (only) when the protocol security level stays the same (HTTPS →
HTTPS). Don’t send the Referer header to less secure destinations (HTTPS →
HTTP).

For enhancing security, the recommended optimal configuration for Referer
header-policy security header is set as Referrer-Policy: strict-origin-when-cross-
origin. It tells the referrer header to not send referrer information to any user
who visits another server.

6. Conclusion and Recommendations

The findings reveal that security headers in web-based systems are not taken into
consideration during the systems development life cycle. This has been shown in
the analysis survey of web-based applications in the top 100 websites of universities
in Africa (Tanzania inclusive). The security headers included in this survey analysis
using a web-based security header analysis tool are X-Content-Type-Options,
X-Frame-Options, Strict-Transport-Security, Referrer-Policy, Content-Security-
Policy, and Permissions-Policy. The results revealed that most of the web-based
systems in cyberspace have not been correctly configured with the required secu-
rity header configurations. The study found that 70% to 100% of the web-based
applications in Africa have not been correctly configured with the required secu-

https://doi.org/10.4236/jis.2023.141001
https://example.com/page.html
https://example.com/

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 14 Journal of Information Security

rity headers. This has accelerated cyber-attacks (such as cross-site scripting and
SQL injection attacks) on information systems. For enhancing security in web-based
systems, the study recommends the adoption and correct configuration of the
security headers in web-based systems. Web-based protocols should be enhanced
to automatically check the minimum enforcement of these security headers.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] SANS (2022) Securing Web Application Technologies [SWAT] Checklist.

https://www.sans.org/cloud-security/securing-web-application-technologies

[2] OWASP (2021) OWASP Secure Headers Project.
https://owasp.org/www-project-secure-headers

[3] Mshangi, M., Nfuka, E.N. and Sanga, C. (2017) An Innovative Soft Design Science
Methodology for Improving Development of a Secure Information System in Tan-
zania Using Multi-Layered Approach. Journal of Information Security, 8, 141-165.
https://doi.org/10.4236/jis.2017.83010

[4] Mshangi, M., Sanga, C. and Ngemera Nfuka, E. (2016) Designing Secure Web and
Mobile-Based Information System for Dissemination of Students’ Examination Re-
sults: The Suitability of Soft Design Science Methodology. International Journal of
Computing and ICT Research, 10, 10-40.
https://www.researchgate.net/publication/313469379

[5] CISA (2022) Weak Security Controls and Practices Routinely Exploited for Initial
Access.
https://www.cisa.gov/uscert/ncas/current-activity/2022/05/17/weak-security-control
s-and-practices-routinely-exploited-initial

[6] Weamie, S.J.Y. (2022) Cross-Site Scripting Attacks and Defensive Techniques: A
Comprehensive Survey. International Journal of Communications, Network and
System Sciences, 15, 126-148. https://doi.org/10.4236/ijcns.2022.158010

[7] NIST (2020) National Institute of Standards and Technology Special Publication
800-53, Revision 5: Security and Privacy Controls for Information Systems and Or-
ganizations. NIST Special Publication, NIST-800-5 (Revision 5), 1-465.

[8] Buchanan, W.J., Helme, S. and Woodward, A. (2018) Analysis of the Adoption of
Security Headers in HTTP. IET Information Security, 12, 118-126.
https://doi.org/10.1049/iet-ifs.2016.0621

[9] Petkova, L. and Technologies, I. (2019) HTTP Security Headers. Knowledge—
International Journal, 30, 701-706. https://doi.org/10.35120/kij3003701p

[10] Lavrenovs, A. and Melón, F.J.R. (2018) HTTP Security Headers Analysis of Top
One Million Websites. International Conference on Cyber Conflict, CYCON, Tal-
linn, 29 May-1 June 2018, 345-370. https://doi.org/10.23919/CYCON.2018.8405025

[11] Mozilla (2021) Content Security Policy (CSP).
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

[12] Braun, F. (2019) Chrome Switching the XSSAuditor to Filter Mode Re-Enables the
Old Attack. https://frederik-braun.com/xssauditor-bad.html

[13] Dolnak, I. (2017) Content Security Policy (CSP) as Countermeasure to Cross-Site

https://doi.org/10.4236/jis.2023.141001
https://www.sans.org/cloud-security/securing-web-application-technologies
https://owasp.org/www-project-secure-headers
https://doi.org/10.4236/jis.2017.83010
https://www.researchgate.net/publication/313469379
https://www.cisa.gov/uscert/ncas/current-activity/2022/05/17/weak-security-controls-and-practices-routinely-exploited-initial
https://www.cisa.gov/uscert/ncas/current-activity/2022/05/17/weak-security-controls-and-practices-routinely-exploited-initial
https://doi.org/10.4236/ijcns.2022.158010
https://doi.org/10.1049/iet-ifs.2016.0621
https://doi.org/10.35120/kij3003701p
https://doi.org/10.23919/CYCON.2018.8405025
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://frederik-braun.com/xssauditor-bad.html

M. M. Mlyatu, C. Sanga

DOI: 10.4236/jis.2023.141001 15 Journal of Information Security

Scripting (XSS) Attacks. ICETA 2017—15th IEEE International Conference on Emerg-
ing eLearning Technologies and Applications, Proceedings, Stary Smokovec, 26-27
October 2017, 1-4. https://doi.org/10.1109/ICETA.2017.8102476

[14] Wu, L., Brandt, B., Du, X. and Ji, B. (2017) Analysis of Clickjacking Attacks and an
Effective Defense Scheme for Android Devices. 2016 IEEE Conference on Commu-
nications and Network Security, CNS 2016, Philadelphia, 17-19 October 2016, 55-63.
https://doi.org/10.1109/CNS.2016.7860470

[15] MDN (2022) X-Content-Type-Options.
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-O
ptions

[16] Jackson, C. and Barth, A. (2012) HTTP Strict Transport Security (HSTS). Internet
Engineering Task Force (IETF), 1-46.
https://www.rfc-editor.org/rfc/pdfrfc/rfc6797.txt.pdf

[17] Albeniz, Z., Morgenroth, S. and Yildirimkaya, U. (2018) X-Frame-Options Con-
tent-Security-Policy (CSP) HTTP Strict Transport Security (HSTS) Public Key Pin-
ning (PKP). The Most Commonly Used HTTP Security Headers and How They
Work. Netsparker.

[18] Kalim, A., Jha, C.K., Tomar, D.S. and Sahu, D.R. (2021) Novel Detection Technique
for Framejacking Vulnerabilities in Web Applications. 2021 2nd International Con-
ference on Computation, Automation and Knowledge Management (ICCAKM),
Dubai, 19-21 January 2021, 1-6.
https://doi.org/10.1109/ICCAKM50778.2021.9357764

[19] WEBOMETRICS (2022) Ranking Web of Universities.
https://www.webometrics.info/en/Africa

[20] Cohen, L., Manion, L. and Morrison, K. (2018) Research Methods in Education. 8th
Edition, Routledge, Taylor & Francis Group, London.

[21] TCU (2022) University Institutions Operating in Tanzania.
https://www.tcu.go.tz/sites/default/files/Bachelor-Degree-Admission-Guidebook-Di
rect-Entry_06.06.2022.pdf

[22] Securityheaders.com (2022) Security Headers. https://securityheaders.com

[23] Conklin, L. (2022) Threat Modeling Process.
https://owasp.org/www-community/Threat_Modeling_Process

[24] Goodwin, M. (2020) OWASP Threat Dragon.
https://owasp.org/www-project-threat-dragon

[25] MICROSOFT (2016) Microsoft Threat Modeling Tool.
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling

[26] Rao, K.S., Jain, N., Limaje, N., Gupta, A., Jain, M. and Menezes, B. (2016) Two for
the Price of One: A Combined Browser Defense against XSS and Clickjacking. 2016
International Conference on Computing, Networking and Communications, ICNC,
Kauai, 15-18 February 2016, 1-6. https://doi.org/10.1109/ICCNC.2016.7440629

https://doi.org/10.4236/jis.2023.141001
https://doi.org/10.1109/ICETA.2017.8102476
https://doi.org/10.1109/CNS.2016.7860470
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://www.rfc-editor.org/rfc/pdfrfc/rfc6797.txt.pdf
https://doi.org/10.1109/ICCAKM50778.2021.9357764
https://www.webometrics.info/en/Africa
https://www.tcu.go.tz/sites/default/files/Bachelor-Degree-Admission-Guidebook-Direct-Entry_06.06.2022.pdf
https://www.tcu.go.tz/sites/default/files/Bachelor-Degree-Admission-Guidebook-Direct-Entry_06.06.2022.pdf
https://securityheaders.com/
https://owasp.org/www-community/Threat_Modeling_Process
https://owasp.org/www-project-threat-dragon
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://doi.org/10.1109/ICCNC.2016.7440629

	Secure Web Application Technologies Implementation through Hardening Security Headers Using Automated Threat Modelling Techniques
	Abstract
	Keywords
	1. Introduction
	1.1. Problem Statement
	1.2. Objective of Study

	2. Related Work
	3. Research Methods and Materials
	3.1. Sampling Techniques
	3.2. Data Analysis Techniques
	3.3. Experiment for Evaluation Security of Web-Based Applications
	3.3.1. Preparation of Experiment
	3.3.2. The Objective of the Experiment
	3.3.3. Condition of the Experiment
	3.3.4. Conducting the Experiment

	4. Results and Discussions
	4.1. X-Content-Type-Options
	4.2. X-Frame-Options
	4.3. Strict-Transport-Security
	4.4. Referrer-Policy
	4.5. Content-Security-Policy
	4.6. Permissions-Policy

	5. Proposed Secure Web-Based Architecture Design
	6. Conclusion and Recommendations
	Conflicts of Interest
	References

