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Introduction

There are many factors (natural and man-
made) influencing land use and cover 

change, climate change and other physical 
and human environments. Perhaps,  the most 
significant characteristics of man’s induced 
changes on the environment are the variation 
recorded in thermal properties of the built, 
bare-land surfaces, soil and paved impervious 
surfaces which result in more solar energy 
being stored and converted to sensible heat, 
and also the removal of shrubs and trees which 
serve as a natural cooling effect of shading 
and evapotranspiration (Shao and  Zhang, 
2016; Sumari et al., 2020; Wu et al., 2021) and 
contribute to the reduction in outgoing longwave 
radiation by hindering the loss of sensible heat 
and distribution of heat (Ifatimehin, 2007; 
Ifatimehin et al., 2009; Meng et al., 2018). 

For example, Feng (2019) and Meng et al., 
(2018)  reveal that the reduction of woodland 
and vegetation, which produce natural cooling 
from shading and evapotranspiration, are shown 
to contribute to the intensity of Land Surface 
Temperature (LST). LST is crucial to land 
surface processes particularly the transportation 
of temperature between the surface ground 
and an atmospheric boundary layer (Wang et 
al., 2018; Zhang et al., 2017), which can be 
recorded and estimated in the form of sensible 
heat fluctuation and latent heat fluctuation, or 
evapotranspiration (Bosco & Thomas, 2019; 
Li et al., 2019; Peng et al., 2017). In many 
cases, it has been established that human 
population concentration severely impacts LST 
as population density, a social variable, defines 
the scale and intensity of development within a 
defined location (Zhou et al., 2019).  
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Studies show that urbanization has 
significant impact on micro and regional 
climate as the concentration of populations, 
industrial and economic activities transform 
the natural landscape to areas of largely built-
up and paved surfaces, consequently impacting 
micro (city-level) and regional climate 
(Addaney and Cobbinah, 2019; Shao et al., 
2020). Some resultant effects of this altering 
micro and regional climate include extreme 
heat waves, and variable precipitation patterns 
with a higher risk of urban flooding or drought 
(Deilami et al., 2018; Li et al., 2018; Weng et 
al., 2016). Globally, extreme heat waves are 
linked to increased heat-related mortalities and 
exacerbation of existing heath conditions such 
as respiratory and cerebral diseases (Analitis et 
al., 2014; Lin et al., 2009). While climate change 
and extreme heat waves resulting from LST are 
a global phenomenon, the impacts are not evenly 
distributed. Vulnerable and poorer regions such 
as Africa are heavily impacted due to poor land 
use planning, deficiency of basic infrastructure 
and services such as quality housing, water, and 
inefficient health care delivery system (Korah 
and Cobbinah, 2019). The ability to quantify 
urban growth and its relationship with LST 
distribution is crucial to developing sustainable 
and resilient communities and cities in line 
with achieving Sustainable Development Goal 
(SDG) 11. However, there is limited research 
examining spatio-temporal patterns and LST in 
African cities.

In situations of rapid and often unrecorded 
land use change, observations of the ground 
from space provide objective information and 
synoptic coverage of human consumption of 
the land. The application of remotely sensed 
data simplifies the synoptic analyses of earth 
observation, planning, and change at towns/
cities, and regional scale over time (Cai et 
al., 2017, Sumari et al., 2017). Such data also 
provide an important link between intensive, 
localized ecological research and regional, 
national and international preservation and 
management of the environment (Cobbinah et 
al., 2017; Korah et al., 2017; Xu et al., 2019a, 
2019b). In addition, the synoptic coverage and 
accurate analysis presented by remote sensing 
(RS) data and Geospatial Information Science 

(GIS), respectively provides the basis for its 
adoption in estimating LST by several works 
(Hassaan et al., 2019; Jeevalakshmi et al., 2017; 
Peng et al., 2017; Wijeratne et al., 2018; Zhou 
et al., 2019, 2014). Essentially, remote sensing 
is the main source for LST estimation at the 
regional and global scales (Wijeratne et al., 
2018) where as local level estimations may rely 
heavily on field data (Wang et al., 2018).

Therefore, the main purpose of this research 
was to examine the rate of LST as influenced by 
changes in land cover in Dodoma City Council 
(DCC) and Morogoro Municipal Council 
(MMC). The specific goals of the study were 
to identify LST for the highest urban growth 
in the study areas, and to compare spatial and 
temporal variation of LST as a red-flagged 
indicator of unsustainable urban development 
in DCC and MMC, a situation that applies to 
most cities in sub-Saharan Africa. The study 
fills a useful knowledge gap for Tanzanian r as 
it aims at fulfilling a number of indicators for 
SDG 11 which collectively seek to “make cities 
and human settlements inclusive, safe, resilient 
and sustainable” by year 2030.

Materials and Methods
The Study Site

This study was conducted in Dodoma 
City Council (DCC) and Morogoro Municipal 
Council (MMC) as part of Dodoma and 
Morogoro regions, respectively, in Tanzania as 
shown in Figure 1. The geographical location of 
Dodoma region is in the central part of mainland 
Tanzania between latitude 40 and 70 South, and 
longitude 350 and 370 East. Administratively, 
the region is divided into seven districts as 
follows: Bahi, Chemba, Chamwino, DCC, 
Kondoa, Kongwe, and Mpwapwa (URT, 2010; 
URT, 2013). MMC is one of the nine districts 
in Morogoro Region. It is located between 370 
East and 60 South of the Equator. Other districts 
include Kilosa, Ifakara, Kilombero, Malinyi, 
Mvomero, Gairo, Ulanga and Morogoro Rural.

The environment subtype of köppen climate 
taxonomy for Dodoma is "Bsh" or a mid-latitude 
steppe and desert climate. With an average 
annual temperature of 22.8°C, the warmest 
(19.40C) and coolest (19.40C) months are 
November and July, respectively. The average 



265Impact of Urban Expansion on Land Surface Temperature in Dodoma and Morogoro

annual precipitation in Dodoma is 563.9 mm, 
with an average of 42 days of rain (Weatherbase 
Dodoma, 2020). Meanwhile, the environment 
subtype of köppen climate taxonomy for 
Morogoro is "Aw" or a tropical savanna climate 
(Weatherbase Morogoro, 2020). The average 
annual temperature in Morogoro is 23.9°C with 
January as the warmest month (26.1°C), while 
July is the coolest month (21.1°C). The average 
annual precipitation in Morogoro is 889 mm, 
with an average of 60 days of rain annually. 

Remote Sensing Data and Data processing
Cloud-free, Landsat 30m resolution 

satellite images were used to conduct urban 
heat study in DDC and MMC. Hence, the 
Landsat 30m products were obtained from 
http://earthexplorer.usgs.gov/ website of United 
States Geological Survey (USGS) for the years 
July 2000, September 2007, September 2017, 
and August 2018 for MCC and September 2000, 

October 2008, October 2016 and October 2018 
for DCC of dry season to investigate the rate or 
urban temperature within each city. All Landsat 
images were gathered from the path/row number 
168/064 and 167/065 for DCC and MMC 
(Table 1), respectively, with the same spatial 
resolution. Pre-processing such as radiometric 
and geometric correction were performed 
using ERDAS Imagine 2015 and ArcGIS 10.5. 
Seven land cover types (built-up, agriculture, 
water, woodland, bareland, wetland, and forest)

(NAFORMA, 2015) were identified through 
visual analysis and knowledge of the area. 
Random forest supervised image classification 
was used for image classification, which is most 
frequent and comprehensively been used in 
image classification methods in remote sensing 
(Shao et al., 2016). 

The classification accuracy assessment was 
implemented for each land cover type using 

Figure 1: The study-setting showing, Dodoma City Council (DCC) and Morogoro 
Municipal Council (MCC)
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training sampling points integrated with Google 
Earth Engine (satellite imagery) (Sumari et al., 
2020; Shelestov et al., 2017). The result showed 
that the producer accuracy and user accuracy of 
all cities was higher than 87% (Fig. 11), which 
can achieve the correctness requirements for the 
land use change assessment.

Spatial-temporal dynamic of LST 
The LST extraction approach used in the 

study is presented in Figure 2 above. Firstly, 
imagery is preprocessed using radiance scaling 
factors in statistic file then transformed to the 
digital number value of the pixels to the top-of-
atmosphere (TOA) radiance through equation 
1, and equation 2 to TOA reflectance values 
in equation 3, then conversion to At-Sensor 
brightness heat using equation 4. Finally, the 
LST, spatial patterns of land cover change were 
analyzed. The LST, Normalized Difference 
Vegetation Index (NDVI) and Normalized 
Difference Built Index (NDBI) were achieved 
using equations 5, 6 and 7. 

L M Q AL cal Lλ = + 		                (1)

Where, Lλ indicates the Top-of-Atmospheric 
(TOA) spectral intensity Watts

m Srad m2 ∗ ∗








µ
; ML is 

band-precise multiplicative rescaling factor 

from the statistical file, AL is band-precise 
additive rescaling factor from the statistical file; 
Qcal is Quantised and adjusted standard pixel 
value (DN).
P M Q Ap cal pλ = + 		                (2)

Where, Pλ represents the TOA without 
adjustment for solar angle; Mp is band-precise 
multiplicative rescaling factor from the statistic, 
Ap is band-precise extract rescaling factor from 
the statistic; Qcal is Quantized and calibrated 
standard product pixel value (DN); were a 
rectification for the solar angle is qn. 3.
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Table 1: Administrative Information of the study areas 
Area Location 

Path/Row
Land Area 
(Km2)

Wards Estimated 
population 
2002-2016

June-Oct (max 
& min temp) 

Jul-Oct  (mm) 
precipitation

DDC 168/064 2,576 37 326,811-454,128 31-18OC 0.03-2.08mm

MMC 167/065 540 28 227,921-359,684 35-24OC 17-25mm

Figure 2: Workflow adopted for the study areas
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Where, pλ indicates TOA earthly reflectance; θSZ 
is local angle of sun elevation which is provided 
in the statistic file; θZE is zenith angle; 

Conversion to At-Sensor brightness heat, 
TIRS band data were transmuted from spectral 
radiant to intensity temperature using eq.4 
thermal constants delivered in the statistic file.
T K

K
L

=
+











2

1 1ln
λ

			                 (4)

Where, T represents the At-Sensor intensity heat 
(K); Lλ is TOA spectral brightness 

Watts
m Srad m2 ∗ ∗








µ
; K1 represent the constant 

thermal conversion from the statistic file, 
K1=666.09 and K2=1282.71 for Landsat 7 (band 
6) data while for Landsat 8 (band 10) K1=774.88 
and K2=1321.08
Then we applied the equation 5 to calculate 
LST; 
LST BT W BT P e= + ∗ ∗1 ( ) ln( ) 		               (5)

where: BT is At-Sensor brightness heat, W= 
wavelength of absorbed radiance (Landsat 8: 
band 10 and band 6); P=h*C⁄S (1.438*10-2) 
mk)=14380, Plank’s constant h=6.626*10-34)
Js, Boltzmann constant S=1.38*10-23) ) J/K and 

Velocity of bright C=2.998*108 m/s. ln(e)  is land 
cover from NDVI, where; e=0.004Pv+0.986 
and Pv indicates the quantity proportion of the 
vegetation eq. 6

Pv NDVI NDVI
NDVI NDVI

=
−
+









max min

max min

2

		                (6)

Where: NDVImax is Normalized Difference 
Vegetation Index maximum for vegetation and 
NDVImin is Normalized Difference Vegetation 
Index minimum. Similarly, through eq. 7 we 
investigate green vegetation and crops patterns 
based on the reflectance,
NDVI Band Band Band BandNIR RED NIR NIR= − +( )        (7)

Where: BandNIR (near-infrared) is surface 
reflectance of band 4 of TM/ETM plus, and 
BandRED is the surface reflectance of band 3 of 
TM/ETM plus images.

Results
Spatial pattern of the LULC in DCC and 
MMC 

The spatial-temporal pattern of LULC 
of DCC and MMC from 2000 to 2018 (Fig. 3 
and Fig. 4) indicates that there have been rapid 
land use and cover modification and alteration 
over the 18-year study period. The details for 
DCC show that while built-up and agricultural 

Figure 3: Spatial distribution of land cover map for Dodoma and Morogoro
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land increased (from 1.6% in 2000 to 5.3% in 
2018 and from 37% in 2000 to 51% in 2018, 
respectively), woodland and forest land cover 
categories declined consistently (from 47.5% in 
2000 to 33.5% in 2018 and from 7.5% in 2000 
to 4.3% in 2018, respectively) over the study 
period. The greatest transformation for built-up 
land use (over 37 km2) took place between the 
short periods of two years (2016 to 2018) while 
the entire land use, the woodland cover recorded 
the greatest decline (over 220 km2) between 
2008 and 2016. In the case of MMC, the built-up 
category is by far the most expansive land cover 
type over the 18-year study period with a total 
expansion area of over 34 km2. Over the same 
period, agricultural land declined by almost 17 
km2. Comparatively, the land use and cover of 

DCC recorded a more drastic transformation 
than that of the MMC.

Urban Expansion, Population Growth in 
DCC & MMC

The metropolitan mark (Fig. 5 and 
Table 2) shows that much of the metropolitan 
development took place northward of both 
cities. For DCC, the ultimate urban expansion 
was recorded from 2016 to 2018 and from 
2008 to 2016 converting an area of 38 km2 and 
40 km2, respectively. This pattern is correlated 
with population increase (Fig. 6) detailed during 
the same period where the MMC recorded an 
increase in population from about 190,000 in 
the year 2000 to over 310,000 in 2017, while 
DCC recorded a population increase from about 

Figure 4: Rate of change for each LULC class in (a) DDC and (b) MMC

Figure 5: Urban footprint of (a) DCC and (b) MMC from 2000 to 2018
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310,000 in the year 2000 to 450,000 in 2017. 
A very high variance dependency (0.9994 and 
0.9996 for DCC and MMC, correspondingly) 
is established between population growth, as 
an independent variable, and urban expansion, 
as a dependent variable (Fig. 6). Moreover, 
the correlation between urban development 
(roads, buildings, impervious surfaces, etc.) and 
increased heat island or surface temperature 
have been established by several studies 
including Yang et al., (2019) and Zhou et al., 
(2019).  

The Estimation of NDVI and spatial 
distribution of LST

The NDVI indices and LST have been 
mapped across the two metropolitan centers 
(Fig. 7 & 8). NDVI have been improved and 
taken up to the experimental amount of urban 
land. Assessments of vegetation in the study 
area were performed as a step towards the 
fortitude of the vegetation health over the period 
of eighteen years’ time-period. Figure 7 shows 
that the healthy and non-degraded component 
of the study area discovered high NDVI (an 

indication of healthy vegetation) than degraded 
areas. Relatively, the. maximum NDVI values 
were recorded in MMC. In general, extraction 
of NDVI pixels for our region of interest (ROI) 
provides values that range from a low of -0.17 to 
a maximum of 0.77 for DCC and a low of -0.18 
to a maximum of 0.97 for MMC. According 
to Cao et al. (2018), NDVI values of +1 (0.8 
- 0.9) signify dense forests, >0.3-0.5 represents 
medium vegetation and >0.1 to 0.3 represents 
low vegetationThe applicability of NDVI in this 
study is thought to be relevant for the reason that 

the amount and quality of vegetation present 
within the MMC and DCC are significant 
factors, and can be used to infer general 
vegetation situation which in turn serve as an 
inferential basis for moisture content levels of 
soils (Ujoh et al. 2019; Xiong et al. 2017). The 
NDVI maps show a constantly and sequentially 
a slighter difference between the near-infrared 
and the red reflectance, hence implying smaller 
vegetation index over the study years (from 
2000 to 2018) for both locations.

Table 2: Urban land (Km2) and proportion (%) of the urban expansion from 2000 to 2018
City Urban Land Area (Km2) Urban Land Expansion (%)

DCC 2000 2008 2016 2018 2000-2008 2008-2016 2016-2018 2000-2018
43 62 102 140 0.7 1.6 1.4 3.7

MCC 2000 2007 2016 2018 2000-2007 2007-2016 2016-2018 2000-2018
15.5 21.9 43.3 51.1 1.2 3.9 1.5 6.6

Figure 6: Population growth trend for DCC and MCC
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The LST maps (Fig. 8) reveal minimum and 
maximum temperatures of 6oC and 54oC in DDC 
and MMC with a high proportion of temperature 
levels ranging from around 28oC to 35oC. The 
industrial land cover taken on for this study 
refers to the overall metropolitan surface land 
cover, which includes concrete and corrugated 
building roofs, streets, and other pervious and 
impervious surfaces within the two metropolitan 
centers. The results show that the built-up land 
cover has time after time extended from 1.6% in 

2000 to 5.3% in 2018, in tandem with surface 
temperature increase within the same period.

In examining the different dynamics, which 
interplay in increasing the LST in some cities, a 
major focus was given to urban environmental 
components (such as NDVI, land-use, and 
population density) that determine temperature 
variation.  Although, the study considered land-
use changes in the urban area as the major factor 
driving LST, results of analyses of satellite 
images in Dodoma show higher LST values 

Figure 7: Spatial distributions of the NDVI of DCC (a, b, c, d) and MMC (e, f, g, h)

Figure 8: Spatial distributions of the LST of DCC (a, b, c, d) and MMC (e, f, g, h)
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in 2018 than 2000, while both urban areas 
have more built-up in the year 2018 than 2000. 
According to Table 2, land-use change pattern 

of those areas were distressed by the increase of 
LST value in 2018.

Figure 9: The correlation coefficient of the average LST, the NDVI and the built up 
percentages for DCC and MMC
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Correlation Coefficient of NDVI, LST and 
Built-up for DCC and MMC

The correlation coefficient is used in this 
study to calculate the strength and direction of 
the relationship between LST and NDVI, LST 
and built-up area, and NDVI and built-up area 
for DCC and MMC. The results (presented as 
Fig. 9) show that the strength of relationship 
between NDVI and LST for year 2008 in DCC is 
relatively stronger negative (at -0.061) implying 
that the two variables are strongly correlated 
in opposite directions. In essence, as the value 
of NDVI increases, that of LST decreases and 
vice versa. The correlation coefficient results 
for LST and built-up area, and NDVI and built-

up area for DCC show statistically insignificant 
results. For MMC, the results of the regression 
of correlation analysis between LST and NDVI 
from 2000 to 2018 as dependent variable 
(N=number of Wards), exhibits a strong positive 
relationship for the years 2000 (R2=0.65), 2007 

(R2=0.57) and 2018 (R2=0.64). However, for 
the correlation between LST and built-up 
proportion, the strength of the relationship is 
positively weak, meaning that although the 
relationship is statistically insignificant in terms 
of strength, an increase in LST means there 
is an increase in built-up area and vice versa. 
Similarly, the relationship between NDVI and 
built-up land cover for MMC is a negative one, 
in spite of its statistical insignificance of the 
producers and user's accuracy assessment of 
classified Landsat images that are statistically 
significant and acceptable for further analysis 
by urban planners and environmental experts 
(Fig. 10).  

Discussion
Urban expansion is one of the most 

significant components of global change 
responsible for modification of the land-use 
surface, species diversity, and quality of human 
life (Lourenço et al., 2018). It is expected that 

Figure 10:	The percentage of accuracy assessment for each classified classes in (a) DCC and 
(b) MMC
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an improved knowledge of urban expansion and 
global heat will contribute to emerging a more 
sustainable environment for rapidly expanding 
urban areas. Using Multi-temporal Landsat 
TM/ETM+ imagery, land use change detection 
techniques were applied to quantify urban 
expansion patterns as well as its impacts on Land 
Surface Temperature (LST). Rapid increase 
of built-up area from 2000 to 2018 in DCC 
and MMC was determined. The percentage of 
urban expansion from 2000-2008, 2008-2016, 
2016-2018 for DCC was 0.7, 1.6, 1.4, 3.7%, 
respectively, and from 2000-2007, 2007-2016, 
2016-2018, MCC increased by 1.2%, 3.9%, 
1.5%, 6.6%, respectively. The impact of urban 
expansion was the decrease of agriculture land, 
woodland and forest area in both two cities. 
For example, Sumari et al., (2019) shows that 
in Morogoro urban the most significant land 
use change was the conversion from farmland 
to built-up area. Urban expansion which arisen 
mostly around the midpoint of the city (city 
center) was associated with population growth 
and economic development. Essentially, the 
population of Morogoro Municipal was 227,921 
and 359,684 thousand while in Dodoma City 
Council was 236,811 and 454,128 from 2002 
and 2016. Rapidly increasing population 
prompted the expansion of urban land cover 
and the conversion of agricultural land and 
forest to impermeable surface. Therefore, these 
impermeable surfaces have relatively higher 
LST, which may lead to temperature increase in 
the long run. (Weng et al., 2019; Weng and Fu, 
2014; Zhou et al., 2014)

Given the rate of expansion of Morogoro 
and Dodoma urban areas triggered by the 
increasing urban population, there is a 
corresponding intensity in demand for resources 
including energy, water and land which 
collectively heightens the need to improve urban 
management and planning for sustainability 
(Gao et al., 2015). For example, it is becoming 
increasing necessary for cities to adopt smart 
and sustainable approaches through the usage of 
renewable energy sources rather than remnant 
fuel powered energy sources that cause pollution. 
More specifically, urban planning strategies 
need to account for different consequences that 
address urban growth patterns and reverses 

declining/worsening micro-climatic conditions. 

Conclusion 
This study has investigated the outcome of 

urban expansion on the land surface temperature 
of Dodoma and Morogoro urban areas with a 
number of observations gathered from the study. 
Firstly, both towns have experienced rapid 
growth due to increase in population between 
the periods 2000 to 2018. Secondly, there has 
been remarkable degradation of vegetation 
land cover areas in favour of increased built-
up areas. The outcome shows that, the land 
surface temperature of Morogoro municipal 
and Dodoma city were amplified through the 
study period with a high LST of (>23oC). The 
results also show that NDVI and LST present 
a negative correlation, while built-up areas and 
LST reveal positive correlation, which confirms 
that the densely built-up and residential areas 
have recorded high increase in LST. To address 
these challenges, it is pertinent that future urban 
city designs and planning should incorporate 
greening. Finally, the study revealed that the 
rising population growth and urban expansion 
directly affect the increase in built-up areas, 
which consequently lead to an increase in LST. 
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