TANZANIA VETERINARY ASSOCIATION

PROCEEDING OF THE 35 SCIENTIFIC CONFERENCE OF THE TANZANIA VETERINARY ASSOCIATION HELD AT AICC ARUSHA, TANZANIA ON THE 5^{TH} TO 7^{TH} DECEMBER, 2017

Volume 35 2017 ISSN 0856 - 1451

TVA Editorial Team

Chief Editor: H.E. Nonga Assistant Editor: Z. Makondo Circulation Manager: K. Wahabu

Pathology: J.A. Matovelo; W.D. Semuguruka (SUA, Tanzania)

Neuroscience: Stefano Geuna (Torino, Italy)

Neuroscience and Molecular Biology: Paul F.S. Etef (Soud Arabia)

Steriology: Suleyman Kaplan (Samsun, Turkey) Wildlife specialist: Abdurrahman Aksoy (Turkey)

Behavioural science: Mohammed Farahna (Burayda, Kingdom of Soud Arabia)

Public Health: Trevor Sharp (England)

Electromagnetic and Pathology: Lloyd Morgan (USA)

Microbiology: *U.M. Minga* (SUA, Tanzania) Protozoology: *R. Silayo* (SUA, Tanzania) Entomology: *B.S. Kilonzo* (SUA, Tanzania) Helminthology: *A.A. Kassuku* (SUA, Tanzania)

Pharmacology and Pesticides: L. Kinabo (SUA, Tanzania)

Cell Biology: R.J. Assey (SUA, Tanzania)

Medicine: *M.M. Mtambo*; *D.M. Kambarage* (SUA, Tanzania); Public Health and Epidemiology: *R.R. Kazwala* (SUA, Tanzania)

Theriogenology: *F.O.K. Mgongo* (SUA, Tanzania) Animal Nutrition: *N.A. Urio* (SUA, Tanzania)

All correspondences should be addressed to:

Editor, Tanzania Veterinary Association, P.O. Box 3021, Chuo Kikuu, Morogoro, Tanzania. e-mail: nongahezron@yahoo.co.uk OR zmakondo@gmail.com

Instruction to authors are provided on the inside of the back cover of every issue of the Tanzania Veterinary Journal

Publishers: Tanzanina Veterinary Association.

Evaluation of stress hormone (cortisol) levels and some biochemical parameters of pigs kept under intensive management systems in Morogoro, Tanzania

G.G. Bakari¹, E. Mollel², R.A. Max¹ and A.P. Muhairwa²

¹Department of Veterinary Physiology, Biochemistry and Pharmacology, P.O. Box 3017, Morogoro; ²Department of Veterinary Medicine, P. O. Box 3021, Morogoro. College of Veterinary and Biomedical Sciences, Sokoine University of Agriculture

Email: manemgay@yahoo.com

SUMMARY

The worldwide increase in demand for animal products in recent decades has necessitated raising of food animals under intensive systems that have been demonstrated to cause stress to animals. A cross sectional study was carried conducted to evaluate the welfare of pigs kept under intensive system using serum cortisol levels and some biochemical parameters as indicators of stress. A total of 302 pigs, aged three months to two years, from urban and peri-urban areas of Morogoro township were purposively involved in the study which assessed farm management aspects (housing and feeding) and blood levels of cortisol and some biochemical parameters (glucose, total protein and cholesterol). Results showed that serum cortisol levels were significantly higher (p < 0.001) in pigs from the peri-urban farms than those dwelling in the urban settings. Weaner pigs and boars had the highest serum cortisol levels compared to other groups. Significantly high levels of plasma cholesterol (p < 0.05) were measured in boars followed by gilts and weaners all kept in the urban areas whereas no significant differences were observed as far as plasma glucose and total proteins were concerned. Result on farm management assessment showed that urban piggery housing was of better quality than in the peri-urban and that feeding was largely influenced by local availability of the major feed ingredients such as maize bran and vegetable residues. About 80% of urban pigs were maintained on high concentrate feed due to availability of swills (restaurant leftovers) and maize bran whereas low concentrate feed with mainly vegetable residues dominated in the peri-urban settings. It is concluded that, serum cortisol levels observed in the current study were a reflection of stress to different groups of pigs kept under the intensive system and that feeds had some direct effect on biochemical parameters such as plasma cholesterol levels.

Key words: Stress factors, biochemical parameters, cortisol, pigs, urban, peri-urban

INTRODUCTION

Pig farming is an important component of the livestock sector in Tanzania. Pig keeping is practiced by small scale farmers due to its relatively low cost of establishment and its potential role as a contributor to increased rural household incomes and to improved food security in households (Wilson and Swai, 2014). In recent years there has been a growing concern about animal welfare due to undesirable consequences on productivity performance (Miró et al., 2016). Increased demand for quality animal products has intensification of production compromises with animal welfare (Barnet et al., 2001; Cadiani et al., 2008). Intensive management has been reported to cause stress in animals particularly pigs. Investigations of stress in pigs have shown that restricted movements and freedom to feed causes stress in pigs (Verdon et al., 2015). Social interactions and aggressive behaviour has been shown to increases as the space allowance decreased in group-housed sows (Weng et al., 1998;

Verdon *et al.*, 2015). Other factors include environmental stress such as temperature, humidity, light, concentration of dust and gases, ammonia levels and sound intensity. Metabolic stress results from food and/or water restriction or deprivation (Pearce *et al.*, 2013; Sanz *et al.*, 2015). Subjecting pigs to a stressful environment has lead to increased level of blood serum cortisol and also interfere with biochemical parameters such as blood glucose, cholesterol and total protein.

Cortisol, a steroid hormone in the glucocorticoid class of hormones, is normally released into the blood stream in response to stress and low blood-glucose concentration in most mammals (Aronson, 2005; Maduka *et al.*, 2015). In most diurnal species, cortisol is secreted with a circadian variation, which is high concentrations at late night and early morning and with low concentrations in the afternoon and early night (Sjaastad, 2003). Blood glucose, cholesterol and total protein are biochemical parameters which have also received considerable attention as indicators in assessing

animal welfare (Doyle *et al.*, 2015). Recently, animal welfare report has highlighted the need for improving animal welfare for good production. There is paucity of information on studies to assess the influence of management aspects on serum cortisol levels and some blood parameters in pigs in the country. The purpose of this study was therefore to evaluate the welfare of pigs kept under intensive system using serum cortisol levels and some biochemical profiles as indicators of stress.

MATERIALS AND METHODS

Study area and animal descriptions

Table 1. Number of pigs by sex and growth stage

Growth stage Total number Urban Peri urban Female Male Boars 14 7 7 NA 14 Sows 92 69 23 92 NA 34 5 29 34 NA Gilts 23 Growers 70 23 47 47 Weaners 92 34 58 44 48 **Total** 302 138 164

Study design and assessment of farm management

A cross-sectional study was employed; it involved purposive sampling of units with at least 10 animals and above. At the farm level, all pigs above three months of age were involved in the study. A welldesigned checklist was used to assess farm management aspects (housing and feeding). Pig house were classified as 1= ideal (with concrete floor, division of pens and roof with corrugated iron sheets; 2 = moderate (i.e. concreate floor, divisions of pens and thatch roof; 3 = poor (i.e., sandy floor, no divisions of pens and roof with thatch/no roof). Feeding was categorised into three levels based on energy value: 1 = high concentrate diet (> 80% depends on food remains from restaurants i.e., swills and 20% maize bran), 2 = moderate concentrate (50% mixture of food remains and 50% maize bran) and 3 = low concentrate diet (70% depend on horticultural crop residues and 30% maize bran).

Blood sample collection and handling

Blood samples were collected early in the morning between 8 and 10 am to avoid a circadian variation of cortisol and heat stress. Animals were restrained using pig snare; to minimize stress to animals only two operators were allowed in a pen at a time. Blood samples (about 5 mL) were collected directly from the anterior vena cava using plain and

23 47
44 48
193 109

heparinized vacutainer for cortisol and biochemical analyses respectively. Samples were transported to a laboratory at the CVMS using cool boxes. In the

laboratory, the samples were centrifuged at 3,000

rpm to obtain serum and plasma, which were

refrigerated at -4 °C pending analysis.

The study was conducted between April and June in

urban (Morogoro town, 500 - 600 m asl, 25 - 30°C)

and peri-urban areas (Mgeta, 1500 - 1700 m asl, 16 -

20^oC) in Morogoro region, Tanzania. These areas

were chosen because they were known to have

substantial number of small scale pig farms having

least 10 animals and above per household. A total of

302 pigs of both sexes ranging from 3 months to

two years of age were involved in the study. 140 pigs were from peri urban whereas 162 were from

urban Morogoro. Distribution of sampled areas,

stage and sex of pigs is shown in Table 1

Determination of cortisol and biochemical parameters

Serum cortisol levels were determined using micro plate enzyme immunoassay (Accu Bind ELISA Microwell). This is a competitive immunoassay specifically designed and validated for the quantitative measurement of cortisol in serum. Biochemical parameters such as plasma glucose, total protein and cholesterol were analysed because they are good indicators for nutritional status of animals and their levels are also affected by the stress hormones. Determinations of the blood glucose and cholesterol levels were done using standard methods as explained by Trinders (1969). Total protein was determined by Biuret method using Erba ® test kit as described by WHO (2006).

Data analysis

The results were analyzed using SPSS statistical package version 20 (2011). Data were subjected to univariate analyses using two-way ANOVA and t-test to compare mean values among different

variables. Tests were conducted at 95% confidence interval and significance level of 5% was considered significant.

RESULTS

In the current study, pigs from the peri-urban farms had significantly higher serum cortisol levels (4.96 $\pm~0.19~\mu g/dL;~p~<0.001)$ than their urban counterparts (3.11 $\pm~0.15~\mu g/dL)$. Moreover, weaner pigs and boars had significantly higher levels (p < 0.001) compared to the other tested groups. The diet offered had significant influence (p < 0.05) on serum cortisol level in that pigs fed on low concentrate diet had significantly higher serum cortisol levels than those maintained on moderate or high concentrate diets (Table 2).

Plasma cholesterol levels were significantly higher (p < 0.05) in male pigs than in their female counterparts particularly in boars from the urban farms. It was further observed that pigs maintained on level 1 feed (> 80% depends on food remains from restaurants i.e., swills and < 20% maize bran) had high cholesterol concentration than those on low concentrate diet. Plasma concentrations of glucose were not significantly different (p > 0.05)among different groups although boars had higher levels in comparison to other groups in both study areas. Also, pigs maintained on moderate concentrate diet had higher plasma glucose levels than those receiving high concentrate diets. Plasma total protein did not differ significantly (p > 0.05)among pig groups of location and the levels were within normal range i.e.6.1 - 6.9 mg/dL.

Table 2. Serum cortisol levels in different groups of pigs

		Cortisol (µg/dL)*				
		General	Urban	Peri urban		
Sex	Female	3.67 ± 0.17	3.08 ± 0.18	4.85 ± 0.29		
	Male	3.81 ± 0.24	3.39 ± 0.37	4.21 ± 0.25		
Location	NA	NA	3.11 ± 0.15	4.94 ± 0.22		
Stage	Boar	$4.96 \pm 0.19***$	4.11 ± 0.13	$5.66 \pm 1.79***$		
	Gilt	3.12 ± 0.20	2.87 ± 0.59	4.39 ± 0.39		
	Grower	3.21 ± 0.88	4.31 ± 0.28	$5.19 \pm 0.56***$		
	Sow	3.39 ± 0.72	3.13 ± 0.28	$4.98 \pm 0.56**$		
	Weaner	3.77 ± 0.28	4.57 ± 0.18	$5.71 \pm 0.52***$		
Diet	High	NA	3.01 ± 0.27	NA		
	Moderate	NA	3.23 ± 0.28	NA		
	Low	NA	NA	4.96 ± 0.19		

Normal values of serum cortisol in pigs: 2.75 – 3.18 µg/dL [Radostitis et al 2000]

Stress hormone of pigs in Morogoro

Table 3. Plasma biochemical parameters of pigs from selected urban and peri-urban areas of Morogoro

		Glucose (mg/dL)			Total protein (g/dL)		Cholesterol (mg/dL)			
		Overall	Urban	Peri urban	Overall	Urban	Peri urban	Overall	Urban	Peri urban
Sex	Female	80.2 ± 1.9	82.1 ± 3.1	78.4 ± 2.3	6.5 ± 0.9	6.4 ± 0.1	6.5 ± 0.1	78.4 ± 2.8	98.9 ± 4.3	57.9 ± 2.4
	Male	86.5 ± 2.5	87.7 ± 4.1	85.3 ± 3.2	6.2 ± 0.1	6.2 ± 0.1	6.2 ± 02	84.2 ± 3.8	107.4 ± 8.0	61.0 ± 2.6
Stage	Boar	90.7 ± 2.2	104.1 ± 10.1	94.6 ± 10.3	6.3 ± 0.1	5.8 ± 0.2	7.0 ± 0.6	59.5 ± 3.4	$131.9 \pm 31.8*$	44.6 ± 5.4
	Gilt	83.0 ± 2.2	81.2 ± 4.6	77.8 ± 10.0	6.3 ± 0.1	6.4 ± 0.5	6.2 ± 0.2	103.2 ± 3.3	110.8 ± 40.2	66.3 ± 3.8
	Grower	98.0 ± 9.0	88.4 ± 4.6	80.2 ± 3.7	6.2 ± 0.5	6.4 ± 0.5	6.2 ± 0.2	81.9 ± 10.8	$110.9 \pm 40.2*$	66.3 ± 3.8
	Sow	76.8 ± 7.3	88.8 ± 5.5	82.0 ± 3.1	6.3 ± 0.4	6.6 ± 1.6	6.9 ± 0.3	106.3 ± 8.8	95.7 ± 5.5	52.4 ± 4.2
	Weaner	84.1 ± 2.8	78.7 ± 3.6	78.9 ± 4.9	6.4 ± 0.1	6.1 ± 0.2	6.2 ± 0.1	86.9 ± 3.4	102.1 ± 8.6	59.6 ± 3.0
Diet	High	84.2 ± 2.5	$68.4 \pm 2.6*$	NA	6.7 ± 0.1	6.2 ± 0.2	NA	79.1 ± 3.0	150.5 ± 5.1	NA
	Moderate	77.8 ± 2.9	$96.5 \pm 2.8*$	NA	6.1 ± 0.1	6.4 ± 0.3	NA	89.6 ± 3.5	56.7 ± 3.1	NA
	Low	68.4 ± 2.6	NA	83.5 ± 2.0	6.1 ± 0.2	NA	6.5 ± 0.1	NA	NA	59.2 ± 6.9

Normal values: [Plasma glucose 85–150 mg/dL; Total protein 3.5–6 g/dL; Total cholesterol 28–48 mg/dL adapted from Radostits et al 2000]

Result on farm management assessment showed that intensive system, whereby pigs are housed in a flock of 5 to over 40 animals and partitioned into different pens depending on the growth stage physiological status was the most commonly practiced pig farming system in the study area. About 53% of piggery housing were categorized as class 1 and 2 and were all found in the urban area whereas the remaining percent was class 3 and were all in the peri-urban settings. The nature/type of feeds used in the two study areas was largely influenced by local availability of the major feed ingredients such as maize bran and vegetable residues. About 80% of urban pigs were maintained on high concentrate feed due to availability of swills (restaurant leftovers) and maize bran whereas low concentrate feed with mainly vegetable residues dominated in the peri-urban settings.

DISCUSSION

The current study evaluated the welfare of pigs kept under intensive system using serum cortisol levels and some biochemical profiles as indicators of stress. The high levels of serum cortisol in peri urban pigs could be a result of some stress factors which were observed to associate management, i.e., housing and feeding. For instance, poor housing without proper roofing and partitioning was a characteristic feature of peri-urban farms involved in this study; which may have subjected the animals to environmental and social stress. Feeding of low concentrate diet to peri-urban might have also contributed to higher serum cortisol as a compensatory mechanism to low energy intake. As a regulator of metabolizable energy in the body, serum cortisol increases hepatic gluconeogenesis and the peripheral release of substrates, primarily from muscle, required for gluconeogenesis (Velazco et al., 2013; Maduka et al., 2015).

Findings on plasma biochemical parameters revealed a remarkable association with the type of feed offered to the animals. That is, the high levels of plasma cholesterol in urban pigs were due to the fact that the animals were maintained on high concentrate feed with large proportion of swills known to contain large quantities of fats and carbohydrate. A similar trend was observed in case of the plasma glucose although the difference was not statistically significant. Undoubtedly, the nature of feeds used in the study area was mainly affected by availability and affordability of feed components such as maize, wheat, sorghum, soybean and sunflower which increases competition for basal feed with human and poultry for feed resources,

thus increasing cost of production. Also, recurrence of droughts due to global warming are exacerbating the situation thus resulted into increased cost of production in the pig industry (Kanengoni, 2016).

The current study also revealed that intensive system, whereby pigs are permanently housed in a flock of 5 to over 40 animals, is the most practised system in Morogoro. Similar findings were reported by Wilson and Swai (2014) who observed that in rural areas of Tanzania, pigs are totally confined in rudimentary housing of local materials and with little consideration for hygiene or general welfare. In this study, it was further noted that majority (80%) of pigs kept were breeding sows, growers, weaners and fewer males. This showed that most farmers get rid of male pigs through selling, culling or exchanging them with males from a distant pig keeper to avoid inbreeding; this is an interesting observation implying that most small-scale farmers had knowledge on good piggery management. This observation differs from findings by Karimuribo et al. (2011) who noted that the majority of small-scale farms in Iringa Region had more growers, followed by adult pigs and relatively small proportion of piglets.

It is concluded that serum cortisol was a reliable indicator to assess stress in pigs and this was affected by some observed stressors such as housing and type of diet.

Acknowledgements

This study was funded by DANIDA - Urban and Peri Urban Livestock Farming and Environment and Public Health Challenges project in Tanzania and we are grateful for the financial support. We also acknowledge the assistance provided by the extension officers and also sincerely thank farmers for participating in this study.

REFERENCES

Aronson D. Cortisol — Its Role in Stress, Inflammation, and Indications for Diet Therapy Today's Dietitian 11(11) 38, 2005.

Barnett J L, Hemsworth P H, Cronin G M, Jongman E, Hutson G D. A review of the welfare issues for sows and piglets in relation to housing. *Australian J Agric Res*, 52:1–28, 2001.

Candiani D, Salamano G, Mellia E, Doglione L, Bruno R, Toussaint M and Gruys E.A. Combination of Behavioral and Physiological Indicators for Assessing Pig Welfare on the Farm. *J App Anim Welfare Sci*, 11:1–13, 2008.

Doyle R E, Groat J, Wynn P C and Holyoake P K Physiological and non-physiological indicators of body

- condition score in weaner pigs. J Anim Sci Anim Prod, 93 (4): 1887-1895, 2015.
- Kanengoni A. Feeding pigs in Africa is expensive. Changing their diets is the answer. The Conversation Academic rigour, journalistic flair, 2016.
- Karimuribo E D, Chenyambuga S W, Makene V W and Mathias S. Characteristics and production constraints of rural-based small-scale pig farming in Iringa region, Tanzania. *Liv Res Rural Develop*, 23 (8), 2011.
- Maduka I C, Neboh I E, and Ufelle S A. The relationship between serum cortisol, adrenaline, blood glucose and lipid profile of undergraduate students under examination stress. *African Health Sci*, 15(1) 131–136, 2015.
- Miró S M, Fernando T, Ramón M, Escribano D, Fuensanta H, Madrid J, Orengo J, Martínez S, Manteca X and José J C. Causes, consequences and biomarkers of stress in swine: an update. *BMC Vet Res*, 12:171 DOI 10.1186/s12917-016-0791-8, 2016.
- Pearce S C, Gabler N K, Ross J W, Escobar J, Patience J F, Rhoads R P, Baumgard LH. The effects of heat stress and plane of nutrition on metabolism in growing pigs. *J Anim Sci*, 91:2108–18, 2013.
- Radostits O M, Gay C C, Blood D C and Hinchcliffe K W. Appendix 3 Laboratory Reference Values: Biochemistry Clinical Examination of Farm Animals. Ed. Peter G.G. Jackson, Peter D. Cockcroft Copyright

- © 2002 by Blackwell Science Ltd. Veterinary Medicine, 9th edn, W.B. Saunders, London, pp. 1819–1822, 2000.
- Sanz M V, Johnson J S, Abuajamieh M, Stoakes S K, Seibert J T, Cox L, Kahl S, Elsasser T H, Ross J V, Isom S C. Effects of heat stress on carbohydrate and lipid metabolism in growing pigs. *Physiolog Reports*, 3(2): e12315, 2015.
- Sjaastad Ø V, Hove K, S O. Physiology of Domestic Animals. Scandinavian Veterinary Press, Physiology ISBN 8291743118, 9788291743110, 2003.
- Velazco O R B, Sanz S C, Fernando E B, García A V. Comparison of extensive and intensive pig production systems in Uruguay in terms of ethologic, physiologic and meat quality parameters. Revista Brasileira de Zootecnia, 2013.
- Verdon M, Hansen C F, Rault J L, Jongman E, Hansen L U, Plush K, Hemsworth P H. Effects of group housing on sow welfare: a review. J Anim Sci, 93:1999–2017, 2015.
- Weng R C, Edwards S A, English P R Behaviour, social interactions and lesion scores of group-housed sows in relation to floor space allowance. *Appl Anim Behav Sci*, 59:307–16, 1998.
- Wilson R T and Swai E S Pig Production in Tanzania: A Critical Review. *Tropicultura*, 32, 1, 46-53, 2014.