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ABSTRACT 

 

This study was conducted to analyse the influence of environmental variables on the 

distribution of selected tree species in Chemchem River in the Manyara National Park 

under current conditions. The specific objectives were to assess the current distribution 

status, identify important environmental variables associated with the distribution and 

predict potential habitats of selected tree species in relation to environmental variables 

under current conditions. The area was stratified by elevation. Two transects in each 

elevation stratum were laid parallel to the river flow. Rectangular plots each of 0.02 ha 

were established. In each plot, trees were enumerated, identified by their scientific names 

and GPS points taken. Seven (7) environmental variables were used. Tree data was 

summarised into respective families, genera and species. Dominant tree species were 

selected based on index of dominance. All analysis were carried out in excel software. 

Prediction of the current habitats was done using Maximum Entropy Modelling (Maxent) 

software. Maxent models performed better than random, with average training and test 

AUC values of 0.8497 and 0.8577±0.0235 respectively. A total of forty five (45) tree 

species belonged to 36 genera and 21 families were found. Dominant species were Acacia 

tortilis (0.0415), Ficus sycomorus (0.0366), Acacia robusta (0.0135) and Trichilia 

emetica (0.0127). Species were distributed following the river flow with lower elevations 

inhabiting most species. The increase in elevation and temperature seasonality increased 

the probability of occurrences of most species. Significant predictive contribution of 

elevation was observed to particular species of Albizia petersiana (83.05%) and Ficus 

thoningii (75.72%). Furthermore, suitable habitats increased with increasing annual 

precipitation and temperature of the driest quarter and were predicted in the central and 

north eastern of the study area. These habitats were fragmented with some patches. Park 

management should help the communities conserve the upper areas of the river so as to 
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minimize illegal tree cut and farming in catchment areas. Furthermore, restoration and 

conservation efforts should be done targeting fragmented habitats, unsuitable habitats and 

species with small habitats. 
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CHAPTER ONE 

 

1.0 INTRODUCTION 

The relationships between species and their overall environmental variables can cause 

different spatial patterns to be observed at different scales (Pearson et al., 2004). 

Gholinejad et al. (2012) reported that the appearance of plant groups in a given area is in 

response to changes in various factors such as climatic, topographic, edaphic and biotic 

parameters. Hence, vegetation groups are reported to be determined by the combined 

effects of a whole range of ecological factors. Changes in the soil, topography and 

grazing factors for example, can lead to different vegetation responses in each area of the 

landscape (Gholinejad et al., 2012). On the other hand, it is widely accepted that the 

distributions of plants are broadly constrained by their physiological tolerances to climatic 

factors (Thuiller, 2004) mainly temperature and rainfall (Gholinejad et al., 2012). 

However, there is a wide appreciation that the effects of climate to species are best 

expressed at large by spatial scales (Willis and Whittaker, 2002).  

 

The fundamental range of tolerance of a species, which is a result of limiting variables of 

the environment, is a critical determinant of the resultant distribution pattern (Guisan and 

Thuiller, 2005). Limiting variables are typically related to climatic properties, such as 

temperature and water availability at a broad geographical scale (Feilhauer, 2012). At a 

finer scale, resource factors including nutrients, amount of light energy for plants and 

moisture level, driven by topographical variations and habitat types, are the main driving 

forces for shaping the patterns of species distribution. Additionally, natural and 

anthropogenic disturbances affect species distribution at various spatial scales (Feilhauer, 

2012).  
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On the other hand, Pearson and Dawson (2003) indicated that changing climate has a 

profound influence on species’ habitat range expansion and contraction. Habitat range 

loss for example as the result of the changing environment varies dramatically across 

species (Chitiki, 2014). Species that show minimal loss of habitat range are referred as 

wide-ranging species, confirming that wide ranges provide a buffer against environmental 

change (Jetz et al., 2007). Habitat range shifts are predicted to be more pronounced at 

higher latitudes, where temperatures are also expected to rise more than near the equator 

(Chitiki, 2014). Consequently, forests may disappear in certain areas at a faster rate than 

they can migrate or regrow in new areas (Parmesan, 2006). There has been intense focus 

on estimation of range shifts among species which has led to rapid progress in the use of 

niche modelling to predict where species are likely to move (Peterson et al., 2005; Araújo 

and Luoto, 2007 and Chitiki, 2014) given anticipated climate and land use changes from 

well-established global and regional models (Chitiki, 2014). Ecological niche modelling 

(ENM) merges known occurrence records for a species with environmental data to 

estimate species ecological requirements and potential geographic distribution patterns 

(Guisan and Thuiller, 2005). This estimation helps to narrow down sets of possible 

occurrence sites for more targeted field surveys (Menon et al., 2010). 

 

A variety of species distribution modelling methods are available to predict potential 

suitable habitat for a species (Guisan and Thuiller, 2005; Elith et al., 2006). The 

maximum entropy (Maxent) modelling (Phillips et al., 2006) in particular, has shown 

promising results (Elith et al., 2006) and performs better compared to many different 

modelling methods (Ortega-Huerta and Peterson, 2008).  Its applications range from 

estimation of species habitat ranges (Moreno et al., 2011), identification of suitable 

habitats, establishing conservation priorities and predicting range shifts under future 

climate change scenarios (Thomas et al., 2004). The model produces useful results and 
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has been worldwide successful used for modelling the distribution of two critically 

endangered Dipterocarp trees in riparian forests of Borneo (Singh, 2013). In Tanzania, 

studies using Maxent have been done. Chitiki (2014) used Maxent to predict the current 

and future potential distribution of tree species in the Eastern Arc Mountains of Tanzania. 

 

1.1 Problem Statement and Justification 

Identifying the factors that affect species’ distributions is an important unanswered issue 

in ecology (Araújo and Guisan, 2006). Distribution of dominant tree species for example, 

form the major structural and functional basis of tropical forest ecosystems and can serve 

as robust indicators of changes at the landscape scale (Kumar, 2006). However, there are 

no studies on the distribution of dominant tree species in Lake Manyara landscape, 

although several studies have reported on high degradation of species and their habitats in 

the study area (Sechambo, 2001; Thomson et al., 2004 and Kihwele et al., 2014). 

Understanding the factors influencing the distribution of dominant tree species in the 

study area may improve the knowledge on the drivers of species distribution and the 

extent to which these drivers are directly related to individual species. This information is 

essential in deciding proper management options for the studied species and their habitats 

within the study area. 

  

Environmental change has a profound influence on species’ habitat range expansion and 

contraction and varies dramatically across species (Pearson and Dawson, 2003 and 

Chitiki, 2014). The largest potential loss of habitat ranges occurs among species that have 

restricted ranges (Sillero et al., 2012). Therefore, species that already have small 

population sizes or range sizes or specialized habitat requirements, are exposed to high 

risks of extinction (Jetz et al., 2007). However, the effects of environmental change on 

species distribution particularly of plants, are poorly understood (Chitiki, 2014).                       
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In addition, no studies have been done to understand the influence of environmental 

variables on the distribution of tree species in Lake Manyara. Understanding the influence 

of environmental variables on the distribution of tree species will be fundamentally 

important for planning integrated management strategies and conservation needs for tree 

species within the study site. Furthermore, information on suitable habitats of selected 

tree species will be useful indication of which areas (habitats) within the study site may 

be important for biodiversity conservation (Platts et al., 2010).  In addition, information 

on modelling species distribution will provide useful means of commissioning future 

surveys in predicted species distribution area and hence prioritizing conservation efforts 

on the species under study. This information may be important and worthwhile to various 

ecologists within the study site, researchers and practitioners elsewhere. 

 

1.2 Objectives 

1.2.1 Overall objective 

To assess the influence of environmental variables on the distribution of selected tree 

species in Lake Manyara upper catchment, Northern Tanzania 

 

1.2.2 Specific objectives 

i. To assess the current distribution status of selected tree species in lake Manyara 

upper catchment 

ii. To identify important environmental variables associated with the distribution of 

selected tree species in lake Manyara upper catchment 

iii. To predict suitable habitats for selected tree species under current conditions 
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1.3 Research Questions 

 What is the current distribution of selected tree species in Lake Manyara Upper 

catchment? 

 Which of the selected environment variables are important for predicting 

distribution of selected tree species in Lake Manyara upper catchment? 

 What are the potential habitats for selected tree species under current conditions?
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                                                       CHAPTER TWO 

 

2.0 LITERATURE REVIEW 

2.1 Environmental Variables and Species Distribution 

Knowledge on tree species distribution may help the understanding of the fundamental 

ecological processes that are important for management (Araújo and Guisan, 2006). It is 

reported by Parmesan (2006), that the distributions of many species are determined to a 

large extent by climatic variables and hence changes in climate will modify their 

distribution and abundance. For instance, a gradual distribution of species observed over a 

large extent and at coarse resolution is likely to be controlled by climatic regulators 

(Guisan and Thuiller, 2005). Furthermore, patchy distribution of species observed over a 

smaller area and at fine resolution is more likely to result from a patchy distribution of 

resources, driven by micro-topographic variation or habitat fragmentation (Guisan and 

Thuiller, 2005). Khanum et al. (2013) reported that climate change is a significant driver 

for biodiversity loss as it may affect species’ natural distribution, cause temporal 

reproductive isolation and increase pest and disease outbreak frequencies.  Some of the 

key climatic variables that stress forest ecosystems are changes in precipitation, 

temperature and evapotranspiration (Chitiki, 2014). These variables may lead to increased 

frequencies of fires and storms, a threat to forests and forest ecosystems (Ohlemüller et 

al., 2006). In addition, Tranquillini (1979) reported that temperature and droughts are the 

main factors limiting the growth of tree species at the upper limit of their habitat range. 

Berry et al. (2002) reported with continuous future changes in climate for example, plant 

species are expected either to adapt or shift their geographical distributions in order to 

avoid habitat loss and subsequent extinction. Furthermore, it is as well expected that, 

vegetation zones for instance, may move towards higher elevations in response to 

increasing average temperatures (Iverson and Prasad, 1998). 
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2.2 Species Prediction under the Influence of Current Cconditions 

Predicting species ranges for different climates is commonly done with ‘climate envelope 

models’ (CEMs). These models use the current geographic distribution of a species to 

infer its environmental requirements (Hijmans et al., 2006). This is done based on 

species’ geographic distribution for the current, or for past or future climates. Recently, 

substantial efforts have been observed showing the response of biological systems to 

global change (Thuiller et al., 2005, McKenney, 2007). Compilation of such studies on 

the effect of projected climate change indicates that an alarming number of species may 

lose large part of their habitat range and become ‘committed to extinction’ (Thomas et al., 

2004). For example, estimates of extinction risk following range shifts have largely been 

derived from modelled projections of ‘‘climatic envelopes’’ (Sala et al., 2005). Such 

models suggest that large number of species will potentially experience dramatic decrease 

in distribution area under predicted climate change scenarios (Williams et al., 2003 and 

Thomas et al., 2004). It is further reported that the projected losses due to land use change 

alone (native habitat loss), causing habitat reduction in tropical forests and woodland, 

savannah and warm mixed forest, account for 80% of the lost species (Chazal and 

Rounsevell, 2008). Between now and 2100, it is projected that approximately 25% of 

areas currently classified as natural will be transformed into another natural land cover 

category, 16% due to climate change and 9% due to land-use conversions (Jetz et al., 

2007).  

 

2.3 Species Distribution Models (SDMs) 

The fascinating question of how plants and animals are distributed on Earth in space and 

time has a long history which has inspired many biogeographers and ecologists to seek 

explanations (Guisan and Thuiller, 2005). In the last two decades, interest in species 

distribution models (SDMs) of plants and animals has grown dramatically (Guisan and 
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Thuiller, 2005). The models have become a popular technique for calculating potential 

distribution of species for a wide variety of taxa (Jetz et al., 2007), evaluate the effects of 

climatic warming on species distribution (Araújo et al., 2006), and estimate suitable 

habitats of species in protected areas (Sillero et al., 2012). This is done by establishing 

relationships between occurrences of species and biophysical and environmental 

conditions in the study area (Kumar et al., 2009). Therefore, the models can estimate 

species’ niches across geographical space within a particular period of time. Species’ 

niches estimations is done by substituting new variables that reflect anticipated 

environmental changes into these spatial models (Botkin et al., 2007).  

 

Species distribution models (SDMs) also called bioclimatic envelope or environmental 

niche models, have been increasingly as common method for describing the influence of 

current and future climate on the distribution of species (Schrag et al., 2007). These are 

empirical models relating field observations to environmental predictor variables, based 

on statistically or theoretically derived response surfaces (Guisan and Zimmermann, 

2000). By ‘training’ a model on current species distributions and bioclimatic parameters, 

and assuming a static relationship between climate and vegetation in the future, 

predictions of future changes in distributions under various climatic regimes can be 

developed (Hannah et al., 2002). Species data can be presence, presence/absence or 

abundance observations based on random or stratified field sampling, or observations 

obtained opportunistically, such as those in natural history collections (Guisan and 

Thuiller, 2005). The most effective way to maximize the information content on species 

locality data is to apply species distribution models (SDMs) based on environmental 

characteristics (Cord et al., 2012).  
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A variety of ecological applications require data from broad spatial extents that cannot be 

collected using field-based methods (Kerr and Ostrovsky, 2013). Remote sensing data and 

techniques address these needs, which include identifying and detailing the biophysical 

characteristics of species’ habitats, predicting the distribution of species and detect natural 

and human caused change at scales ranging from individual landscapes to the entire world 

(Kerr and Ostrovsky, 2013). The technique generates a remarkable array of ecologically 

valuable measurements, including the details of habitats (land cover classification) and 

their biophysical properties (Cord et al., 2013). Furthermore, it provides the only means 

of measuring the characteristics of habitats across broad areas and detecting 

environmental changes that occur as a result of human or natural processes (Elith and 

Leathwick, 2009). Remote sensing data are now commonly used in SDM(s) since they 

provide a low cost means to map environmental changes across multiple spatial-temporal 

scales (Kerr and Ostrovsky, 2013). Although the need for remote sensing is especially 

urgent for conservation related science, satellite-based earth observations are also being 

used for basic ecological research. These data are increasingly easy to find and use (Kerr 

and Ostrovsky, 2003). However, remote sensing is fundamental for ecological and 

conservation biological applications and will play an increasingly important role in the 

future (Cord et al., 2013). 

 

2.4 Species Distribution Modelling using Maximum Entropy (Maxent) 

Maximum Entropy (Maxent) is a general purpose machine learning method with a precise 

mathematical formulation (Phillips et al., 2006). It has been found to perform best among 

many different modelling methods (Elith et al., 2006; Ortega-Huerta and Peterson, 2008), 

and may remain effective despite small sample sizes (Hernandez et al., 2006; Pearson et 

al., 2007). It is more flexible than methods such as Generalised Linear Models (GLMs) 
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and Generalised Additive Models (GAMs) and it can capture complex response curves to 

environmental gradients (Ashcroft et al., 2011). Due to its ability to produce useful results 

with a very small presence data (Singh, 2013), Tinoco et al. (2009) used Maxent to 

generate a species distribution model of the violet throated metal tail humming bird, a 

globally endangered bird species which is endemic to south-central Ecuador. The author 

modelled the distribution of the species using a limited species occurrence record (Singh 

(2013). In addition, Maxent has been also successful used in early studies. Other 

examples are such as predicting the potential distribution of ants in New Zealand (Ward, 

2007), the distribution of bats in Madagascar (Lamb et al., 2008) and the distribution of 

birds in the Andes (Young et al., 2009).  

 

Maxent is not strongly influenced by the number of environmental parameters used to 

build models because it ignores those that are non-informative, and uses regularization 

techniques to avoid over-parameterization (Phillips et al., 2006). It requires only species 

presence data and environmental variable (continuous or categorical) layers for the study 

area. However, Maxent software is in development and as a result, is sensitive to the 

number of regulations that can be placed. Despite its disadvantages, Maxent appears to 

have outperformed other presence-only data methods such as a genetic algorithm for rule 

production and envelope method (GARP) (Elith and Graham, 2009).  

 

The basic idea of Maxent is “to estimate (approximate) unknown probability distribution 

of a species” (Phillips et al., 2006) and that the approximation should have maximum 

entropy. Entropy is defined by Shanon (1948) as how much ‘choice’ is involved in the 

selection of an event”. Thus, maximum entropy refers to maximum choice. Maximum 

choice is available when there are fewer constraints (environmental layers), i.e. 

unnecessary constraints should be avoided (Phillips et al., 2006). The environmental 
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variable values at the presence localities impose constraints on the unknown distribution 

(Phillips et al., 2006). The maximum entropy approach then approximates an unknown 

distribution using the known occurrences and background points (all points/grid cell 

values in the study region) that maximizes entropy, subject to the constraints imposed by 

the known occurrences (Singh, 2013). The technique first constrains the modelled 

distribution to match certain features (environmental layers) of empirical data (training 

data) and choosing the probability condition that satisfies these constraints being as 

uniform as possible (Negga, 2007). Basically, if a pixel in the study has similar 

distribution as of the training data, then higher values are assigned and accordingly pixels 

with different distribution are assigned lower values. The result of Maxent shows a map 

where every grid has a value of 0 to 100 (if the result output format is set as cumulative) 

or 0-1 (if the result output format is selected as logistic); this represents the estimate of 

relative probability of species occurrence (Singh, 2013). 
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CHAPTER THREE 

 

3.0 MATERIALS AND METHODS 

3.1 Description of the Study Area 

The study was conducted in the Lake Manyara basin which extends approximately 

766,710 ha within Mbulu, Monduli, Ngorongoro and Babati districts (AWF, 2003).                 

The Chemchem River flowing into the Lake Manyara and which is within the Chemchem 

village adjoining the Lake Manyara national park forest was the focus for the present 

study. The study covers about 8990 ha and is located between longitude 35045’- 35050’ E 

and latitude 3025’-3035’ S (Faustine, 2008). The climate of the area is semiarid with two 

distinct rainy seasons, short rains in October to December and long rains (the long 

monsoon rains) in March to May (Rohde and Hilhorst, 2001). Additionally, the area 

receives an average rainfall of about 1000 mm per year and a mean annual temperature in 

the range of 18° C to 35° C (Faustine, 2008). Drought periods are also reported to be very 

common (Faustine, 2008). The soils vary from alkaline to non-saline-alkaline in reaction. 

In addition the soil textures of the area are clay, clay-loam, loam, loamy/sand-loam and 

sandy-loam/sandy-clay-loam (Cohen et al., 1993). Soils vary from fertile highly erodible 

volcanic material to a variety of moderate to low fertility sedimentary soil (Cohen et al., 

1993). Crop cultivation is one of the main economic activities of the people living in 

adjacent villages of the study (Rohde and Hilhorst, 2001). 

  

3.2 Study Design 

3.2.1 Sampling design 

In order to cover the whole study site and capture the variation within the area, stratified 

random sampling design was adopted. The area was stratified by elevation into two strata; 

the lower elevation (<1000m) and higher elevation between 1000m and 1800m.                    
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Two transects were laid parallel to the river flow. Since, data was to be collected within a 

riparian buffer, the distance between transects were 20 m. In each stratum, a rectangular 

plot each of 0.02 ha (20 × 10 m) was established along transects (Munishi et al., 2007).  

According to Chitiki (2014), the size of the plot used should be small in order to keep 

environmental factors and forest structure homogeneous within the plots. Transects were 

laid in such a way that they covered as much variations as possible in both lower and 

upper elevation of the river. The starting point was subjectively chosen and the distance 

between plots was 100m. Plots were laid with their long axis perpendicular to the slope to 

minimize within-plot variations and maximize between-plot variations (Munishi et al., 

2007).  

 

 

   Figure 1: Study location of the Manyara National Park 
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3.3 Data Collection 

3.3.1 Species occurrence data 

In each plot, individual trees were enumerated and identified into their scientific names. 

Global Positioning System (GPS) coordinates for each individual tree was recorded 

corresponding to where the species was found. Other information collected on the study 

site included plot location, topographic position and elevation (m). Topographic position 

was identified into two classes of lower elevation (lower stream) and higher elevation 

(upper stream). Elevation and slope for each plot were obtained using GPS. Trees species 

were identified in the field by a qualified botanist from Forestry Training Institute (FTI) 

Herbarium-Arusha. Species not identified in the field, their specimens were collected for 

further identification in the herbaria. 

 

3.3.2 Environmental layers (bioclimatic and topographical data) 

Seven (7) environmental variables were considered as potential predictors of the 

distribution for the tree species (Table 1). These variables were chosen based on their 

biological relevance to plant species distributions and also considering other habitat 

modeling studies (Kumar et al., 2006; Guisan et al., 2007; Pearson et al., 2007; Murienne 

et al., 2009 and Chitiki, 2014). Furthermore, climatic variables (Table 1), biologically 

meaningful to define the distribution of species (Murienne et al., 2009), were obtained 

from WorldClim dataset (Hijmans et al., 2005; http://wwwworldclim.org/bioclim.htm) 

based on past and current records from the period 1960-2000 and were provided as grids 

at a spatial resolution of 30 arc seconds (1 km).  

 

Four climatic gradients known to correlate well with plant distribution in the study area 

were derived from the monthly grids of bioclimatic data (Platts et al., 2013). These were 

mean annual temperature and temperature seasonality (annual range) and mean annual 

http://www.worldclim.org/bioclim.htm
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rainfall and dry season water stress (precipitation of the driest quarter). In addition, mean 

temperature of the driest quarter was also included as one of the limiting environmental 

factor to species distribution (Chitiki, 2014). Topographic variables were derived from 

Digital Elevation Model (DEM) (Kumar and Stohlgren, 2009) at 1km spatial resolution. 

As elevation is highly correlated with temperature and the latter is a more functional 

predictor of plant distribution, derived measures such as slope, aspect and topographical 

wetness index can be useful surrogates for soil mixture and micro-climate (Chitiki, 2014). 

Under this present study, only slope and elevation were computed and used as 

topographical predictor variables. 

 

Table 1: List of Environmental Predictor Variables used in Maxent Modelling 

Environmental 

Variables/Layers 

Abbreviations Description Ranges 

 

 

Climatic Variables 

mt Annual Mean Temperature  18.20 - 23.30 0C 

ts Temperature Seasonality (Annual 

range/temperature CV 

14.34 – 15.510C 

ap Annual Precipitation 579 – 943 mm 

pq Precipitation of the driest 

Quarter/Dry season water stress 

 

5 – 15 mm 

tq Mean Temperature of the Driest 

Quarter  

 

16.4 – 20.5 0C 

Topographic Variables sl Slope (degrees) 0 – 89 % 

el Elevation (degrees) 942 – 1719 m 

Note that: CV= Coefficient of Variation 

 

3.4 Data Analysis 

Spatially referenced inventory data (species occurrence records) combined with climate 

and topographic parameters (Table 1) were used to assess the distribution of selected 

dominant tree species using Remote sensing (RS), Geographical Information System 

(GIS) techniques and Maximum entropy distribution modelling approach (Phillips et al., 

2006).  
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3.4.1 Tree species occurrence data 

Tree species data were summarised into their respective families, genera and species 

using Microsoft excel software. Dominant tree species was calculated based on index of 

dominance. Ten (10) trees were selected as dominant species (Appendix 13) from the 

entire list of encountered tree species in the study site. All analysis were carried out using 

excel software. Prediction of the suitable habitats under current conditions for ten (10) 

selected dominant tree species in the study area was done using Maxent software.  

 

3.4.2 Maximum Entropy (Maxent) Modelling of Species Distribution 

3.4.2.1 Data inputs preparation to run the model (Maxent) 

All environmental variables were modified using GIS techniques into formats required by 

Maxent modelling (Phillips et al., 2006). In this study, model inputs comprised species 

occurrence data and environmental layers (Appendix 1). Since Maxent allows layers to be 

either continuous or categorical, the layers encompassed bioclimatic variables and 

topographical data which were continuous (Table 1). Species occurrence data (‘samples’ 

file trees) with longitude and latitude coordinates was converted to comma-separated 

value (csv) files in excel software for a particular modelled geographic extent. Moreover, 

all environmental layers (“grids”) in raster format were converted into ASCII format and 

modified using GIS tools (ArcGIS 9.2v software) into format required by Maxent               

(same cell size, extent or geographic bounds and projection system; e.g. geographic or 

UTM). Thus, all environmental layers were spatially projected to geographic coordinate 

system, ARC 1960 zone 37S.  

 

Using Maxent, the samples (y-variables) for this particular case, the selected ten (10) 

dominant tree species were modelled with environmental variables (x-variables) based on 

the current conditions (Appendix 1). Maxent software version 3.3.3k was used to fit the 
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models and the algorithm was run with default parameters (convergence threshold = 10-5, 

regularization multiplier = 1, maximum number of background points = 10 000); these 

default settings have been shown to achieve good performance (Phillips and Dudík, 2008 

and Chitiki, 2014). Maximum iteration value was set to 5000 (to give the model adequate 

time for convergence) and to avoid over prediction or under prediction of the 

relationships by the model (Phillips et al., 2006 and Chitiki, 2014). 

 

3.4.2.2 Model calibration and validation 

Testing or validation is required to assess the predictive performance of the model. 

Ideally an independent data set should be used for testing the model performance (Kumar 

and Stohlgren, 2009); but in many cases these data are missing. Therefore, an approach to 

manually partitioning the data randomly into ‘training’ and ‘test’ sets, was adopted, thus 

creating quasi-independent data for model testing (Guisan et al., 2003 and Kumar and 

Stohlgren, 2009). To support this approach, enough data were set aside for model 

validation and worked well.       

    

From the manually partitioned data, the model was calibrated/trained  using 75% of the 

dataset sample obtained at a given point in time and predictive accuracy of the model was 

evaluated using the 25% of the remaining data (test) for each modelled species (Araujo et 

al., 2005). This setting allowed withholding a certain percentage of the presence data to 

be used to evaluate the model’s performance at the same time avoiding bias due to 

inflated measure (overfitting) of model performance. The subdivision of data into 

separate calibration and evaluation datasets is a common practice, however, it is argued 

by Ashcroft (2011) that the practice does not result in a truly independent dataset and 

rather provides some protection against overfitting to the specific calibration data. 
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Statistical evaluation of the models were assessed based on the area under curve (AUC) 

(Cord et al., 2012) under the independent receiver operating characteristic (ROC) analysis 

(Phillips et al., 2006) involving 25% of the partitioned (test) data set. AUC is calculated 

by summing the area under the receiver operating characteristic (ROC) plot.  The AUC is 

a non-parametric statistic that is independent of threshold values and demonstrates the 

likelihood that the model is able to rank a presence record higher than a record of 

background data (Turner, 2014). The ROC graph has its x-axis the fractional predicted 

area (the total habitat area) and as its y-axis the sensitivity or the proportion of 

occurrences the habitat captures. A model that predicts better than random will have 

training and test curves that lie above the random curve (Jobe and Zank, 2008).                    

For the only species presence data modelling, the ROC curve is a plot of sensitivity 

(proportion of correctly predicted presences) against the fractional area predicted present 

(Chitiki, 2014).  

 

The AUC values allow easy comparison of performance of one model with another, and 

are useful in evaluating multiple Maxent models (Phillips et al., 2006). A value of 0.80 

for example signifies that 80% of the time, a value that is randomly selected from a 

presence site will have a higher rank than a random background site (Phillips et al., 

2006). Values are given between 0 and 1, with 0.5 representing random predictions 

(Turner, 2014). The maximum achievable AUC for species  presence-only models is less 

than one because the background data used consists of the range of habitat suitability 

scores within the study area, including those which may be predicted highly suitable 

(Phillips et al., 2006). The closer the output values from the model to 1, the stronger the 

models performance (Fielding and Bell, 1997 and Peterson et al., 2011). This also means 

that habitat generalists are predicted to have a large area of suitable habitat and usually 

will have a lower maximum achievable AUC compared to habitat specialists                
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(Ashcroft et al., 2011). Therefore, an AUC value between 0 and 0.5 is an indication of 

predictions no better than random, while values closer to 1.0 indicate better model 

performance.  High predictive power by the models with larger AUC values has also been 

strongly supported by Elith et al. (2006).  

 

Tree species response to each variable was analysed by investigating the response curves, 

which represent the exponential changes that is predicted suitability, as each variable 

varies by maintaining all others at their average sample value (Phillips et al., 2006).  

Maxent produces habitat suitability maps with presence-only data for all species that will 

be modelled. These maps do not predict the probability of presence, but provide relative 

index of suitability (Anderson et al., 2003). They are usually produced by Maxent in 

binary classification (producing binary habitat maps) displaying suitable and unsuitable 

habitats. In producing habitat suitability maps by Maxent, a threshold value of “Ten (10) 

percentile training presence logistic thresholds” was used (Pearson et al., 2004). Typically 

a ‘threshold’ chosen from Maxent converts continuous scale into a binary response of 

predicted suitable and unsuitable habitats. This was obtained from Maxent output and 

used as a minimum probability for habitat suitability (i.e. the minimum value for suitable 

habitat). Therefore, all predicted areas on produced maps having values greater than 0.5 

are considered suitable habitats for persistence of the species (Stabach, 2009). On the 

other hand, estimates of the potential distribution for each species was done by relating 

the ratio of pixel counts in binary maps (i.e. number of pixels occupied by suitable versus 

unsuitable habitats). Results were then displayed for inference in a table in form of 

percentages. 
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3.4.2.3 Predictor variable importance 

A jack-knifing procedure was used to examine the importance of each environmental 

predictor variable influencing the distribution of both tree species (Phillips et al., 2006). 

This method runs the model by excluding one environmental variable at a time, in order 

to see how effective the model is without a variable, and then runs a model using only a 

single variable each time (Turner, 2014). The Jack-knifing shows the training gain of each 

variable if the model was run in isolation, and compares it to the training gain with all the 

variables (Phillips et al., 2006). Simply, important variables will reduce the green bar and 

have a large blue bar (Jobe and Zank, 2008). Hence, variable that attained higher gain 

under this study was considered the most useful single variable for predicting the 

occurrence distribution of a particular species (Phillips et al., 2006). Furthermore, the 

higher the contribution, the more impact that particular variable had on predicting the 

occurrence of the corresponding species (Phillips et al., 2006). 
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CHAPTER FOUR 

 

4.0 RESULTS AND DISCUSSION 

4.1 Model Performance 

Maxent models of all tree species for the current conditions performed better than 

random, with average training and test AUC values of 0.8497 and 0.8577±0.0235 

respectively (Table 2). Generally, an AUC value between 0 and 0.5 is an indication of 

predictions no better than random, while values closer to 1.0 indicate better model 

performance (Fielding and Bell, 1997 and Peterson et al., 2011). The models for this 

study may be considered robust and that, they provide reliable information on the 

distribution of suitable habitats of all species involved. However, there was a considerable 

variation in AUC scores among species. Elith et al. (2006) suggested that Maxent models 

that had an AUC values greater than 0.75 are considered to be useful. For this present 

study, AUC values for most species’ model built by Maxent were greater than that 

suggested by Elith et al. (2006). These models have therefore shown high predictive 

power to suitable habitats for all species. Additionally, incidences of over estimations to 

AUC values up to one (~1) as the case reported by Chitiki (2014) was not observed to all 

models for all species modeled. Over prediction or under prediction by the model were 

avoided by setting maximum iteration value on Maxent to 5000 so as to give the model 

adequate time for convergence (Phillips et al., 2006). On the other hand, records of 

negative one (-1) to AUC standard deviation values as reported in a study by Chitiki 

(2014) were as well not observed. This proved that AUC standard deviation values for all 

species studied were calculated by the software due to available adequate presence 

records assigned as test data for model accuracy (Philips et al., 2006).  
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AUC values under (ROC) have been widely used in early studies to describe the extent 

and specialization in species’ distribution (Ashcroft, 2011 and Cord et al., 2012). Under 

the present study, extent and specialization in species distribution using AUC values has 

been as well considered. It was found that all species models’ built by Maxent varied. 

Few species showed higher AUC values than others. In general, and consistent with the 

findings reported from various literatures (Hernandez et al., 2006, Ashcroft, 2011 and 

Cord et al., 2012), it was observed that higher AUC values shown by few models were 

found from few species with small sample sizes. Salvadora persica is a good example 

under this category with fewer number of presence records. However, the species was 

found with the highest AUC scores among other species studied. According to Ashcroft 

(2011), this species can be good examples of habitat specialists.  Usually, habitat 

specialist species have limited geographical ranges and are less distributed (Cord et al., 

2012). This is because they are restricted in habitats that only meet their ecological 

requirements (Cord et al., 2012). Sillero et al. (2012) suggested that species with 

restricted range could be more accurately modelled than widely dispersed species.              

This may be the reason for Salvadora persica to attain higher AUC scores than others. 

Higher AUC values from species with fewer presence records have been as well reported 

by Sillero et al. (2012) and Ashcroft (2011) and confirmed clearly in early studies by 

Stockwell and Peterson (2002); Seoane et al., 2005 and VanDerWal et al., 2009. 

However, specialized habitat species reported in Ashcroft (2011), had additional 

ecological features of clustered distributions. It is assumed by the author that clustering in 

one area restricted these species in other habitats and that, upon habitat change, they are 

highly vulnerable to quickly losing their suitable habitats.     

 

Species that occupy large habitats within an area are generally regarded as habitat 

generalist species. These species are predicted to have large area of suitable habitats and 
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usually show a lower maximum achievable AUC value compared to habitat specialists 

(Ashcroft et al., 2011). Acacia tortilis and Acacia robusta are good examples under this 

category. These species had many presence records and showed wide range of 

distribution within the area. However, in some study areas species were a bit clustered in 

respect to the river flow. It is  reported in Jetz et al. (2007), that wide ranging species 

show minimal loss of habitat range since large ranges are assumed to provide a buffer 

against environmental change.  
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      Table 2: Average Training, Test and AUC STD values for the replicate runs in the Maxent Models 
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4.2 The Current Distribution Status of Tree Species 

A total of forty five (45) tree species were found, obtained from 325 occurrence records 

for all species surveyed, covering lower and higher elevation of the Manyara National 

Park along the Chemchem River (Appendix 12). These species were identified into their 

scientific names and belonged to 36 genera under 21 families. Dominant genera were 

Fabaceae, Sapindaceae and Meliaceae while dominant families were Fabaceae (16.3%), 

Moraceae (11.1%), Sapindaceae (9.9%) and Meliaceae (7.7%) (Table 3).  

 

Table 3: Dominant families of selected tree species within the study area 

Family Fabaceae Moraceae Sapindaceae Meliaceae 

% Dominance 16.3 11.1 9.9 7.7 

Note: % = Percentage 

 

Additionally, the most dominant tree species based on index of dominance were Acacia 

tortilis dominated (0.0415), Ficus sycomorus (0.0366), Acacia robusta (0.0135) Trichilia 

emetica (0.0127), Salvadora persica (0.0043) and Celtis africana (0.0010)                    

(Table 4; Appendix 13). The total number of species (45 species) documented in this 

study site is slightly lower than those reported by Faustine (2008). The author reported a 

total number of 47 tree species from the same study area. This difference in the total 

number of species may be due to differences in sampled area and procedures. Also, since 

it is a slight difference, it may be due to human errors during enumeration. Climate 

change and variability, edaphic variability and anthropogenic activities (Giliba, 2011) and 

natural phenomenon (Sarkar and Devi, 2014) have been as well reported as significant 

factors influencing species presence and distribution. These factors might have as well 

contributed to differences in the total number of species reported in this study. 
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Dominant species refers to species with considerable and prominent effects on their 

habitats in respect to size and frequency (Ardakani, 2009) and can utilize resources and 

have an extensive influence on the environmental conditions (Razavi, 2012). Although 

many tree species were encountered in lower elevation of the study site, Acacia species, 

and particularly Acacia tortilis and Acacia robusta were dominant in lower elevation. 

This area covered the lower slopes of the study site that extended adjacent to shores of 

Lake Manyara and mainly composed woodland vegetation.  On the other hand, Ficus 

sycomorus and Trichilia emetica dominated in riverine and high ground water forest 

vegetation. Since, higher elevation had few species, it may be considered that presence of 

steeper slopes, illegal tree cut and other anthropogenic activities restricted the presence 

and distribution of most species. There were evidences of some farming activities and 

fresh cut trees in catchments areas of the river studied. Therefore, the suitability of most 

species decreased with increasing elevation. 

 

Table 4: Selected dominant tree species in the study area 

S/N Species name Abundance Index of dominance Relative abundance (%) 

1 Acacia tortilis 65 0.0415 20.3762 

2 Ficus sycomorus 61 0.0366 19.1223 

3 Acacia robusta 37 0.0135 11.5987 

4 Trichilia emetica 36 0.0127 11.2853 

5 Salvadora persica 21 0.0043 6.5831 

6 Celtis africana 10 0.0010 3.1348 

7 Cordia sinensis 9 0.0008 2.8213 

8 Albizia petersiana 8 0.0006 2.5078 

9 Ficus thonningii 7 0.0005 2.1944 

10 Euclea divinorum 6 0.0004 1.8809 

 

4.2.1 Species responses to environmental variables 

4.2.1.1 Contribution of predictor variables to current distribution of species 

The contribution of each environmental predictor variables to the current distribution of 

ten (10) dominant tree species in the study area is shown in Table 5. For most species the 
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current distribution was influenced by elevation, temperature seasonality and slope. 

Annual mean temperature, annual precipitation, precipitation of the driest quarter and 

temperature of the driest quarter showed non-contribution to some few species studied. 

Strong influence of environmental variables in determining the distribution of species was 

shown by elevation. The variable showed significant predictive contribution to particular 

species of Albizia petersiana (83.05%) and Ficus thoningii (75.72%). Therefore, 

elevation, slope and temperature seasonality may be regarded as three (3) strongest 

environmental predictor variables that influenced mostly the presence and distribution of 

species.  

 

Environmental predictor variables can exert direct or indirect effects on species along a 

gradient. They can act as limiting factors (or regulators), by controlling species eco-

physiology (e.g. temperature, water, soil composition); they can as well act as 

disturbance, defined as all perturbations affecting environmental systems and they can act 

as resources, defined as all compounds that can be assimilated by organisms (e.g. energy 

and water) (Chitiki, 2014). When closely investigating the variable contribution table 

results (Table 5), both topographical and bioclimatic variables appeared to play important 

influence in determining the presence and distribution of tree species. In contrary, a study 

by Singh (2013) showed that, the distribution of two critically riparian endangered tree 

species was only influenced by topographical variables in particular slope and elevation.
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Table 5: Percentage Variable Contributions in Maxent Models over 10 replicate runs 

 

Note: **= Values for the variables with strong contribution *= values for the variables with non-contribution. Abbreviations: mt=Annual Mean 

Temperature; ts=Temperature Seasonality; tq=Mean Temperature of driest Quarter; ap= Annual Precipitation; pq= Precipitation of the driest 

Quarter; el=elevation  

 

Species: (a)Acacia robusta (b) Acacia tortilis (c) Albizia petersiana (d) Celtis africana (e) Euclea divinorum (f) Ficus sycomorus (g) Ficus 

thonningii (h) Rauvolfia caffra (i) Salvadora persica (j) Trichilia emetica 

Species 

Variables (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

mt 0.00* 6.89 0.00 0.01 0.07 0.00* 0.00* 0.01 1.03 1.44 

ts 47.68 46.19 11.59 22.11 10.95 35.24 17.44 44.53 31.38 1.23 

ap 0.24 2.21 0.00* 0.14 0.96 2.53 0.00* 1.97 5.89 13.45 

pq 1.65 0.89 0.00* 0.00* 0.42 0.91 0.01 4.74 0.07 3.10 

tq 9.06 4.75 1.64 6.33 0.22 6.44 0.00* 10.54 14.81 0.00* 

sl 27.84 25.48 3.72 4.10 30.08 36.90 6.83 22.55 35.12 20.88 

el 13.53 13.59 83.05** 67.31 57.3 17.98 75.72** 15.66 11.70 59.90 
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On the other hand, Chitiki (2014) reported a strong influence of bioclimatic variables in 

influencing the distribution of tree species in Eastern Usambara and Udzungwa mountains 

of the Eastern Arc Mountains (EAMs). Under this study, few bioclimatic variables and in 

particular temperature seasonality presented strong contribution in determining species 

distribution. It is reported by Gholinejad (2012) that, tree species distribution over a high 

geographical range is controlled by climatic factors, mainly temperature and rainfall. 

However, the distribution of tree species over a small range is related to other factors such 

as edaphic and topographical factors (Gholinejad, 2012 and Singh, 2013). A study by 

Singh (2013) reports further that, when small area size is studied by using environmental 

variables, the influence of some bioclimatic variables might not be significant. For this 

study and as stated earlier on, the influence of some bioclimatic variables in determining 

the presence and distribution of species was not significant. Singh (2013) reports that, 

when a study is conducted in a small area, climatic factors usually remain fairly constant 

throughout the study site while other factors such as land use, topography and vegetation 

for example keep varying significantly over the landscape. Therefore, it is assumed by 

this study that strong influence observed by slope and elevation to most species studied 

might be due to variation of topography within the area studied. Furthermore, since the 

area studied is relatively small, arguments presented in a study by Singh (2013) may have 

played a big role for the low contribution shown by few bioclimatic variables in 

influencing the presence and distribution of species.  

 

Maxent modelling allows for performing an internal jack-knife test to quantify the 

importance of the variables in influencing the distribution of tree species (Singh, 2013 

and Chitiki, 2014). Jobe and Zank, (2008), reported that, important variables will reduce 

the green bar and have a large blue bar (Figure 2). Results for jackknife test for variable 

importance revealed that both bioclimatic and topographical variables have influence in 
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determining the distribution of most species (Figure 2 (a), (b) and (c)). It was observed 

that, elevation and temperature seasonality influenced the distribution of most species in 

the study area. These variables produced the highest gain when used in isolation. 

  

According to Singh (2013), a variable with highest gain as shown by a Jack-knife test 

results in Maxent Modeling has the most useful information by itself for estimating the 

distribution of the species. Therefore, the increase of these variables increased the 

probability of occurrences of most species and determined their distribution. On the other 

hand, these variables decreased the gain the most when omitted and according to Singh 

(2013), the variables (elevation and temperature seasonality) appear to have the most 

information that is not present in other variables. Ashcroft et al. (2011), reports that the 

corresponding variables are likely to be important determinants of species distribution and 

local vegetation patterns in the area studied. However, other factors and especially for the 

present study (annual mean temperature, temperature of the driest quarter and 

precipitation of the driest quarter) were also important for other species, at different 

scales, or in different study areas (Ashcroft et al., 2011). 
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              Figure 2 (a): Results of the jackknife test of variable importance for environmental variables for species of  A. robusta, A. tortilis,                        

A. petersiana and C. africana 
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           Figure 2 (b): Results of the jackknife test of variable importance for environmental variables for species of E. divinorum, F. sycomorous,     

                                F. thoningii and R. caffra 
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                       Figure 2 (c): Results of the jackknife test of variable importance for environmental variables for species of S. persica and T. emetica 
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4.2.1.2 Species probability of occurrence (Habitat Suitability) 

The relationship between the response of the species and one top environmental predictor 

variable is shown in Figure 3. Elevation and temperature seasonality dominated the 

probability of occurrence for most species. Suitable habitats increased with increasing 

temperature seasonality for Acacia robusta. There was a decrease in suitable habitats for 

most species with increasing elevation. Most species occurred in lower elevation of the 

study area (Figure 3).  

 

Tree species showed different response curves to various environmental predictor 

variables used for modelling. Response curves depicted the probability of occurrence 

(habitat suitability) of a species. Results showed that probability of occurrences for most 

species was affected with both bioclimatic and topographical variables.  Suitable habitats 

for most species increased with the increasing in annual precipitation and temperature of 

the driest quarter (Appendix 2-11). A sharp increase in habitat suitability was observed 

for species of Acacia tortilis and Ficus sycomorus with increasing annual precipitation 

and mean temperature of the driest quarter. On the other hand, the increase in elevation 

decreased suitable habitats of most species of Acacia robusta, Euclea divinorum, 

Rauvolfia cafra and Trichilia emetica. Therefore, for most species, lower elevation was 

mostly suitable for their growth and survival.  

 

Topography affects species mostly indirectly through its correlation with temperature and 

precipitation, but also through landscape diversity and configuration, soil and water 

dynamics (Guisan et al., 2003). Through the analysis of various response curves 

temperature and rainfall have shown significant influence in determining suitable habitats 

for most species. The increase in rainfall increased probability of occurrence of most 

species. Since, most species encountered were river-line species and mostly found in 
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lowland areas; the significance influence of rainfall and temperature in determining 

suitable habitats of most species was realized. These results are consistent in early studies 

by Chitiki (2014). The author reported on strong influence of rainfall and temperature in 

determining suitable habitats of most species studied. Although, species response curves 

have revealed a clear relationship of bioclimatic variables and species studied, elevation 

and slope on the other hand may be regarded as being indirectly affecting the species 

through temperature and rainfall (Guisan et al., 2013). Results show that, in higher 

elevation, suitable habitats decreased for most species. For, lowland species such as 

Acacia robusta, Acacia tortilis and Salvadora persica among others, the increase in 

elevation can be considered as the limiting factor for their survival and distribution. 
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Figure 3:        Response curves showing the relationships between the probability of presence of a species (y-axis) and one top 

environmental predictor variables (x-axis) under current conditions 

Note: Values shown are averaged under 10 replicate run; dark margin shows +/- 1SD calculated over 10 replicates: mt=Annual 

Mean Temperature; ts=Temperature Seasonality; tq=Mean Temperature of driest Quarter; ap= Annual Precipitation; pq= Precipitation of 

the driest Quarter; sl=slope; el=elevation:  Species: (a) Acacia robusta (b) Acacia tortilis (c) Albizia petersiana (d) Celtis africana (e) 

Euclea divinorum (f) Ficus sycomorus (g) Ficus thonningii (h) Rauvolfia caffra (i) Salvadora persica (j) Trichilia emetica 

(a) (b) (c) 

 

(d) 

(e) (f) (g) (h) 

(i) (j) 
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4.2.1.3 Predicted current suitable habitats for selected dominant tree species 

The current predicted suitable habitats for selected dominant tree species is shown in 

Figure 4 (a) and (b).  For most species, suitable habitats were predicted in central, north 

eastern and some patches extending towards south eastern parts of the area. Lower 

elevation which covered most of the central parts of the study area had more suitable 

habitats for supporting growth and development of most species. Species with more range 

of suitable habitats were Acacia robusta (13.04%), Acacia tortilis (8.1%), Trichilia 

emetica (6.06%) and Albizia pertesiana (5.17%).  Species that showed small range of 

their suitable habitats within the study area were Celtis africana (2.47%), Ficus thoningii 

(2.02%) and Ficus sycomorus (01.05%) (Figure 4(a) and (b) and Table 6). It is observed 

in this study that, species with restricted ranges had high AUC values and fewer presence 

records than widely dispersed species (see sect. 4.1).  

 

Table 6:  Percentage suitable and unsuitable habitats for selected dominant tree 

species within the study area 

 S
p
ec

ie
s 

N
a
m

e
 

A
ca

ci
a
_
ro

b
u
st

a
 

A
ca

ci
a
_
to

rt
il

is
 

A
lb

iz
ia

_
p
et

er
si

a
n
a
 

C
el

ti
s_

a
fr

ic
a
n
a
 

E
u

cl
ea

_
d
iv

in
o
ru

m
 

F
ic

u
s_

sy
co

m
o
ru

s 

F
ic

u
s_

th
o
n
n
in

g
ii

 

R
a

u
vo

lf
ia

_
ca

ff
ra

 

S
a

lv
a

d
o
ra

-_
p
er

si
ca

 

T
ri

ch
il

ia
_
em

et
ic

a
 

  

S
u

it
a

b
le

 

H
a

b
it

a
t 

13.04* 8.10* 5.17 2.47 4.98 01.5 2.02 03.6 03.5 6.06 

U
n

su
it

a
b

le
 

H
a
b

it
a
t 

86.96 91.90 

 

 

 

 

94.83 

 

 

 

 

97.53 95.02  98.5 97.98 96.4 96.5 93.94 

Note: * Species with more habitat range of suitable habitats within the study area 

 

 



38 
 

Range loss being as the result of environmental change, varies dramatically across species 

(Chitiki, 2014). The largest potential loss of range size occurs among species that have 

restricted ranges. Under the present study species such as Celtis africana, Ficus thoningii 

and Ficus sycomorus may be considered to be in this category and that, for species that 

already have small population sizes or range size or specialized habitat requirements are 

exposed to a high risk of extinction (Jetz et al., 2007). 

 

However, for many species encountered their suitable areas were fragmented and the 

distribution followed the pattern of river flow (Figure 4). Fragmentation of suitable 

habitats has been as well reported by Singh (2013) in modeling of Shorea johorensis 

species. Rainfall among other variables had significant contribution in determining 

suitable habitats of most species. This study argues that, presence of steeper slopes 

limited the distribution of most species and lowered suitable habitats in higher elevation. 

On the other hand, temperature and rainfall increased the suitability of habitats in lower 

elevation for most species. A visual examination of Figure 4 (habitat suitability maps) 

shows that, there were significant variations of suitable habitats for all species under 

current conditions.  Species that showed wider range of suitable habitats in this study may 

generally be regarded as “generalists” species (Ashcroft et al., 2011). These species 

occupied large areas and may be considered lesser sensitive to risks of losing suitable 

habitats than specialists’ species. Species in this group were Acacia robusta, Acacia 

tortilis, Trichilia emetica and Albizia pertesiana.  

 

Environmental change and in particular climate change may affect the ability of nature 

reserves (Manyara National Park being among of them) to protect plant species or leading 

to physiological stress and damage to plants (Araujo et al., 2011). It has been reported 

that species highly at risks of damage are narrow ranged species. This is because when 
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suitable habitats of plant species shift outside of their range to which these species are 

adapted, might face an increased risk of extinction (Thuiller et al., 2005). Since, similar 

situation might happen in Lake Manyara under the face of changing climate, prioritizing 

conservation needs targeting species at risks are therefore inevitable. Furthermore, results 

show that, areas sited at higher elevation were found to have least suitable habitats for 

supporting most of the species under this study. Since, Maxent software maps the 

fundamental niche (different from occupied niche) of the studied species using 

bioclimatic variables (Singh, 2013), this study agrees with several findings (Pearson 

2007; Murienne et al., 2009 and Kumar, 2009) that in some areas, suitable habitats may 

have been over predicted.  
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Figure 4 (a): Predicted current suitable habitats for A. robusta, A. tortilis, E. divinorum, C. Africana and A. 

Petersiana 
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Figure 4 (b): Predicted current suitable habitats for F. thoningii, F. sycomorous, R. caffra, S. persica and T. emetica 
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CHAPTER FIVE 

 

5.0 CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The influence of environmental variables on the distribution of selected tree species 

within the study area was realised. This study has been able to identify key environmental 

variables that influence the distribution of tree species in the study area. Further, the 

research has been able to successful predict suitable habitats for selected dominant tree 

species under current conditions. Maxent models of all tree species for the current 

scenarios performed better than random, with average training and test AUC values of 

0.8497 and 0.8577±0.0235 respectively. Species with small sample sizes showed higher 

AUC values. A total of forty five (45) tree species were found, obtained from 325 

occurrence records. The species belonged to 36 genera under 21 families. Dominant 

families were Fabaceae (16.3%), Moraceae (11.1%), Sapindaceae (9.9%) and Meliaceae 

(7.7%). Dominant species were Acacia tortilis (0.0415), Ficus sycomorus (0.0366), 

Acacia robusta (0.0135) and Trichilia emetica (0.0127). Species were distributed 

following the river flow while lower elevation was occupied by most species. For most 

species, the current distribution was influenced by elevation and temperature seasonality. 

Significant predictive contribution of elevation was observed to particular species of 

Albizia petersiana (83.05%) and Ficus thoningii (75.72%). Jack-knife test showed that 

both elevation and temperature seasonality had most useful information for estimating the 

distribution of the species. Their increase increased the probability of occurrences of most 

species.  

 

Suitable habitats increased with increasing in annual precipitation and temperature of the 

driest quarter. There was a sharp increase in habitat suitability for species of Acacia 
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tortilis and Ficus sycomorus with increasing mean temperature of the driest quarter. 

However, suitable habitats decreased with increasing elevation. For, lowland species such 

as Acacia robusta, Acacia tortilis and Salvadora persica, the increase in elevation may be 

considered as the limiting factor for their survival and distribution. There was a potential 

habitat variation for all species under current conditions. For most species, suitable 

habitats were predicted in central and north eastern of the study area. Habitats showed 

some patches extending towards south eastern parts of the area and were fragmented. 

Lower elevation had more suitable habitats for supporting growth and development of 

most species. Species with more range of suitable habitats were Acacia robusta (13.04%), 

Acacia tortilis (8.1%), Trichilia emetica (6.06%) and Albizia pertesiana (5.17%). 

 

5.1 Recommendations 

This study has achieved showing the current distribution of tree species and successful 

predicting their suitable habitats within the study area under current conditions. Important 

environmental variables and the responses of tree species against these variables have 

been clearly shown. However, the following are recommended; 

i. Since, higher elevation showed poor habitats and inhabited few species; it is 

recommended that, park management should help the communities conserve the 

upper areas of the river through patrolling so as to minimize illegal tree cut and 

farming in catchment areas. These human activities were evident during data 

collection. The efforts may in future build up continuous stream flow which is 

important for the growth and development of lower and higher elevation plant 

species. 

 

 



44 
 

ii. The park management should think of identifying management priorities to restore 

natural habitats for the species observed with decreasing suitable habitats. 

Information on species with decreased habitats will provide the park management 

and other conservation practitioners with estimates of the spatial distributions of 

species requiring more attention. This may enhance more effective conservation 

targeting fragmented and unsuitable habitats and also in the management of the 

Manyara ecosystems at large.  

 

 

iii. The present study predicted successful suitable habitats for the selected dominant 

species. Identification of suitability habitats may also be important to the 

management of the Manyara national park in aspects of resource management 

particularly in the face of inadequate funds and resources during biodiversity 

monitoring and survey within the study area. 
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Appendix 1:  Flow chart of the modelling procedure using Maximum Entropy 

(Maxent) 
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           Appendix 2: Response Curves for a species of Acacia robusta 

 

(a) Acacia_robusta 

    

   

Note: mt=Annual Mean Temperature; ts=Temperature Seasonality; tq=Mean Temperature of driest Quarter; ap= Annual Precipitation;               

pq= Precipitation of the driest Quarter; sl=slope; el=elevation 
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             Appendix 3: Response Curves for a species of Acacia tortilis 

 

(b) Acacia_tortilis 

    

 

   

Note:  mt=Annual Mean Temperature; ts=Temperature Seasonality; tq=Mean Temperature of driest Quarter; ap= Annual Precipitation; 

pq= Precipitation of the driest Quarter; sl=slope; el=elevation 

 



58 
 

          Appendix 4: Response Curves for a species of Albizia petersiana 

 

(c) Albizia_petersiana 

    

   

              Note: mt=Annual Mean Temperature; ts=Temperature Seasonality; tq=Mean Temperature of driest Quarter; ap= Annual  

                         Precipitation;   pq= Precipitation of the driest Quarter; sl=slope; el=elevation 
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Appendix 5: Response Curves for a species of Celtis_africana 

 

(d) Celtis_africana 

    

 

   

Note:  mt=Annual Mean Temperature; ts=Temperature Seasonality; tq=Mean Temperature of driest Quarter; ap= Annual Precipitation; 

pq= Precipitation of the driest Quarter; sl=slope; el=elevation 
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Appendix 6: Response Curves for a species of Euclea_divinorum 

 

(e) Euclea_divinorum 

    

 

   

Note: mt=Annual Mean Temperature; ts=Temperature Seasonality; tq=Mean Temperature of driest Quarter; ap= Annual Precipitation;  

           pq= Precipitation of the driest Quarter; sl=slope; el=elevation 
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Appendix 7: Response Curves for a species of Ficus_sycomorus 

(f)Ficus_sycomorus 

    

 

   

Note: mt=Annual Mean Temperature; ts=Temperature Seasonality; tq=Mean Temperature of driest Quarter; ap= Annual Precipitation; 

pq= Precipitation of the driest Quarter; sl=slope; el=elevation 
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Appendix 8: Response Curves for a species of Ficus_thonningii 

 

(g) Ficus_thonningii 

    

 

   

Note: mt=Annual Mean Temperature; ts=Temperature Seasonality; tq=Mean Temperature of driest Quarter; ap= Annual Precipitation; 

pq= Precipitation of the driest Quarter; sl=slope; el=elevation 
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Appendix 9: Response Curves for a species of Rauvolfia_caffra 

 

 (h) Rauvolfia_caffra 

    

 

   

Note: mt=Annual Mean Temperature; ts=Temperature Seasonality; tq=Mean Temperature of driest Quarter; ap= Annual Precipitation; 

pq= Precipitation of the driest Quarter; sl=slope; el=elevation 
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Appendix 10: Response Curves for a species of Salvadora_persica 

 

(i) Salvadora_persica 

    

 

   

Note:  mt=Annual Mean Temperature; ts=Temperature Seasonality; tq=Mean Temperature of driest Quarter; ap= Annual Precipitation; 

pq= Precipitation of the driest Quarter; sl=slope; el=elevation 
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Appendix 11: Response Curves for a species of Trichilia_emetica 

 

(j) Trichilia_emetica 

    

 

   

Note: mt=Annual Mean Temperature; ts=Temperature Seasonality; tq=Mean Temperature of driest Quarter; ap= Annual Precipitation; 

pq= Precipitation of the driest Quarter; sl=slope; el=elevation 
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Appendix 12: List of tree species identified at Chemchem River in the study area 

ID Botanical name Author      Family name              Locality 

1. Acacia mellifera            (Vahl.) Benth  Fabaceae  MNP 

2. Acacia robusta Butch Fabaceae CCV 

3. Acacia tortilis (Forssk.) Hyne Fabaceae MNP 

4. Albiziapetersiana  (Bole) Oliv. Fabaceae CCV 

5. Allophyllusafricanus P. Beauv Sapindaceae  CCV 

6. Blighiaunijugata  Bak Sapindaceae CCV 

7. Brideliamicrantha (HOchst.) Baill Euphorbiaceae  CCV 

8. Calotropsisprocera  (Ait) Ait.f. Asclepiadaceae  MNP 

9. Celtisafricana Burm.f.  Ulmaceae  CCV  

10. Chaetac mearistata  Planch  Ulmaceae CCV 

11. Commiphora africana (A.Rich.) Engl.  Burseraceae CCV 

12. Commiphora sp.    Burseraceae CCV 

13. Cordia monoica  Roxb Boraginaceae  MNP 

14. Cordia sinensis Lam Boraginaceae  MNP 

15. Croton megalocarpus Hutch  Euphorbiaceae  MNP 

16. Deinbolia kilimandscharica Taub Sapindaceae CCV 

17. Delonix elata (L.) Gambe Fabaceae CCV & MNP 

18. Diospyros abyssinica (Hiern) F. White Ebenaceae CCV 

19. Dovyalis abyssinica  (Oliv.) Warb Flacourtiaceae CCV 

20. Ekebergia capensis Sparrm Meliaceae CCV 

21. Elaeis guineensis Jacq Arecaceae CCV 

22. Elaeodendron buchananii (Loes.) Loes Celasteraceae CCV 

23. Euclea divinorum Hiern Ebenaceae CCV 

24. Ficus capreifolia Del Moraceae CCV 

25. Ficus lutea Vahl Moraceae CCV 

26. Ficus ingens Vahl Moraceae CCV 

27. Ficus sycomorus L. Moraceae CCV 

28. Ficus thonningii Bl. Moraceae CCV 

29. Gardenia volkensii K. Schum Rubiaceae CCV & MNP 

30. Kigelia africana (Lam.) Benth Bignoniaceae CCV&MNP 

31. Lecaniodiscusfraxinifolius Bak Sapindaceae CCV 

32. Maerua triphylla A. Rich  Capparaceae MNP 

33. Maytenus heterophylla (Eckl. &Zeyh.) Robson               Celasteraceae MNP 

34. Melia azedarach L. Meliaceae CCV 

35. Rauvolfia caffra Sondd Apocynaceae CCV 

36. Rhusnatalensis Krauss Anacardiaceae CCV 

37. Salvadora persica L. Salvadoraceae MNP 

38. Senna siamea (Lam.)Irwin &Barneby Fabaceae CCV 

39. Sorindeia madagascariensis DC Anacardiaceae CCV 

40. Syzygiumguineense (Willd.) DC. Myrtaceae CCV 

41. Tabernaemontana ventricosa A.DC  Apocynaceae CCV 

42. Tamarindusindica L. Fabaceae CCV 

43. Thylachium africanum Lour Capparaceae CCV 

44. Trichilia emetica Vahl Meliaceae CCV 

45. Ziziphus mauritiana  Lam Rhamnaceeae CCV 

Note that: ID = Identity; MNP= denotes Manyara National Park; CCV = Chemchem 

                  Village 
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Appendix 13: List of all tree species encountered with their Index of Dominance 

Species name Individuals 

Index of 

dominance 

Relative abundance  

(%) 

Acacia tortilis 65 0.0415 20.3762 

Ficus sycomorus 61 0.0366 19.1223 

Acacia robusta 37 0.0135 11.5987 

Trichilia emetica 36 0.0127 11.2853 

Salvadora persica 21 0.0043 6.5831 

Celtis africana 10 0.0010 3.1348 

Cordia sinensis 9 0.0008 2.8213 

Albizia petersiana 8 0.0006 2.5078 

Ficus thonningii 7 0.0005 2.1944 

Euclea divinorum 6 0.0004 1.8809 

Dovyalis abyssinica 4 0.0002 1.2539 

Maerua triphylla 4 0.0002 1.2539 

Gardenia volkensii 4 0.0002 1.2539 

Tamarindus indica 4 0.0002 1.2539 

Rauvolfia caffra 4 0.0002 1.2539 

Allophyllus africanus 4 0.0002 1.2539 

Sorindeia madagascariensis 4 0.0002 1.2539 

Commiphora sp. 3 0.0001 0.9404 

Delonix elata 3 0.0001 0.9404 

Tabernaemontana ventricosa 3 0.0001 0.9404 

Ekebergia capensis 3 0.0001 0.9404 

Ficus lutea 3 0.0001 0.9404 

Blighia unijugata 2 0.0000 0.6270 

Diospyros abyssinica 2 0.0000 0.6270 

Calotropsis procera 2 0.0000 0.6270 

Ficus ingens 2 0.0000 0.6270 

Cordia monoica 2 0.0000 0.6270 

Kigelia africana 2 0.0000 0.6270 

Croton megalocarpus 1 0.0000 0.3135 

Syzygium guineense 1 0.0000 0.3135 

Senna siamea 1 0.0000 0.3135 

Deinbolia kilimandscharica 1 0.0000 0.3135 

Acacia mellifera 1 0.0000 0.3135 

Lecaniodiscus fraxinifolius 1 0.0000 0.3135 

Chaetacme aristata 1 0.0000 0.3135 

Commiphora africana 1 0.0000 0.3135 

Elaeis guineensis 1 0.0000 0.3135 

Maytenus heterophylla 1 0.0000 0.3135 

Elaeodendron buchananii 1 0.0000 0.3135 

Melia azedarach 1 0.0000 0.3135 

Thyllachium africanum 1 0.0000 0.3135 

Ficus capreifolia 1 0.0000 0.3135 

Ziziphus mauritiana 1 0.0000 0.3135 

Rhus natalensis 1 0.0000 0.3135 

Bridelia micrantha 1 0.0000 0.3135 

 


