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EXTENDED ABSTRACT 

 

Moisture scarcity is a limiting factor for sustainable agricultural productivity of dry 

sub-humid agroecosystemsof sub-Saharan Africa (SSA). Designing sustainable 

agricultural system management strategies responsive to the fluctuating soil 

moisture regime is essential. Detailed and accurate information on soil moisture 

storage conditions is essential for modelling agricultural system productivity. 

Moisture storage capacity of the soils is quantified by moisture holding capacity 

(MHC) which is defined as the difference between moisture content at field capacity 

(FC)and wilting point (WP). Data availability is limited for SSA due to high costs 

associated with direct measurement of MHC. Pedo-transfer functions (PTFs) and the 

digital soil mapping (DSM)framework offer an opportunity for characterising spatial 

variability of MHC through indirect approaches that integrate mathematical and 

statistical methods. Though various methods exist for prediction and mapping MHC, 

machine learning methods offer an avenue for more accurate characterisation of 

MHC. The main objective of this study was to improve understanding on estimation 

of soil moisture holding capacity at large spatial domains using machine learning 

algorithms. This was achieved througha probabilistic sampling scheme, 

development of MHC PTFs, and 3-dimensional characterisation of spatial variability 

of MHC. One hundred (100) sampling locations were established over a geographic 

area of about 44 km
2
by k-means clustering using R-statistical software. Two 

sampling strategies were evaluated for optimisation of the sampling locations –a 

stratified random sampling (STRS) and spatial coverage sampling (SPCS). Bulk soil 

samples and soil cores were taken at three depth intervals of 0-30cm, 30-60 cm, and 
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60-100 cm at each sampling location. Geostatistical analysis and cross-validation 

were performed for assessment of the sampling schemes using root mean square 

error (RMSE), coefficient of determination (R
2
) and Mean Error (ME) as indices. 

West-East anisotropy was evident in the MHC probably associated with topographic 

and land cover effects. Spatial dependence ratio for the stratified random sampling 

scheme (73 %) was higher than that of the spatial coverage sampling scheme (19 %). 

This implied that SPCSdesign had better spatial correlation than the STRS design 

due to a regular configuration of sampling nodes for SPCS design.Validation 

resultswere better for STRS design than SPCS design. Pedo-transfer functions were 

developed for FC and WP from support vector regression and multiple linear 

regression with soil physico-chemical properties as predictors. Support vector 

regression-PTFs had slightly better accuracy (RMSEs = 0.037 cm
-3

cm
-3

) than 

multiple linear regression PTFs (RMSEs = 0.038 cm
-3

cm
-3

) and other published 

PTFs. R
2
 values for SVR-PTFs were 66.3 and 67.9 % while those for MLR-PTFs 

were 64.5 and 67.3% for FC and WP, respectively.Two machine learning algorithms 

(Random forests(RF) and cubist decision trees (CB)) combined with soil depth 

functions were evaluated for 3-dimensional mapping of MHC. Two DSM scenarios 

were also evaluated (Measured data only (DSM-A) and measured plusPTF-

estimated data (DSM-B)).Principal component analysis was performed on spatial 

covariates layers representing soil forming factors for dimension reduction. Ten 

principal components with a cumulative variance > 70 % were selected for mapping 

process. Equal-area quadratic spline soil depth functions were fitted to model 

continuous vertical distribution of MHC data. Prediction accuracy was good with 

RMSEs ranging between 0.011-0.015 cm
-3

cm
-3

and R
2
 between 36 - 81.4 %. Random 
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forests had better accuracy than the Cubist decision trees. A RF-CB ensemble 

improves prediction accuracy. 
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CHAPTER ONE  

 

1.0 GENERAL INTRODUCTION 

1.1 Relevance of soil moisture holding capacity in drysub-humid regions 

Dry sub-humids are a hotspot for food insecurity (Rockstrom et al., 2007; Shiferaw 

et al., 2014) due to their inherently complex ecological shifts characterised by 

climatic variability, low precipitation, and persistent moisture scarcity(Enfors et al., 

2008; Wang et al., 2012).A substantial decrease in crop production of smallholder 

farms in dry sub-humid sub-Saharan Africa (SSA)is evident due to increased 

uncertainty of soil moisture supply,greatly contributing to crop loss and decline of 

livelihood quality (Shiferaw et al., 2014; Reynolds et al., 2015). Designing 

agricultural interventions to mitigate this existential agro-hydrologic challenge is 

essential for increased cropproduction to satisfy the rising food demand (Barron, 

2004; Garrity et al., 2012).Precise information on soil moisture holding capacity 

(MHC) is vital for understanding dynamics of the various interventions 

onproductivity of agricultural systems (Kilasara, 2010). 

 

Soil moisture holding capacity (MHC) is the difference between moisture at field 

capacity (FC) and that at wilting point(WP) (Ladson et al., 2006; Asgarzadehet al., 

2010). MHC is soil moisture that is theoretically available for crop consumptive use 

(Ladson et al. 2006). Field capacity is the upper limit of MHC while WP is the lower 

limit. Measurements of moisture at FC and WP are conventionally done at 

predefined matric suctions. Wilting point is measured at a matric suction of 1500 

kPa. However, there is no universally established matric suction for FC (Gaiseret al., 

2000; Asgarzadehet al., 2010). Matric suctions for FC reported in literature range 
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from 5 kPa to100 kPa (Asgarzadehet al., 2010), mostly dependenton soiltexture 

(Asgarzadehet al., 2010) or geographical region (Gaiseret al., 2000).For instance, 

the matric suction for FC is 5 kPa in the United Kingdom and 33 kPa in the United 

States. In tropical regions, 33 kPa has been used as standard matric suction for FC 

(Gaiser et al., 2000). Moisture holding capacity is a necessary parameter for 

description of vadose zone fluid flow processes for water and nutrient management 

in agricultural systems (Santra et al.,2009; Vereecken et al., 2010).  

 

1.2 Spatial variability of MHC at large spatial domains 

Mapping spatial variability of soil MHCat large scale is challenging (Levi et al., 

2016) as it exhibits a high degree of spatial variability at different scalesinfluenced 

by numerous factors (Si, 2008; Biswas et al., 2013; Lark, 2016).Spatial variability of 

MHC considerably influences surface water storage, infiltration rate, 

evapotranspiration rate, and the recharge rates vary correspondingly, thereby 

creating uncertainties in assessment of the water balance for agricultural production 

systems (Zhu and Mohanty, 2006). Detailed and accurate characterisation of the 

spatial variability of MHC is thusinevitable for better agricultural water management 

(Xu et al., 2009; Huang and Li, 2010). 

 

Costs associated with direct determination of MHC at large scales like farming 

systems areprohibitive (Santra et al., 2009; Rizzo et al., 2016).Soil-landscape 

modelling is the most amenable approach at such large scale (Bou Kheir et al., 2010; 

Odgers et al., 2011). Conventional soil surveys have adopted a choropleth mapping 

approach that representssoil variability ashomogenousmutually exclusive contiguous 
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polygons(Moore et al., 1993; Odgers et al., 2011; Adhikari et al., 2013; Rizzo et al., 

2016).Soil variation is continuous and this approach of conceptual soil boundaries 

(Odgers et al., 2015) does not sufficiently represent the intrinsic spatial variability of 

soil MHC (Moore et al., 1993; Odgers et al., 2011; Adhikari et al., 2013; 

Taghizadeh-Mehrjardi et al., 2015). 

 

Digital soil mapping (DSM) is an efficient alternative for quantitative 

characterisation of spatial variability of MHC properties through the application of 

statistical and mathematical tools (McBratney et al., 2003; Levi et al., 2015). The 

advantage of the DSM approach is that the continuous spatial variability of MHC 

can be mappedwith a quantitatively defined soil-landscape model which does not 

heavily hinge on qualitative knowledge (Odgers et al., 2011). DSM also has capacity 

to provide quantitative estimates of uncertainty of predictions(Odgers et al., 2011; 

Odgers et al., 2015). DSM can also integrate remote sensing products like DEMs for 

mapping soil MHC (Lagacherie et al., 2013;Taghizadeh-Mehrjardi et al., 2015). 

 

1.3 Challenges and opportunities for DSM in smallholder farming systems 

Implementing sustainable agricultural oragro-hydrological interventions for higher 

crop yields in smallholder cropping systems in SSA requires digital soil maps at 

increasingly finer scales (Lagacherie et al., 2013; Hengl, et al., 

2017a).Unfortunately, MHC maps with a suitable scale for crop management in 

smallholder systems are scarce or often missing (Rizzo et al., 2016; Nussbaum et al., 

2017). Although some DSM products have been developed for SSA (Leenars et al., 

2015; Hengl et al., 2015; Hengl et al., 2017a; Hengl et al., 2017b), there is 
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discordance of the spatial resolutions of these DSM productsfor resolving issuesat 

the farm scale (Malone et al., 2017). Their grid cells are too coarse for meaningful 

on farm assessments (Malone et al., 2017), ofsmallholder farm holdings of less than 

1 hectare in Eastern Africa (Pender et al., 1999).Accurate and fine-scaleDSM 

predictions of MHC propertieswould have better utility for decision support in 

smallholder systems(Nussbaum et al., 2017; Hengl et al., 2017a). For instance, to 

facilitate suitable crop enterprises selection adapted to the moisture limitations of 

their fields.  

 

Accuracy ofDSM depends on availability of data (Odgers et al., 2015) and 

distribution of sampling locations (Brus et al., 2011). Data has,however, not been in 

adequate supply for SSA (Kilasara, 2010; Cambule et al., 2014) with soil databases 

poorly developed for the region (Kilasara, 2010). Uniformly distributed and 

probabilistic sampling locations across the geographic space enhance precision and 

consistence of DSM predictions (Brus and Heuvelink, 2007; Walvoortet al.,2010). 

Pedo-Transfer Functions (PTFs) which use basicsoil physico-chemical data (e.g. 

texture, soil organic carbon) to estimate MHC (Zinn et al., 2005;Vereecken et al., 

2010; Haghverdi et al., 2012) have been integrated in a DSM framework to estimate 

missing MHC data (Leenars et al., 2015). Some of the PTF techniques commonly 

used include multiple linear regressions (MLRs), support vector machines (SVMs), 

artificial neural networks (ANNs) (Khlosi et al., 2016). However, existing PTFs are 

bound to unique development environments or have not been suitably conceived for 

application which results in propagation of uncertaintiesindigital maps (Chirico et 

al., 2007).Remote sensing data is a cost-efficient means to overcome the lack of soil 

data that still severely limits DSM performance (Lagacherie et al., 2013). Many 
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DSM techniques exploit the correlation between soil properties and soil forming 

factors by using remote sensing data as covariates. Geostatistical analysis has been 

one of the DSM techniques that has been widely applied (Biswas et al., 

2013;Veronesi et al., 2012; Friedel and Iwashita, 2013). 

 

Soil depth is a key variable for soil moisture storage capacity. It controls numerous 

surface, vadose processes and generally the hydrological response of a landscape 

(Lacoste et al., 2016). Therefore, knowledge of soil MHC distribution in the vertical 

dimension and landscape is important. Lateral and vertical (3-dimensional) 

characterisation of spatial variability of soil MHCis warranted for prediction of un-

saturated water and solute flow in the vadose (Saito et al., 2009; Vereecken et al., 

2010).Numerous studies have coupled geostatistical analysis and soil depth 

functions to characterise the 3-dimensional variation of soil properties(Malone et al., 

2009; Veronesi et al., 2012). Soil depth functions model discrete soil horizon data 

into a continuous distribution (Malone et al., 2009; Minasny et al., 2013). Equal area 

quadratic splines have been highlighted as the most efficient soil depth functions 

(Malone et al., 2009; Adhikari et al., 2013). 

 

1.4 High resolution mapping of MHC in data sparseregions 

High resolution MHC mapping for large spatial domains in data sparseregionsis a 

challenge (Odgers et al., 2015; Malone et al., 2016). There is need to develop 

approaches to produce more accurate, complete and consistent maps (Hengl et al., 

2017a). Though the idea ofsampling a sufficient MHC dataset appeals (Malone et 

al., 2016), it is often impractical or prohibitive due to cost or timeconstraints 
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(Odgers et al., 2015). Therefore, there is need toconsider less costly approaches like 

model extrapolation (Malone et al., 2016). 

 

The widely applied geostatistical analysis is highly sensitive to small data sets 

(Heuvelink, 2014). Further, geostatistical analysis assumes that data is normally 

distributed (Kavianpoor et al., 2012). This makes the geostatistical approach less 

ideal for mapping soil propertydata like MHC which is non-linear (Vereecken et al., 

2010) andis of a non-normal distribution class. Machine learning algorithms (MLAs) 

are an attractivealternative for DSM ofsoil MHC (Kovačevićet al., 2010; Ließet al., 

2016; Hengl et al., 2017a). MLAs are non-parametric (Ustuner et al., 2015) and 

make no assumption on data distribution class. 

 

Machine learning algorithms are generally a broad set of models used to determine 

patterns in data and to make predictions (Brungard et al., 2015). They have gained 

popularityin DSM (Odgers et al., 2011; Brungard et al., 2015; Taghizadeh-

Mehrjardiet al., 2015; Hengl et al., 2017a;Hengl et al., 2017b). Some MLAs applied 

in DSM are; artificial neural networks, support vector machines (Kovačevićet al., 

2010; Ließet al., 2016), k-Nearest Neighbours (Taghizadeh-Mehrjardiet al., 2015). 

Random forests (RF) (Taghizadeh-Mehrjardiet al., 2015; Hengl et al., 2017a; Hengl 

et al., 2017b) and cubist decision trees (CB)(Adhikari et al., 2013; Adhikari et al., 

2014) are more often applied in DSM. 

 

Though MLAsare often applied to large datasetsfor soils mapping (Brungard et al., 

2015; Hengl et al., 2017a; Hengl et al., 2017b), some case studies have highlighted 

positive results on small soil datasets (Khosi et al., 2016). Where sparse and 
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spatially referenced discontinuous soil data exists, the soil data can be linked to 

spatial environmental covariates like remote sensing data, using MLAs to generate 

spatially continuous maps (Nussbaum et al., 2017). With remote sensing data 

increasingly becoming freely available, fitting novel MLAs to large sets of 

covariates for soil mapping is now common (Ließet al., 2016; Hengl et al., 2017a). 

However, relationships between soil properties like MHC and spatial environmental 

covariates need to be better understood (Brungard et al., 2015). This research work 

was thus aimed at improving understanding on estimation of soil moisture holding 

capacity at large spatial domains using machine learning algorithms. 

 

1.5 Justification 

Crop production is currently facing unprecedented challenges inter alia climate 

change and increasing water scarcity (Raes et al., 2009; Huang and Li, 2010). 

Establishing and sustaining resilient agricultural systems that can optimally utilise 

the scarce water resources for sustainable crop production will be a key mitigation 

strategy. The mechanism involves an assessment of the impact of agricultural 

practices and climate on resource use dynamics and crop yields. Simulation models 

(e.g. crop models such as AQUACROP, DSSAT and APSIM) with soil moisture 

holding properties as input parameters are key components of impact assessments to 

predict the hydrological, ecological or economic effects of the prospective climate 

change on agricultural production (Raes et al., 2009). This research contributes to 

improvement of the predictive capacity and utility of simulation models, through 

better scaling of soil MHC at higher system levels. The research will provide a 

spatially-explicit decision aid to support policy formulations for crop production 
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management at different scales with direct benefit in precision agriculture, irrigation 

water management, and development of agricultural production zones. 

 

1.2 Objectives of the Study 

The general objective of this research was to improve understandingon estimation of 

soil moisture holding capacity at large spatial domains using machine learning 

algorithms. 

 

Specific objectives were to:  

i. Assess the suitability of a probabilistic sampling scheme for mapping soil 

moisture holding capacity. 

ii. Evaluate pedo-transfer functions for prediction of soil moisture holding 

capacity. 

iii. Evaluate random forests and cubist decision trees for spatial estimation of 

soil moisture holding. 

 

1.2.1 Hypotheses 

The following hypotheses were tested: 

1) Probabilistic and non-probabilistic sampling yield similar spatial estimates 

2) Mean MHC predictions for SVM PTFs and MLR-PTFs are equal 

3) Random forests and cubist decision trees generate similar spatial estimates of 

MHC 

4) Combining measured and predicted MHC data in DSM yields similar 

accuracy in MHC maps like using measured data alone 
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1.3 Outline ofDissertation 

The research in this dissertation was aimed at improving understanding on 

estimation of soil moisture holding capacity at large spatial domains using machine 

learning algorithms. Chapter One is a general introduction highlighting the research 

gaps. Chapters Two to Four are manuscripts discussing approaches contributing to 

fulfilling the main research objective. Chapter Two assesses suitability of a 

probabilistic sampling scheme for mapping soil moisture holding capacity.A k-

means algorithm was used for establishing two sampling designs – stratified random 

sampling and spatial coverage sampling. Geostatistical analyses were performed to 

assess the two designs for mapping MHC. Chapter three addresses the development 

of PTFs for estimation of soil moisture holding capacity. Support vector machine 

learning algorithm was used for developing predictive models for FC and WP. 

Comparisons were made with multiple linear regression method. Chapter 

Fourevaluates two machine learning algorithms for3-Dimensional mapping of soil 

moisture holding capacity. An evaluation of the Random Forests and Cubist machine 

learning algorithms for predictive mapping was performed in combination with soil 

depth functions. Mapping accuracy was also evaluated with substitution of measured 

data with PTF-estimated data. Chapter Five is a synthesis of the research work with 

general conclusions and recommendations. 
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Figure 1.1: Conceptual Framework 
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CHAPTER TWO  

 

2.0 OPTIMISING SAMPLING DESIGN FOR MAPPING SOIL 

MOISTURE HOLDING CAPACITY USING PROBABILISTIC 

APPROACH 

 

ABSTRACT 

Management of moisture in cropping systems necessitates a characterisation of 

spatial variability of soil moisture holding capacity (MHC). Geostatistical methods 

as part of the digital soil mapping (DSM) toolset provide a statistical approach for 

scaling the variability of soil MHC. Probabilistic and uniform geographic 

distribution of the sampling points over the target area provides unbiased and high 

gains in accuracy of predictions of MHC. The main objective of this study was, 

therefore, to optimise a probabilistic sampling scheme for mapping MHC using a k-

means clustering algorithm. This was implemented in R-software using the spcosa 

package.The study area was divided into 100 geostrata of equal area and sample 

locations randomly selected from each geostratum to establish a stratified random 

sampling scheme (STRS). Soil samples were taken at each of the sampling locations 

and analysed.The STRS method was compared to a spatial coverage sampling 

scheme (SPCS) using variography analysis and ordinary kriging interpolation with 

the R-software gstat package. Spatial dependence of STRS was 72 %, indicating a 

weaker spatial structure than forSPCS with a spatial dependence of 19 %. 

Performance indicators for ordinary kriging (Mean Error (ME) and Root Mean 

Square Error (RMSE)), respectively, were slightly better for STRS (0.0014 and 

0.156) than SPCS (0.0017 and 0.161). The STRS is therefore an optimal sampling 

scheme for mapping the spatial distribution of soil MHC. 
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2.1 INTRODUCTION 

Availability of soil moisture in crop production systems in sub-Saharan Africa is a 

widespread challenge for sustainable crop production in smallholder farms (Barron, 

2004). Knowledge of soil moisture storage conditions is important for management 

and continuity of moisture supply within these agricultural areas (Santra et al., 

2008). Moisture storage capacity of soils is quantified by moisture holding capacity 

(MHC) which is defined as the difference between moisturecontent at field capacity 

(FC) and wilting point (WP) (Schoonover and Crim, 2015; Asgarzadehet al., 2010). 

Field capacity is characterised as moisture retained in a saturated soil under free 

drainage for a period of 48 hours(Novák and Havrila, 2006).A soil matric suction of 

33 kPahasbeen widely applied as theupper limit of MHC(i.e. FC) (Gaiser et al., 

2000). Wilting point is defined as soil moisture content after equilibration at a matric 

suction of 1500 kPa. Wilting point is considered as soil moisture content at which 

plant‘sturgidity cannot recover even with additional replenishment of moisture to the 

soil matrix (Asgarzadehet al., 2010).  

 

Moisture holding capacity has found wide applications as an input in crop growth 

simulation models (Vereecken et al., 2008; Gaiser et al., 2000)for yield potential or 

yield gap prediction, irrigation planning (Santra et al., 2008), land suitability 

modelling, and food security monitoring applications. Input MHC data for running 

these processes is seldom in sufficient supply or in appropriate format for the 

aforementioned tasks (Gaiser et al., 2000). Conventionally, data is collected from 

point locations and represented as discrete choropleth maps for areas attributable to 

similar soil characteristics. However, this approach involves large uncertainties as 
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soil variables intrinsically exhibit high spatial heterogeneity (Heuvelink and 

Webster, 2001; Santra et al., 2008; Odgers et al., 2011). 

 

An account of associated data uncertainties is fitting for decision support on 

judicious exploitation and management of soil resources (Heuvelink et al. 

2007).Probabilistic methods offer a subtle cue for mapping the stochasticity 

associated with the spatial distribution of soil MHC. Geostatistics which is part of 

the toolsets in digital soil mapping (DSM) provides means for mapping the spatial 

distribution of MHC (Minasny and Hartemink, 2011; Cambule et al., 2013). Map 

quality is a function of the configuration of the sampling pattern (Brus and 

Heuvelink, 2007; Marques Jr et al., 2015). High gains in prediction accuracy 

necessitate regularly placed and uniformly distributed sampling locations across the 

geographic space (Walvoort et al., 2010). A systematic regular sampling grid has 

been a widely preferential scheme for uniform distribution of sampling points over 

the target geographic space. It is, however, restrictive where patterns of periodicity 

associated with the underlying topography, land use or geology are inherent within 

the area. Unbiased data on the statistical distribution of soil variables is useful for 

reporting associated uncertainty estimates (Brus et al., 2011; Webster and Lark, 

2013). This calls for randomisation of sampling locations within the target 

geographic space. Randomisation of sampling locations enables computation of the 

probability distributions from which confidence limits can be assessed and also 

provides a means of setting local reference values such as what is low, moderate or 

high. 
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Several sampling algorithms have been proposed over the years for optimising 

random sampling nodes over the geographic space. Among these are spatial 

simulated annealing (Szatmári et al., 2015), conditioned Latin hypercube sampling 

(Minasny and McBratney, 2006), k-means sampling (Walvoort et al., 2010), and 

most recently the balanced sampling design (Brus, 2015). These methods differ in 

The objective function for optimisation of sampling locations differs among these 

methods. A number of them, however, depend on the minimisation of the kriging 

variance as the objective criterion. This calls for the estimation of a variogram of the 

variable of interest which is not feasible in previously unsampled localities (Brus 

and Heuvelink, 2007). The k-means sampling algorithm proposed and implemented 

in Walvoort et al. (2010), uses the mean squared shortest distance between fine grid 

cells of a discretised target area as the objective function for the optimisation of 

sampling locations. The co-ordinates of the midpoints of these grid cells are the 

classification variables. A key advantage of the k-means approach is the elimination 

of the need for priori variogram estimation and provides an approach for 

stratification of the geographic space. The objective of this study was therefore to 

develop a probabilistic sampling scheme for mapping soil moisture holding capacity 

using k-means clustering and assess its suitability. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Study area 

The study area was Ilakala village in Kilosa District - Tanzania. It is located within 

latitudes 7
o
 6‘ 30‖ S and 7

o
 9‘ 30‖ S, longitudes 36

o
 51‘ 30‖ E and 36

o
 57‘ 30‖ E; 

with an area of about 44 km
2
 (Fig. 2.1). It borders Mikumi National Park to the 
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south. Altitude ranges from 514 m to 896 m with a hilly relief forming part of streak 

of the Eastern Arc mountains straddling the South Western and Western fringes, 

predominantly covered byMiombo woodlands. Southern areas are predominantly 

covered byarable agriculture with some pastoral communities settled within the area. 

The area has a dry sub-humid climate with a unimodal crop growing season 

andmean annual rainfall of about 500-800 mm. The major crops grown within the 

area are sesame, maize and pigeon peas.  

 

 

Figure 2.1: Study area with the soil sampling locations 
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2.2.2 Establishingsampling scheme 

The study was designed to establish a sampling scheme of 100 evenly distributed 

spatial points. The decision to select 100 sampling points was informed by the 

financial outlay available to execute the study.Robinson and Metternicht (2006) 

highlighted that a minimum of 100 – 150 data points was necessary to achieve a 

stable semivariogram. Brungard and Boettinger (2010) found thata sample size of 

about 200-300 was optimal for digital soil mapping in an area of 300 km
2
. 

Therefore, the quota of sampling points in this study is satisfactory for assessment of 

spatial structure for DSM.  

 

The R-package spcosa (Walvoort et al., 2010) was used for optimising the 

distribution of 100 sampling points. A shapefile of the study area was imported into 

the R-software environment and discretised into 100 equal geographic strata 

(geostrata). Three sampling locations in each stratum (geostratum) were established 

using a stratified random sampling approach. One of the points was the primary 

sampling point and the other additional two points as ordered contingency sampling 

locations. The order of selection of the three sampling points within a geostratum 

was strictly followed.Sampling points would be visited during the field campaign in 

order i.e. the primary sampling point, then first contingency point and ultimately the 

second contingency point. Contingency points would only be visited for sampling 

when the primary sampling point appeared unsuitable for sampling. Reasons for not 

sampling a selected random point were for instance, denial of access or non-

availability of soil (falling in a rocky area or water body). It was not permissible 

within the design to select the sampling point closest to the primary point once this 
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initial point appeared unsuitable for sampling.For comparison purposes, a spatial 

coverage sampling design was also established using the centroids of the geostrata 

as the sampling nodes. 

 

2.2.3 Soil sampling and analysis 

Bulk soil samples  of about 0.5 kg were taken from 100 sampling nodes in a 

stratified random sampling scheme at three depth intervals of 0 -30, 30 – 60 and 60 - 

100 cm. The bulk soil samples were air dried and crushed and sieved through a 2 

mm sieve. Sieved soil samples were then analysed in the laboratory for particle size 

distributionand organic carbon. Particle size fractions were determined by the 

Bouyoucos hydrometer method (Gee and Bauder, 1986) and separated according to 

the United States Department of Agriculture particle size classification system 

(FAO, 2006). Organic carbon was determined by the wet oxidation method of 

Walkley and Black (Nelson and Sommers, 1982). Undisturbed soil core samples in 

100 cc Kopecky rings with height and diameter dimensions of 5 cm were used to 

determine soil moisture at -30 kPa and -1500 kPa with a pressure plate apparatus. 

The very soil core samples were used to determined bulk density after drying the 

soil core samples at 105
o
 C for 24 hours(Blake and Hartge, 1986). A range of matric 

suctions for FC have been reported in literature ranging from 5 kPa to 33 kPa 

(Asgarzadehet al., 2010). For this study FC was considered as soil moisture at -30 

KPa matric suction. Therefore, MHC was calculated as the difference between 

moisture content at FC (-30 KPa) and WP (-1500 KPa). 
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2.2.4 Statistical data analyses 

All exploratory statistics of the measured soil properties (minimum, maximum, 

mean, standard deviation, kurtosis and skewness) were analysed in R-statistical 

software(R Core Team, 2016). 

 

2.2.5 Analysis of spatial structure and interpolation of MHC 

Spatial structure of soil MHC data wasanalysed through (semi-)variogram 

modelling. Variogram modelling represents spatial variability of MHC data 

atsampling locations as a function of theirseparation distance (referred to as the lag) 

in a graph known as a semivariogram (Robinson and Metternicht, 2006; Diggle and 

Ribeiro Jr., 2007). Ordinary kriging (OK) technique was used for spatial 

interpolation of MHC data (Diggle and Ribeiro Jr., 2007). OK is an optimum 

interpolation technique that quantifies unbiased linear estimatesof regionalized 

variables at unsampled locationswith the aid of the structural properties of the 

semivariogramand the initial set of data at sampled locations(Chilesand Delfiner, 

1999; Huang et al., 2006; Dumitrescu et al., 2015).Analysis of spatial structure and 

OK interpolation of the distribution of MHC was performed usingR-software gstat 

package (Pebesma, 2004).  

 

Theempirical semivariogram for MHC was computed using Equation 1(Chilesand 

Delfiner, 1999). Computation of the empirical semivariogram results in an uneven 

scatter unsuitable for calculating the OK weights.Therefore, a mathematical model 

referred to as a ‗theoretical model of semivariogram‘ was fitted to the empirical 
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semivariogram to derive three essential parameters for deriving the OK weights – 

the nugget, sill and range. The nugget defines small-scale variation and 

measurement error within MHC data. Partial sill indicates the amount of variation 

represented by the spatial correlation structure (Santra et al., 2008). The partial sill 

increases with increasing lag until a lag value where the partial sill equals the 

variance of the data. This lag value is known as the range. The range is the 

maximum separation distance (lag) at which spatial autocorrelation exists between 

any two sampling points.  

𝛾  ℎ =
1

2𝑁(ℎ)
 [ 𝑍 𝑠𝑖 − 𝑍(𝑠𝑖 + ℎ) ]2

𝑁(ℎ)

𝑖=1

 

 

(1) 

 

Where Z(si) is the measured MHC value at sampled location siwith coordinatevector 

(xi, yi), Z(si+h)is the MHC value at a lag of h from location si,N(h) are the sample 

pairs within a lag interval of h.  

 

Residual maximum likelihood (REML) procedure was applied to fit a theoretical 

variogram model to the empirical variogram (Pebesma, 2004). Arbitrary estimates of 

the theoretical variogram parameters (nugget, partial sill and range) were selected to 

initialise this REML procedure. The resultant nugget, sill and range parameters from 

the fit were used in a subsequent step to calculate semivariances of the MHC data. 

Semivariances were utilised in the ordinary kriging system for generation of the 

MHC prediction map. Leave one out cross validation (LOOCV) was utilised to 
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assess the performance of sampling schemes. In LOOCV approach, data for a target 

prediction location was eliminated and the remaining dataset was used for prediction 

of the MHC value at that location (Robinson and Metternicht, 2006; Li et al., 2012). 

This processwas repeated for each sampling location andperformance indices were 

then  computed from the pool of paired actual measured MHC value and the 

resultant LOOCV predicted MHC value at each location. Performance indices used 

in the evaluation of ordinary kriging predictions were the mean error (ME) (Eq. 2), 

root mean square error (RMSE) (Eq. 3), average kriging standard error (ASE) (Eq. 

4), and root mean square standard error (RMSSE) (Eq. 5). 

 

𝐌𝐄 =
𝟏

𝐧
 [ 𝒁 𝐱𝐢 − 𝐙∗(𝐱𝐢) ]

𝐧

𝐢=𝟏

 
  

(2) 

   

𝐑𝐌𝐒𝐄 =  
𝟏

𝒏
 [ 𝒁 𝒙𝒊 − 𝒁∗(𝒙𝒊) ]𝟐
𝒏

𝒊=𝟏

 

  

(3) 

   

𝐀𝐒𝐄 =  
𝟏

𝒏
 𝝈𝟐 𝒙𝒊 

𝒏

𝒊=𝟏

 

  

(4) 

   

𝐑𝐌𝐒𝐒𝐄 =  
𝟏

𝒏
  

𝒁 𝒙𝒊 − 𝒁∗(𝒙𝒊)

𝝈𝟐 𝒙𝒊 
 

𝟐𝒏

𝒊=𝟏

 

  

(5) 
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Where Z(xi) is the measured MHC value at location xi,Z*(xi) is the predicted MHC 

value at location xi,n is thenumber of sampling points, and σ
2
(xi) is the kriging 

variance for locationxi. 

 

2.3.1 Evaluation of sampling scheme 

Figure 2.2A shows the geostrata developed by the k-means clustering method. The 

geostrata were one hundred and each had an area coverage of 0.44 km
2
. Figures 

2.2B to 2.2D illustrate the stratified random sampling scheme (STRS), spatial 

coverage scheme (SPCS) and actual sampled points, respectively. The STRS is 

shown with the primary sampling point and the two contingency points in each 

geostratum (Fig. 2.2B). 

 

Figure 2.2: Geostrata (A), STRS (B), SPCS (C) and actual sampled points (D) 
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2.3.2 Descriptive statistics of soil properties 

Measured MHC datasetfrom the 0-30 cm depth was used for analyses to compare 

the two sampling schemes with anassumption of stationarity across each geostratum 

(Diggle and Ribeiro Jr., 2007). Summary statistics of the soil properties for 0-30 cm 

depth are shown in Table 2.1. Moisture holding capacity (MHC) ranged from 0.02 to 

0.1 cm
3
 cm

-3
. Mean moisture content values at field capacity (θ30) and wilting point 

(θ1500) were 0.37 cm
3
cm

-3
 and 0.33 cm

3
cm

-3
, respectively. Bulk density (BD), clay, 

silt, and sand content ranged from 1.02 to 1.19 g cm
-3

, 0.8 to 56.8 %, 2.8 to 27.8 %, 

and from 30 to 94.1 %, respectively. Organic carbon (OC) ranged from 0.16 to 3.37 

%. Sand had the highest standard error of the mean while MHC had the lowest 

standard error of the mean. Figure 2.3 shows the textural class distribution of the soil 

dataset. The dataset consisted of a pool of seven different USDAtextural classes 

(Beaudette et al., 2012), with most of the soil samples (> 55 %) of a sandy loam or a 

sandy clay loam textural class. 

 

Table 2.1: Descriptive statistics of soil physicochemical properties 

Variable Minimum Maximum Mean (SE) SD Skewness Kurtosis 

MHC (cm
3
cm

-3
) 0.02 0.10 0.04 (0.00) 0.02 1.43 2.13 

θ30 0.08 0.37 0.22 (0.01) 0.07 0.26 -0.66 

θ1500 0.06 0.33 0.18 (0.01) 0.07 0.34 -0.60 

BD (gcm
-3

) 1.02 1.19 1.07 (0.00) 0.04 1.03 0.62 

Clay (%) 0.80 56.80 18.94 (1.45) 14.51 0.78 -0.22 

Silt (%) 2.80 27.80 14.16 (0.49) 4.92 -0.04 0.12 

Sand (%) 30.00 94.10 66.9 (1.52) 15.18 -0.61 -0.29 

OC (%) 0.16 3.37 1.02 (0.07) 0.70 1.29 1.54 
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Figure 2.3: Textural class distribution of dataset 

 

Skewness and kurtosis scores indicate that all the measured soil variables did not 

conform to a symmetrical Gaussian distribution (Table 2.1). Threshold values of 

skewness for a Gaussian distribution range from-0.391to 0.391 for a sample size of 

100 (Doane and Seward, 2011). Though the skewness values for θ30(0.26) and 

θ1500(0.34) suggested a fit to the Gaussian distribution, the kurtosis values were 

negative indicating aplatykurtic distribution and thus deviating from the Gaussian 

distribution (De Carlo, 1997). Variable that have a normal distribution should ideally 

have a kurtosis of zero (0) (De Carlo, 1997).A histogram and probability density plot 

for both θ30 and θ1500 revealed that the two parameters had a bimodal distribution 

(Fig. 2.4A and Fig. 2.4B): a typical distribution with negative kurtosis (De Carlo, 

1997). Moisture holding capacity data was leptokurtic with a strong positive skew 

anda long tail (Fig. 2.4C). The MHC data was log transformed (base 10) to generate 

data with a mild conformation to the Gaussian assumptions (Fig. 2.4D). This log 

transformed MHC was used for analysis of spatial structure and geostatistical 

interpolation.  
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Figure 2.4: Histogram of moisture contents for FC (A), WP (B), MHC (C) 

and log transformed MHC (D) 

 

2.3.3 Analysis of spatial structure and interpolation of MHC 

Figure 2.5 shows the directional plots for MHC for the stratified random sampling 

scheme (STRS) and the spatial coverage sampling scheme (SPCS). Anisotropy 

(directional influence) was evident in the West to East direction (Fig. 2.5A and 

2.5B) and to a lesser extent in South to North direction (Fig. 2.5C and 2.5D). The 

West-East trend seemed to fit a quartic polynomial while South-North trend seemed 

to fit a 3
rd

 order polynomial. 
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Figure 2.5: Directional plots of MHC for STRS (A & C) and SPCS (B&D) 

 

Reasons for this trend were not straight forward but landscape characteristics (soil 

characteristics, land use and topography) seemed to offer the most plausible 

explanation for the anisotropy. The broad distribution of the land use pattern within 

the study area was such that forested landscapes predominate the South West and 

Western fringes of the study area while arable agriculture was prominent in a 

gradient to the orthogonal direction. Similarly, a topographic effect was evident with 

dissected hilly terrain along the South West to Western fringes and undulating 

topography in the opposite direction. Anthropogenic land use and topography are 

known to influence the development, variations in characteristics and spatial 

distribution of soil properties (Cambule et al., 2013; Peng et al., 2013). Land uses 

which lead to an accumulation of high organic matter content often result in higher 

moisture contents. Forest areas and some agricultural practices often fall in this 

category of land use.  
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Another posit is that the anisotropic effect could have been due to the geometric 

orientation of the study area. Diggle and Ribeiro Jr. (2007) aver that differential 

stretching and rotation of coordinate axes transform stationarity structure leading to 

geometrical anisotropy. The quadrangular planar geometry of the study area was 

longer in the South West to North East direction than the North-West to South East 

direction (Fig. 2.2A). The number of sampling locations increased gradually on the 

plane from the South East to North-West gradient across its orthogonal axis 

(Fig.2.2C andFig.2.2D). Periodicity associated with area size is apparent and 

influences the proportion of sampling locations on South West to North East axis. It 

is conceivable that fewer sampling locations are feasible towards the narrow 

extremities on the South Western to North Eastern tips; with a bulky of sampling 

locations around the central area of the plane (Fig.2.2C and Fig. 2.2D). However, for 

simplicity of assessments anisotropy was not included in empirical variogram 

calculations. Therefore, isotropy was assumed in analyses for both sampling 

schemes. 

 

Figure 2.6 shows the computed empirical variograms (dots) and fitted theoretical 

variograms (lines) of the spatial coverage sampling and stratified random sampling 

design. The Gaussian model (Eq. 6) returned the best fit for the stratified simple 

random sampling scheme while the Spherical model (Eq. 7) provided the best fit for 

the spatial coverage sampling scheme. 

𝛾 h =   

C0, for h = 0

C0 + C  1.5
h

a
− 0.5  

h

a
 

3

 , for 0 < ℎ < 𝑎

C0 + C, for h ≥ a

     (6) 
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𝛾 h = C0 + C  1.5 − exp  −3  
−h2

a
   , for h ≥0    (7) 

 

Where )(h  is the semivariance, ‗a‘ is the range, ‗h‘ is the separation distance, C0 

and C represent the nugget and partial sill, respectively. 

 

Figure 2.6: Empirical variograms (dots) and fitted theoretical variograms 

(lines) of STRS approach (A) and SPCS approach (B) 



 38 

Table 2.2lists the variogram parameters (nugget, partial sill and range) for the 

respective fitted theoretical variogram models. The range for the STRS scheme was 

850 m and 1300 m for the SPCS, respectively. This implies that sampling locations 

within a separation distance of 850 m for the STRS scheme were spatially 

correlated. The same was true for locations within the SPCS scheme. The nugget 

was higher for the STRS scheme indicating a relatively higher variance than the 

SPCS scheme. 

 

Table 2.2: Variogram Parameter Values 

 STRS SPCS 

Nugget (C0) 0.018 0.0045 

Partial Sill (C) 0.007 0.019 

Range, a (m) 850 1300 

Spatial Dependence 

 
𝐂𝟎

𝐂𝟎+𝐂
 𝐗 𝟏𝟎𝟎  

72 19 

 

The spatial dependence ratio for the stratified random sampling scheme (72 %) was 

higher than that of the spatial coverage sampling scheme (19 %). A variable with a 

spatial dependence ratio of less than 25 % is considered to have a strong spatial 

correlation structure, a moderate spatial correlation if the spatial dependence score is 

between 25 % and 75 %; and a weak spatial correlation if spatial dependence ratio > 

75 %, (Sun et al., 2003; Wendroth et al., 2006). The strong spatial correlation 

structure of the spatial coverage scheme was most likely due to the regular 

configuration of the sampling nodes leading to a more stable variogram structure. 

Systematic sampling has been reported to offer superior results especially for regular 
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grid designs (Gao et al., 2012). Spatial coverage sampling is in the category of 

systematic sampling designs. Sampling nodes in spatial coverage sampling are 

coincident to the centroids of equal area geostratum (Fig. 2.2C). This configuration 

leads to a more evenly distributed spread of sampling points across the target area. 

On the other hand, stratified random sampling sometimes leads to clustering of 

sampling nodes whereby sampling locations from two adjacent geostrata are 

positioned on the edge of their respectivegeostratum. Clustering of spatial locations 

results in a weak spatial structure as evidenced from the spatial dependence ratios of 

the two approaches (Table 2.2).  

 

Figure 2.7 shows the ordinary kriging map and kriging prediction error surface for 

the stratified random sampling (STRS) and spatial coverage sampling design 

(SPCS).  
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Figure 2.7: Prediction and kriging error surfaces for STRS (A and B) and 

SPCS Design (C and D) 

 

Predictions for the STRS map ranged between 0.03 and 0.05 cm
3
cm

-3
 (Fig. 2.7A) 

while for the SPCS surface ranged between 0.02 and 0.08 cm
3
cm

-3
 (Fig. 2.7C). 

Stratified random sampling (STRS) prediction error had lower error values in 

comparison to the spatial coverage kriging prediction error surface (Fig. 2.7B). The 

prediction errors for SPCS were uniformly distributed across the surface with the 

edge-effect is clearly evident on the SPCS prediction error surface (Fig. 2.7D). 

 

Table 2.3 shows the performance indicators of the stratified random sampling 

scheme and the spatial coverage sampling. The STRS scheme seems to exhibit a 

slightly better accuracy than the SPCS scheme with smaller ME and RMSE values. 

The RMSSE score for the SPCS (1.02) indicates a tendency to underestimate MHC. 
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The STRS design also tends to overestimate MHC. It is evident from the analysis of 

the performance indicators that the stratified random sampling approach 

(STRS)results in slightly better estimates for predictions of MHC than spatial 

coverage sampling (SPCS).  

 

Table 2.3: Performance indicators of the sampling schemes 

INDICES STRS SPCS 

ME 0.0014 0.0017 

RMSE 0.156 0.161 

RMSSE 0.99 1.02 

ASE 0.15 0.14 

 

2.4CONCLUSIONS 

In this study a stratified random sampling scheme and spatial coverage sampling 

scheme were established using a k-means algorithm and compared. Stratified 

random sampling hada weaker spatial correlation structure than spatial coverage 

sampling scheme which could be due to a more systematic and stable configuration 

of sampling locations for the latter approach. The performance indicators for the 

stratified random sampling scheme (STRS) were slightly better than those for the 

spatial coverage sampling scheme (SPCS). The study recommends stratified random 

sampling as an optimal sampling scheme for mapping spatial distributionof soil 

moisture holding capacity.  
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CHAPTER THREE  

 

3.0PREDICITION OF SOIL MOISTURE HOLDING CAPACITY WITH 

SUPPORT VECTOR MACHINES IN DRY SUB-HUMID TROPICS 

 

ABSTRACT 

Adaptation of the agro-hydrological function of dry sub-humid environments to 

changing moisture regimes is important for sustaining crop yields. Soil moisture 

holding capacity data is required for modelling to this end but is hardly sufficient 

and costly tomeasurein the field. An alternative approach is the use of mathematical 

equations called pedotransfer functions (PTFs) which use readily available soil 

physicochemical properties as inputs to estimate soil moisture holding capacity. 

Several regression techniques have been established and applied for developing 

PTFs with some shortcomings. This study explored the application of a promising 

data mining method known as support vector machines (SVM) in the development 

of PTFs for dry sub-humid tropical soils. A soil dataset consisting of 296 samples of 

measured moisture content and soil physicochemicalproperties wasused. Support 

vector machines PTFs models to estimate moisture content were developed in R-

software. Model predicted moisture content was compared against measured 

moisture values based on the Root Mean Square Error and Mean Error and 

coefficient of determination (R
2
) as performance indices. Developed support vector 

machines PTFs had better accuracy than published SVM-PTFs and can be integrated 

in a modelling framework for estimation of soil moisture holding capacity. 

 

Keywords: moisture holding capacity, pedotransfer functions, support vector 

machines, sub-humid tropics 
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3.1INTRODUCTION 

Dry sub-humid zones in Tanzania are regions of marginal agricultural productivity 

(Kilasara, 2010) and highly sensitive to seasonal moisture availability. Long term 

sustainability of crop yields will require integrated modelling approaches to provide 

the necessary feedback for adapting agrohydrological functions to changing soil 

moisture regimes (Vereecken et al., 2016). Soil moisture holding capacity is an 

important parameter for modelling agricultural productivity of sub-humid zones. It is 

a measure of the difference between moisture at field capacity and wilting point. 

Moisture holding capacity facilitates the description of soil hydrological processes 

such as drainage, infiltration and percolation and is vital input data in models such as 

Soil Water Assessment Tool (SWAT) (Toth et al., 2015), and AQUACROP (Raes et 

al., 2009). 

 

Model results are highly dependent on the nature and quantity of data (Wosten et al., 

2013; Toth et al., 2015), but soil moisture data is generally in limited supply for 

tropical soils (Schaap, 2005; Minasny and Hartemink, 2011) largely due to high 

costs of measurement and lack of associated equipment. Mathematical equations 

known as pedotransfer functions (PTFs), linking easily measured soil properties as 

input variables to soil moisture data, have been employed to bridge data gaps. With 

extensive development for temperate soils (Nguyen et al., 2014), PTFs application is 

fraught with specificity to calibration datasets (Vereecken et al., 2016) and 

geographic regions (Haghverdi et al., 2012; Nguyen et al., 2014). Tropical soils 

have a bimodal particle size distribution in contrast to the uni-modal soils of the 

temperates (Condappa et al., 2008; Minasny and Hartemink, 2011), with maximal 
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weight percentage for clay and sand size fractions and low silt content (Minasny and 

Hartemink, 2011). This is suggested to impart contrasting soil hydraulic 

characteristics (Wosten et al., 2001; Minasny and Hartemink, 2011; Vereecken et 

al., 2010; Botula et al., 2013), limiting transferability of PTFs for modelling 

processes across their statistical and pedo-climatic calibration bounds (Haghverdi et 

al., 2012).  

 

Utility of PTFs necessitates validation or development of new PTFs for improved 

modelling outputs (Vereecken et al., 2010; Haghverdi et al., 2012). Studies to this 

end for tropical soils in sub-Saharan Africa include Young et al. (1999), Mdemu and 

Mlengera (2002), Mugabe (2004), Obalum and Obi (2013), Botula et al. (2012; 

2013), Wosten et al. (2013), andMdemu (2015). All these studies have shortcomings 

including evaluation on small soil datasets or compiled soil databases or frequent 

application of multiple linear regression method. Among the many PTF-

development methods, the multiple linear regression method has also been 

highlighted to be inflexible in capturing the non-linearity associated with moisture 

holding properties (ReF).An insufficient data size has been reported to be a major 

drawback for PTF evaluations (Nemes et al., 2006; Pachepsky and Rawls, 1999). 

Substantial uncertainty also exists with soil databases used to derive the PTFs 

(Vereecken et al., 2010), probably associated with data entry or measurement 

inconsistences (Vereecken et al., 2010; Minasny and Hartemink, 2011).  

 

Machine learning algorithms generally have better flexibility in mimicking the 

complex nonlinear pattern in the soil-moisture continuum (Botula et al., 2013). 
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Ubiquity of computer technology and enhanced computational efficiency has 

spiralled the advancement of sophisticated machine learning algorithms such as 

artificial neural networks (Agyare et al., 2007; Haghverdi et al., 2012), k-Nearest 

neighbour (Nemes et al., 2006; Botula et al., 2013; Nguyen et al., 2015), and 

Support Vector Machines (SVMs) (Twarakavi et al. 2009; Kovačević et al., 2010; 

Lamorski et al., 2014; Khlosi et al., 2016). The respective authors provide a good 

technical background about these highlighted methods. Interest here is skewed to the 

SVMs because they have circumvented typical drawbacks associated with the 

popular ANNs (Balabina and Lomakina, 2011; Haghverdi et al., 2014).  

 

Support vector machines are a supervised machine learning algorithm based on 

statistical learning theory (Wu et al., 2003; Li et al., 2014). Support vector machines 

were developed by Vapnik (1995) for data classification and later extended to solve 

regression problems (Wu et al., 2004; Balabina and Lomakina, 2011; Haghverdi et 

al., 2014). Lamorski et al. (2008) and Twarakavi et al. (2009) pioneered the use of 

SVMs in the development of PTFs for the parametric functions and soil matric 

points, reporting improvements. The key advantage of the SVMs is structural risk 

minimisation over the empirical risk minimisation which checks overfitting during 

model development (Twarakavi et al., 2009; Wu et al., 2003). The SVM technique 

is also easier to implement than ANNs (Hsu et al., 2016). Interest in the use of 

SVMs for PTF development has been stimulated (Haghverdi et al., 2014; Nguyen et 

al., 2015; Khlosi et al., 2016) but with no work evident for sub-Saharan Africa soils. 

Flexibility of SVMs in incorporating new soil data would be of added benefit 

particularly for developing countries, where soil datasets are in high demand for 
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simulating the agro-hydrological function and productivity of farming systems. In 

view of this, the objective of this research was to apply support vector machines to 

develop pedotransfer functions for moisture holding capacity using experimentally 

measured data. Henceforth, the expression support vector regression (SVR) is used 

instead of support vector machines (SVMs) to stress its application to regression 

other than classification. 

 

3.2MATERIALS AND METHODS 

3.2.1 Studyarea 

The study area was Ilakala village inKilosa District, Morogoro Region,Tanzania 

(Fig. 3.1);within latitudes 7
o
 5‘ 30‖ S and 7

o
 9‘ 30‖ S and longitudes 36

o
 50‘ 30‖ E 

and 36
o
 57‘ 30‖ E. It has a total area of about 44 km

2
. Agriculture (both cropping 

and livestock keeping) is the major livelihood activity in the area. The cropping 

system is a maize-sesame-pigeon peas small-holder system; with maize and pigeon 

peas as the main food crops. Sesame is a cash crop. Livestock keepingis typically 

undertaken by pastoralist communities of Masai and Sukuma ethnicities.  
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Figure 3.1: Location map of Ilakala Village 

 

The area is mostly traversed with soils of a sandy textural origin. Major soil types 

are Hyperdystric Cambisol (loamic, ochric), Rhodic Acrisol (clayic, cutanic, 

epieutric, profondic), Luvic Stagnic Umbrisol (endoeutric, loamic), Endogleyic 

Protovertic Eutric Cambisol (colluvic, ruptic), and Pellic Vertisol (ferric, humic, 

mesotrophic) (Kaingo and Tumbo, 2016).  Many seasonal streams drain the area 

from the hilly regions in the southwest and western, feeding into River Mhenda that 

flows along the eastern edge of the village. 

 

3.2.2 Soil dataset 

A soil dataset of 296 samplescollected between June 2014 and July 2015was used in 

this study. Soil samples were taken from 100 spatial locations at three depths (0-30 

cm, 30-60 cm and 60-100 cm). However, soil samples at the 60-100 cm depth 
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interval were not taken at four sampling locations due to rockiness. The sampling 

scheme and laboratory analyses of the soil samples are described in section 2.2.2 and 

2.2.3, respectively (Chapter Two of this dissertation).Constitutive soil variables were 

bulk density (BD), soil organic carbon (OC), sand, clay and silt content, and 

moisture content at field capacity (FC)and wilting point (WP). Soil matric suctions 

of 30 kPa and 1500 kPa were used as the FC and WP points, respectively. The 

dataset was randomly split into a ratio of 2:1 fora training dataset (n=198) and 

testing set (n=98), respectively. Descriptive statistics, gaussian tests and correlation 

analyses were performed using R-software (R Core Team, 2016).  

 

3.2.3 PTFs development 

The training dataset was used for the SVR model calibration. Epsilon support vector 

regression (ε-SVR) was used for development of SVR PTFs in the e1071 R-software 

package. The success of the SVR calibration process depends on three key issues: 

the choice of the cost/regularisation parameter - C, the ―tube‖ insensitivity variable 

(ε) and the priori selection of kernel function (Twarakavi et al., 2009). Table 3.1 

shows the common kernel functions for SVR. The radial basis function (RBF) kernel 

is most frequently used but a linear kernel was chosen for this study because of the 

overfitting challenges associated with the RBF kernel (Lamorski et al., 

2014).Overfitting occurs when a model starts to describe the random error in the 

data rather than the relationships between variables. An overfit model reduces its 

generalisability outside the original dataset (Babyak, 2004). 
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Table 3.1: Common kernel functions and their hyper-parameters in SVR 

Kernels Functions Parameters 

Radial basis function 𝒆(−𝛄|𝒙𝒊
𝑻−𝒙𝒋 |𝟐) C, ε, γ 

Linear 𝒙𝒊
𝑻. 𝒙𝒋 C, ε 

Polynomial (𝛄𝒙𝒊
𝑻. 𝒙𝒋 + 𝒓)𝒅 C, ε, r, d 

 

The C-parameter determines tolerance of the calibration prediction error and the 

structural complexity of the SVR model. A large C value results in model 

complexity leading to a computationally inefficient model, overfitting and poor 

generalisation capability. The ε-parameter controls the loss function which controls 

the width of the insensitive zone leading to minimising of the regression risk. Large 

values of ε lead to smaller numbers of support vectors and poor generalisation. 

Parameters C and ε are known as the hyper-parameters and their optimisation 

determines how good the SVR model is.  While ‗γ‘, ‗r‘, and ‗d‘ are kernel 

parameters. 

 

The SVR calibration procedure was carried out in three steps. First, the training 

dataset was used to initially fit the SVR model with the linear kernel function 

through epsilon-regression in e1071 R-software package. Linear kernel functions 

have only two hyper-parameter values that require setting i.e. the C and ε-parameter. 

The default package C-parameter value (C=1) was retained and the ε-parameter set 

to 3σ√(ln(n)/n) following Ließ et al. (2016) for the initial fit, where n is the number 

of records in the training dataset and σ the standard deviation of the data. In the 

second step, tuning of the SVR model hyper-parameters was performed using a grid-

search method with a 10-fold cross validation in 5 repeats. The grid-search method 
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facilitates optimization ofhyper-parameters by estimating training prediction error 

for each set of all possible combinations of hyper-parameters within the feasible 

feature space (Twarakavi et al., 2009). With insights from earlier studies (Lamorski 

et al., 2008; Haghverdi et al., 2014), parameter search space was a priori set to; 

0.001 ≤ C ≤ 1000 at an incremental ratio of 10, 0 ≤ ε ≤ 0.3 at steps of 0.001. 

Subsequent fine tuning was performed using a parameter search space within the 

neighborhood of the best optimized hyper-parameters from the second step. This 

process generated the best optimal hyper-parameters that were used for ultimately 

developing the SVR – PTFs in the third step. For comparison purposes, multiple 

linear regression (MLR) based PTFs were also developed. Step-wise regression was 

used to develop the MLR-PTFs using the SPSS software package version20 (IBM 

Corp., 2011). Both the SVR-PTFs and MLR-PTFs were then applied to the testing 

data to assess their validity. Performance of the developed PTFs was evaluated using 

the Root Mean Square Error (RMSE), Mean Error (ME) and coefficient of 

determination (R
2
) as indicators. The RMSE and ME should ideally be close to zero 

while the R
2
 should be closer to one. 

 

𝐌𝐄 =
𝟏

𝐧
 [𝐲 − 𝐲  ]

𝐧

𝐢=𝟏

 

 

𝐑𝐌𝐒𝐄 =  
𝟏

𝒏
 [ 𝐲 − 𝐲  ]𝟐
𝒏

𝒊=𝟏
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𝐑 = 𝟏 −
 [ 𝐲 − 𝐲  ]𝟐𝒏

𝒊=𝟏

 [ 𝐲 − 𝐲  ]𝟐𝒏
𝒊=𝟏

 

 

Where y is the measured moisture content, y  is the predicted moisture content,y  is 

the mean of the measured moisture content, and ‗n‘ the number of datasets. 

 

3.3RESULTS AND DISCUSSION 

3.3.1 Descriptive statistics of soil datasets 

Table 3.2 shows the summary statistics of the training and testing datasets. Across 

both datasets bulk density ranged from 1 to 1.19 g/cc. Organic carbon ranged from 

0.06 %. to 3.37 %. Clay, sand, and silt content ranged from 0.1 % to 63.6 %, 20 % to 

96.6 %, and 1.4 % to 35.4 %, respectively. Moisture content at FC (θ30) ranged from 

0.08 to 0.48 cm
3
cm

-3
 while moisture at WP (θ1500) ranged from 0.03 to 0.39 cm

3
cm

-3
. 

Mean values of training and testing datasets were similar for all soil variables. 

Though the skewness indices were consistent with a Gaussian symmetrical 

distribution (Doane and Seward, 2011), Kurtosis values were non-optimal for an 

assumption of normality to be held (DeCarlo, 1997). 
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Table 3.2: Descriptive statistics of Training and Testing datasets 

 Min Max Mean SD Skewness Kurtosis 

 Training      

BD 1.00 1.19 1.06 0.04 1.17 1.40 

OC 0.06 3.23 0.80 0.58 1.63 3.30 

CLAY 0.10 63.60 22.19 16.64 0.64 -0.53 

SAND 20.00 96.60 64.90 16.41 -0.52 -0.35 

SILT 1.40 35.40 12.90 4.89 0.87 2.75 

θ30 0.08 0.48 0.23 0.07 0.52 0.23 

θ1500 0.03 0.38 0.18 0.07 0.31 -0.13 

       

 Testing      

BD 1.00 1.16 1.05 0.03 0.97 0.88 

OC 0.10 3.37 0.82 0.64 1.69 3.42 

CLAY 0.10 61.00 22.26 15.78 0.55 -0.64 

SAND 25.60 94.60 64.67 15.97 -0.31 -0.61 

SILT 2.80 24.40 13.08 5.29 0.10 -0.71 

θ30 0.09 0.41 0.23 0.07 0.02 -0.46 

θ1500 0.05 0.39 0.19 0.07 0.05 -0.26 

 

Table 3.3 shows the correlation coefficients for the soil physicochemical properties 

on moisture content at FC (θ30) and moisture content at WP (θ1500). Sand and Clay 

had a strong correlation (r > 0.7) but with opposite polarity for both FC and WP. 

Bulk density, OC, clay and sand had highly significant correlations with moisture 

content at θ30 and θ1500. Silt was poorly correlated to θ30 and θ1500 with r < 0.07. 

Organic carbon was positively correlated with moisture content at both suction 

extremes. Organic carbon content influences moisture retention properties due to its 

role on many other physical and physico-chemical soil properties.  Higher OC 

content improves soil structure and porosity, leading to increased moisture-holding 
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capacity (Toth et al., 2015). Organic matter also has high cation exchange capacity 

and high specific surface area which enhances its moisture-absorption properties 

(Kaingo, 2011).  

 

Table 3.3: Pearson correlation coefficients for soil variables 

 BD.g.cc. OC CLAY SAND SILT 

θ30 -0.46*** 0.23*** 0.73*** -0.76*** 0.07 

θ1500 -0.46*** 0.28*** 0.77*** -0.8*** 0.07 

 

3.3.2 PTFs Development 

Input θ30 and θ1500 data were log-transformed prior to model development for both 

the MLR and SVR method. This was necessary for consistency of the target 

variables with the normal probability distribution. The initial fit generated SVR-

models with support vectors ranging from 188 to 191 at hyper-parameter settings of 

C=1 and ε = 0.034 derived from3σ√(ln(n)/n (results not shown). This translated to 

about 95 % -96 % of the total support vectors used in model formulation, suggesting 

poor generalisation of the models with this initial choice of hyper-parameters. The 

number of support vectors within the SVR model signifies its suitability for 

predictions on a new dataset. A larger proportion of support vectors lead to 

overfitting of the model and poor predictions on a new dataset, while a smaller 

proportion leads to under-fitting (Twarakavi et al., 2009). A 50 % threshold has been 

held as the theoretically optimal proportion of support vectors for good 

generalisation on new datasets (Twarakavi et al., 2009; Lamorski et al., 2014).  
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Figure 3.2A to 3.2H show model sensitivity with varying SVR hyper-parameters 

combinations andincreasing soil predictor variables during the coarse grid search 

tuning process. Cross-validation error for FC SVR-models ranged between 0.035 to 

0.08 (Fig. 3.2A – Fig. 3.2D), respectively, corresponding to model types FC1 to FC4 

(Table 7), while for WP SVR-models ranged between 0.04 to 0.14 ((Fig. 3.2E – Fig. 

3.2H) for model types WP1 to WP4.Models were most sensitive to values of C-

parameters. Generally, with lower C values (C<10
-2

)leading to higher errors for both 

WP and FC SVR-models. The WP models were most sensitive to the hyper-

parameters than the FC model withthe CV errors for the WP models almost twice 

those of FC model for the same predictor variables(Fig. 3.2A vs Fig. 3.2E, Fig. 3.2B 

vs Fig. 3.2F, Fig. 3.2C vs Fig. 3.2G). However, that was not the case for FC4 and 

WP4, which showed similar CV errors because the WP4 had an extra predictor 

variable (OC) than FC4.  

 

The pattern of higher CV errors for the WP SVR-models was perhaps related to the 

input predictor variables in the model. Inclusion of predictors in a model was 

arbitrary guided by the correlation results (Table 3.3). Much as sand was highly 

correlated toθ1500, its inclusion as a predictor in WP modelsis suspect. At high soil 

matric suctions (i.e. 1500), moisture in the soil matrix is greatly influenced by the 

specific surface area and capillary forces (Khorshidi, 2015). Sand has plenty of 

macrovoids which hold moisture most at the low matric suctions and thus have less 

influence at high suctions because of its lower cation exchanges capacity (Khorshidi, 

2015). 
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Figure 3.2: Sensitivity of SVR hyper-parameter calibration to incremental 

soil predictor variables (A=FC1, 

B=FC2,C=FC3,D=FC4,E=WP1, F=WP2,G=WP3,H=WP4) 

 

Table 3.4 shows the most optimal hyper-parameters from the coarse grid-search (1
st
) 

and fine grid search (2
nd

) processes, with their corresponding cross-validation errors 

(CVerror) and number of support vectors (SVs). A lower number of SVs were 

evident for the SVR models after the 2
nd

 tuning except for the FC4 model.  
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Table 3.4: Calibration results of optimal hyper-parameters of SVR-model 

types 

 PREDICTORS C ε SVs CVerror 

  1st 2nd 1st 2nd 1st 2nd 1st 2nd 

FC1 SAND+CLAY 100 127 0.197 0.21 151 143 0.043 0.044 

FC2 CLAY+SAND+BD 1 0.1 0 0.25 198 128 0.034 0.034 

FC3 CLAY+SAND+BD+OC 100 96 0.006 0.022 196 189 0.034 0.034 

FC4 SAND+BD 1 0.4 0.244 0.24 126 128 0.034 0.034 

WP1 SAND+CLAY 0.1 0.35 0.199 0.217 146 138 0.080 0.081 

WP2 CLAY+SAND+BD 1000 950 0.246 0.24 119 124 0.067 0.067 

WP3 CLAY+SAND+BD+OC 0.1 0.65 0.15 0.15 151 149 0.065 0.065 

WP4 SAND+BD+OC 10 28 0.037 0.156 183 150 0.033 0.065 

 

Table 3.5 shows the coefficients for the MLRs-PTFs. All input variables were 

statistically significant. The tolerance and VIF scores indicate that the soil variables 

included as inputs were important predictors for moisture retention at FC and WP. A 

tolerance score > 0.1 and VIF < 10 indicate absence of multicollinearity and hence 

model parsimony.This implies that only the most influential predictor variables were 

objectively retained in the regression model.Bulk density has an inverse influence on 

the prediction of moisture retention. Increase in bulk density results in the 

destruction of pedostructure and pore architecture leading to a reduction in the 

available volume for soil moisture storage. Sand as a predictor variable had an 

inverse and the least influence on the moisture predictands in the MLR model. This 

trend could be explained by increases in soil macropores associated with sandy soils 

which causes a decline in moisture retention(Tuller and Or, 2001). Further, sand 

particle fractions have a low cation exchange capacity (IPNI, 2011) which results in 

limited adsorptive sites for retaining moisture (Khorshidi, 2015). The small β-
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coefficient for OC could have been because of the calibration of the model on a 

dataset with a low OC content. Average value for OC content in the training dataset 

was 0.8 % (Table 3.2), which corresponds to a classification class of very low.  

 

Table 3.5: β-Coefficients of MLR PTFs for FC and WP 

Variable β Sig. Tolerance *VIF 

 FC    

Intercept 2.163 0   

Sand -0.013 0 0.926 1.08 

Bulk Density -2.712 0 0.926 1.08 

 WP    

Intercept 2.916 0   

Sand -0.017 0 0.855 1.17 

Bulk Density -3.493 0 0.911 1.097 

OC 0.083 0.011 0.921 1.086 

*VIF – Variance Inflation Factor; Sig- Significance at 5 % probability level.  

 

3.3.3 Evaluation of PTFs 

Table 3.6shows the performance indicators for the SVR models with varying 

predictors. The RMSE values ranged from 0.037 cm
3
 cm

−3
 to 0.042 cm

3
 cm

−3
. The 

MEs for the developed SVR models except model FC3 were less than zero 

indicating a tendency to underestimate moisture at FC and WP. Coefficients of 

determination (R
2
) were between 56.2 % to 67.9 % but slightly higher for the SVR 

models for wilting point (WP2, WP3, WP4) than the field capacity models (FC2, 

FC3, FC4). Best SVR models were FC3 for moisture prediction at field capacity 

with sand, clay, bulk density and organic carbon as predictors. For wilting point, 

model WP4 was the best performing model with sand, bulk density and organic 
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carbon as predictors. The developed models explain a substantial proportion of 

variance of the data and provide satisfactory quantitative estimates of moisture. 

According to Gholizadeh et al. (2015), models with R
2
 values of 0.50 to 0.65 show 

good discrimination between low and high values while those within 0.66–0.81 

indicate approximate quantitative predictions, 0.82– 0.90 good prediction, with R
2
> 

0.91 are excellent. 

 

Table 3.6: Performance Indicators for SVR models with different Predictors 

MODEL INPUTS ME RMSE R
2
 

FC1 SAND+CLAY -0.006 0.042 0.562 

FC2 CLAY+SAND+BD -0.003 0.038 0.643 

FC3 CLAY+SAND+BD+OC 0.000 0.037 0.663 

FC4 SAND+BD -0.003 0.038 0.645 

WP1 SAND+CLAY -0.007 0.045 0.546 

WP2 CLAY+SAND+BD -0.004 0.037 0.668 

WP3 CLAY+SAND+BD+OC -0.003 0.037 0.677 

WP4 SAND+BD+OC -0.003 0.037 0.679 

 

Unit plots of SVR and MLR predicted moisture content on the testing dataset are 

shown in Fig. 3.3. The best performing SVR PTFs (SVR-FC3 and SVR-WP4) were 

compared here. The R
2
, ME and RMSE values were marginally better for the SVR 

PTFs (upper panel) than the developed MLR-PTFs (lower panel). Prediction indices 

are better at wilting point than at field capacity for both SVR and MLR models. 

Miháliková et al. (2016) also found moisture content predictions to be more reliable 

at WP than at FC.  
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Figure 3.3: Unit plots of SVR and MLR predicted moisture content on the 

testing dataset 

 

The possible reason for this trend could be linked to the fact that moisture content at 

higher matric potentials (FC) is controlled by numerous soil factors which results in 

large variability within measurements. In contrast, moisture at wilting point is 

mainly influenced by specific surface area of the soil constituents which minimises 

variability in measurement values. The negative ME values indicate that models tend 

to underestimate moisture content at FC and WP for both the MLR and SVR-PTFs. 

Though the ME of SVR-FC3 (ME=0.000) might suggest an unbiased model, this 

result was due to the deviations above and below the line of fit cancelling out.  
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The RMSE values for both the FC and WP were 0.037 cm
3
 cm

−3
, for the MLR-PTFs 

and 0.038 cm
3
 cm

−3
 for the SVR models. These RMSE values are within typical 

RMSE values for PTFs reported to range within 0.02 and 0.07 (Rawls and 

Pachepsky, 1999), suggesting a good model accuracy. The RMSE values of these 

SVR-PTFs were lower than those reported in similar works (Lamorski et al., 2008; 

Twarakavi et al., 2009; Lamorski et al., 2014; Nguyen et al., 2015; Khlosi et al., 

2016), for matric potentials at or near FC or WP. The explanation for this is not 

straight forward and can only be suggested. The trend could be associated with the 

choice of kernel function adopted in the SVR model development. Haghverdi et al. 

(2014) noted that low RMSE values were associated with models that predict linear 

matric potential-moisture content relationship than the nonlinear relationship. This is 

a plausible link as a linear kernel was adopted in this study while the radial basis 

function (RBF) kernel was used in those studies.  

 

In comparing the linear and RBF kernels, Lamorski et al. (2014) found that using the 

RBF kernel in development of SVR models led to overfitting with high RMSE and 

poor generalisation capability of the models on validation. He concluded that the 

pattern was related to the high sensitivity of the SVR-models to the γ-parameter of 

the RBF kernel. Another possible explanation could be the variations in dataset 

characteristics used in the different studies as well as the predictors adopted for the 

SVR. Differences in measurement approaches and textural composition of the 

samples in datasets induce variability which affects the quality of PTF outputs 

(Vereecken et al., 2010). Including additional predictors to the particle size fractions 

improved accuracy of the SVR-models (Twarakavi et al., 2009; Nguyen et al., 2015; 
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Khlosi et al., 2016). A similar trend was observed in this study; however, careful 

thought is needed to avoid including difficult to measure soil properties as predictors 

as this contradicts the essence of PTFs. 

 

Complete focus on the performance indices (Table 3.6) may mask overfitting issues 

that might arise when additional predictors are included in the SVR-models. Though 

the SVR-FC3 model with sand, clay, BD and OC as predictors (Fig. 3.3) has better 

indices than the SVR-FC4 (Fig. 3.4) with only sand and bulk density as predictors, 

its proportion of support vectors (SVs=189, Table 3.4) was higher than those of the 

SVR-FC4 model (SVs= 128). This has implications for the generalisation capability 

of the model as earlier alluded to. Reliability of the SVR-FC4 model would be better 

when applied to independent datasets than the SVR-FC3 model. It is important to 

note that the difference in the indices is only marginal between the two model types.  
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Figure 3.4: Unit plots of SVR-FC4 PTF on the testing dataset 

 

3.5CONCLUSIONS 

This study was undertaken to develop SVR pedo-transfer functions for estimating 

soil moisture holding capacity for dry sub-humid soils. The SVR-PTFs developed in 

this study performed slightly better than published SVR PTFs. The developed 

multiple linear regression-PTFs are a suitable straight forward application as an 

alternative.  
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CHAPTER FOUR  

 

4.0 THREE-DIMENSIONAL MAPPING OF SOIL MOISTURE 

HOLDING CAPACITY WITH SOIL DEPTH FUNCTIONS AND 

MACHINE LEARNING 

 

ABSTRACT 

Soil moisture holding capacity (MHC) is highly variable and greatly influences 

agricultural productivity. Machine learning methods and soil depth functions (SDF) 

offer means for accurate and detailed characterization of lateral and vertical 

variability of MHC. This study examined the application of machine learning 

algorithms and soil depth functions for 3-dimensional mapping of MHC. Selected 

spatial ancillary data was subjected to principal component analysis as covariates for 

MHC prediction. Equal-area quadratic spline soil depth functions were fitted to 

model continuous vertical distribution of MHC data. Random forests (RF) and 

Cubist decision trees (CB) machine learning algorithms were trained on SDF fitted 

data to predict MHC with principal components of spatial covariates as predictors. 

Validation was performed at 3 measurement depths 15-cm, 45-cm, and 75-cm with 

mean error (ME) and root mean square error (RMSE) and R
2
 as indices. 

Computations were performed in R-software. Ten principal components had 

eigenvalues > 1 with a cumulative variance > 70 %. Prediction accuracy was good 

with RMSEs ranging between 0.011-0.015 cm
-3

cm
-3

and R
2
 between 36 - 81.4 %. 

Random forests had better accuracy than the Cubist decision trees. An RF-CB 

ensemble improves prediction accuracy. Observed results could be due to finer 

resolution of mapping covariates and learning ability of algorithms.  



 76 

Keywords: MHC, Random forests, Cubist rules, Machine learning, Soil depth 

functions 

  



 77 

4.1INTRODUCTION 

Interest in detailed soil moisture information is high for modelling agricultural 

productivity in areas highly influenced by climate variability (Hengl et al., 2017). 

Variability of soil moisture strongly influences the economic and environmental 

aspects of agricultural production systems (Junior et al., 2014). Soil moisture 

exhibits high lateral and vertical variability (Chen et al., 2015) with direct 

implications for water andnutrient management, erosion control and the 

sustainability of agricultural production systems (Junior et al., 2014; Gray et al., 

2015).  

 

Appropriate resource management actions require detailed characterization of lateral 

and vertical variation of soil moisture properties in form of three dimensional maps. 

However, this is limited by high soil sampling costs resulting in sparse data. Sparse 

data may lead to spurious representations of spatial structure of soil moisture 

characteristics and thus quantitative methods for preparation of detailed soil maps 

from this limited data are necessary. Digital soil mapping (DSM) represents a basis 

for quantification of soil properties through statistical and mathematical tools 

(Kempen, 2011; Mansuy et al., 2014). DSM derives from empirical descriptions of 

the ‗SCORPAN‘ (Soil attribute, Climate, Organisms, Relief, Parent Materials, Age, 

and spatial-locatioN) model (McBratney et al., 2003), adapted from the ‗ClORPT‘ 

(Climate, Organisms, Relief, Parent Materials and Time) soil state factor model 

(Jenny, 1941). It benefits from availability of spatial environmental data like remote 

sensing data and digital elevation models, as soil formation ancillary covariates to 

develop predictive relationships from limited point observations (Malone et al., 

2009).  
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Various statistical and mathematical methods have been explored to develop 

quantitative soil-covariate relationships for prediction or interpolation of soil 

properties. Geostatistical modelling (e.g. ordinary kriging, co-kriging, and 

regression-kriging) has been most widely applied (Junior et al., 2014). Geostatistical 

modelling assumes normal distribution of data (Heuvelink, 2014), and leads to less 

reliability of results with non-normally distributed data (Kavianpoor et al., 2012), in 

absence of spatial autocorrelation (Lark, 2012) or limited data points (Heuvelink, 

2014). Machine learning methods (e.g. random forests, cubist decision trees, support 

vector machines) have also been applied in mapping soil properties (e. g. Kovačević 

et al., 2010; Mansuy et al., 2014; Ließ et al., 2016; Hengl et al., 2017). No 

assumptions on distribution class of data is made with machine learning algorithms 

(MLAs) (Ustner et al., 2015), which transcends the drawbacks of geostatistical 

modelling for predictive mapping of soil MHC. Kovačević et al. (2010) and Hengl 

et al. (2017) found MLAs to be suitable for soil predictive mapping. The method 

applied for predictive mapping depends on a variety of factors like available soil 

data and environmental covariates, size and environmental characteristics of the area 

mapped, the processing time, ease of model implementation and result 

interpretation, as well as the desired mapping accuracy (Junior et al., 2014).  

 

Approaches for 3-D mapping of soil properties have mostly employed hybrid 

methods integrating geostatistics and soil depth functions to map variability of soil 

properties in 3-D (Malone et al., 2009; Kempen, 2011; Veronesi et al., 2012; 

Adhikari et al., 2013). Soil depth functions are models fitted to the discrete 

measurements of soil attribute to represent a continuous vertical distribution of soil 
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attributes in a profile. Polynomial splines (Malone et al., 2009; Veronesi et al., 

2012; Adhikari et al., 2013; Mulder et al., 2016), exponential decay functions 

(Kempen, 2011), power and logarithmic functions (Liu et al., 2013) have been used 

as soil depth functions. Quadratic spline functions have been documented as the 

most accurate method for fitting soil data in a vertical continuum of the soil profile 

(Malone et al., 2009; Veronesi et al., 2012; Liu et al., 2013). This approach to the 3-

dimensional problem does not explicitly consider the 3-D spatial dependence (Liu et 

al., 2013) and insufficiently represents the support over which the soil data is 

collected (Orton et al., 2016). Therefore, the objective of this research was to 

evaluate random forests and cubist decision trees for 3-dimensional mapping of soil 

moisture holding capacity. 

 

4.2MATERIALS AND METHODS 

4.2.1 Study area 

This study was undertaken in Ilakala village in Kilosa District – Tanzania. It has a 

total area of about 44 km
2
 and altitude between 546 - 1000 m. It borders Mikumi 

National Park to the South. Western and Northern peripheries are spanned with hilly 

relief in proximity to the Rubeho Ranges, predominantly overlain with unprotected 

Miombo woodlands vegetation. Arable agriculture predominates in the Southern 

areas. The area experiences a dry sub-humid climate with a mean annual rainfall of 

500 – 800 mm. It is located within latitudes 7
o
5‘ 30‖ S and 7

o
 9‘ 30‖ Sand 

longitudes 36
o
 50‘ 30‖ E and 36

o
 57‘ 30‖ E (Fig. 4.1). 
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Figure 4.1: Location of study area 

 

4.2.2 Soil dataset 

Soil data was collected from 100 locations through a stratified random sampling 

design. Samples were collected at depth intervals of 0-30cm (15-cm), 30-60 cm (45-

cm), and 60-100 cm (75-cm). Numbers in the brackets indicate the specific sampling 

depths. Four locations at the 60-100 cm depth interval weren‘t sampled due to 

rockiness. A bulk soil sample of about 500 g was excavated and duplicate soil cores 

samples of 100 cc taken at each depth interval. Bulk soil samples were air-dried and 

sieved for subsequent analysis for soil particle size distribution and organic carbon. 

Particle size fractions were measured by the Bouycous hydrometer method (Gee and 

Bauder, 1986). Organic carbon was measured by the Walkley and Black wet 

oxidation method (Nelson and Sommers, 1982). Moisture retention and bulk density 



 81 

were measured from the soil core samples. Moisture retention measurements at field 

capacity (FC) and wilting point (WP) were made using a pressure plate apparatus at 

suctions of 30 kPa and 1500 kPa, respectively. Soil moisture holding capacity 

(MHC) was taken as the difference of moisture at FC and WP. After measurements 

of wilting point, the soil core samples were oven-dried at 105 
o 

C for 24 hours for 

estimation of bulk density (Blake and Hartge, 1986). To have a complete data-set for 

all the measurement depths, the missing data from the 4 sampling locations was 

imputed as a mean of the other measured points. 

 

4.2.3 Descriptive Statistics 

Box-plots for the measured soil physicochemical properties were constructed to 

assess the variation of soil properties across measured soil depths intervals. 

Exploratory statistics were used to determine the mean, minimum (MIN), maximum 

(MAX), standard deviation (SD), coefficient of variation (CV) and Shapiro 

Wilkinson test of the measured MHC data. The Shapiro-Wilkinson test is a measure 

of distribution of data for normality. 

 

4.2.4 Auxiliary environmental variables 

The modelling framework is hinged on auxiliary information from spatial 

covariates.Table 4.1 shows the selected spatial covariates used in this study.Primary 

spatial covariate layers selected for this study were soil type (SOILS), geology 

(GEO), and digital elevation model (DEM).  

 

The soils layerwas developed within the framework of Trans-Sec Project (Trans-

Sec, 2017). It is composed of eight categorical soil mapping units corresponding to 
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five major indigenous soil types (Kichanga, Mfinyanzi, Ngunja, Tifu-Tifu, Wakitope-

Mweusi), and three soil associations composed of combinations of indigenous soil 

types (Mfinyanzi+Kichanga, Ngunja+Kichanga, Tifu-Tifu+Kichanga) (Kaingo and 

Tumbo, 2016). Appendices 1 to 5 show the field data for the indigenous soil units 

and indicates therespectiveinternational soil referencename(WRB, 2015).  

 

Geology data was from Geological Survey of Tanzania and it consisted of four 

categorical geologic units (XAB, RAL, MBG and NTS). The lithology of these 

geologic units is described in Appendix 6.The DEM was of the 30-m Shuttle Radar 

Topography Mission (SRTM) provided by United States Geological Survey (USGS) 

(USGS, 2017).  

 

Other spatial covariates were derived from the DEM using the SAGA processing 

toolbox in QGIS 2.16 software (QGIS Development Team, 2016). DEM-derivatives 

included Slope (SLP), Aspect(ASP), SAGA topographic wetness index (STWI), 

Topographic Wetness Index (TWI), Topographic Position Index (TPI), Length-slope 

factor (LSF), Altitude Above Channel Network (AACN), Planar Curvature (PLC), 

Profile Curvature (PRC), Multi-Resolution Valley Bottom Flatness Index (MRBF), 

and Multi-Resolution Ridge-Top Flatness Index (MRTF). The importance of these 

DEM-derivatives to soil-landscape modelling has been highlighted by different 

authors (e. g. Moore et al., 1993;Böhner and Selige, 2006;Buchanan et al., 2014; 

Viloriaet al., 2015;Ortonet al., 2016). 
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Table 4.1: Spatial Environmental Covariates 

SHORT Descriptive name RESOLUTION SOURCE 

AACN Altitude above channel network 30-m DEM-Derived  

ASP Aspect 30-m DEM-Derived 

DEM Digital Elevation Model 30-m USGS (2017) 

GEO Geology 1:125 000 Geological Survey 

of Tanzania (2016) 

LSF Slope-length factor 30-m DEM-Derived 

MRBF Multi-resolution valley-bottom 

flatness index 

30-m DEM-Derived 

MRTF Multi-resolution ridge-top flatness 

index 

30-m DEM-Derived 

PLC  Plan curvature 30-m DEM-Derived  

PRC Profile curvature 30-m DEM-Derived  

SOILS Soil Mapping units of Ilakala Village 1:12 500 Kaingo and Tumbo 

(2016) 

STWI SAGA Topographic Wetness Index 30-m DEM-Derived  

TPI Topographic Position Index 30-m DEM-Derived  

TWI Topographic Wetness Index 30-m DEM-Derived  

 

4.2.5 Principal component analysis (PCA)of auxiliary spatial covariates 

Principal component analysis (PCA) was performed on a matrix of spatial covariates 

to extract the most important information from the data, and for dimensional 

reduction for analysis of the structure of the observation and variables. Principal 

component analysis is a multivariate statistical technique used to generate latent 

variables known as principal components (PCs) for analysing variance structure of 

data as weighted linear combinations of original variables (Young and Pearce, 2013; 

SAS, 2017). All spatial covariate layers developed in QGIS software were 

resampled or calculated at a spatial resolution of 30-m. Spatial covariate data was 
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then imported into the R-software environment (R Core Team, 2016) and the ‗spatial 

predictive components‘ function (spc) of the R-GSIF package (Hengl, 2016) was 

used to calculate the PCs of the covariate data. Miscellaneous R-base functions were 

used to calculate the eigenvalues and variance contribution of the PCs from the 

GSIF output. Principal components with eigenvalues greater than 1 were retained for 

further analysis following the Kaiser criterion (Young and Pearce, 2013). 

 

4.2.6 3-Dimensional mapping of MHC 

Two mapping approaches were considered i.e. a scenario with a complete set of 

measured MHC data (DSM-A) and a scenario combining estimated and measured 

MHC data (DSM-B). The principle of saving sampling costs guided the need to 

evaluate the prediction efficiency of combining estimated and measured data in 

predictive mapping. Support vector machines pedo-transfer functions (SVM-PTF) 

earlier developed for the study area (Chapter Three of this dissertation), were 

applied for estimation of MHC with 50 % of the sampling points. Sampling points 

for PTF-estimation were selected using k-means clustering with the ‗CLUSTER‘ 

directive of Genstat-15 software (VSNi, 2017). Clustering was implemented in such 

a way that an estimated and measured point occurred in adjacency within the same 

geostrata. 

 

The work-flow described in this paragraph consistently applied to both mapping 

scenario DSM-A and DSM-B. Equal-area quadratic spline soil depth functions were 

used to fit the measured MHC data at 1-cm vertical resolution across the 1-m depth 

interval with knots at 0, 15, 45 and 75-cm. Data of the most significant principal 
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components was extracted for each sampling point and combined with the spline-

fitted MHC data to generate a regression matrix. Machine learning algorithms 

(Random forests (RF) and cubist rules (CB)) were trained on 60 % of randomly 

selected data points from the regression matrix (n = 6000) consisting of key PCs and 

soil depth as predictors. The randomForest (Liaw and Wiener, 2002) and Cubist 

(Kuhn et al., 2016a) packages of R-software were used for training RF and CB 

algorithms, respectively, through the caret R-package (Kuhn et al., 2016b). The 

model construct fed into the RF and CB algorithms had MHC as the dependent 

variable with PCs and soil depth as predictors. Predictions were subsequently 

performed using the trained models. Predictive mapping using an RF-CB ensemble 

as a weighted average of coefficients of determination was also evaluated. 

Validation was performed with the remaining 40 % of data points using the RMSE, 

R
2
, and ME as prediction accuracy indices. 
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Where y is the measured moisture content, y  is the predicted moisture content and y  

is the mean of the measured moisture content.  
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4.3RESULTS AND DISCUSSION 

4.3.1 Descriptive statistics 

Figure 4.2 shows the variation of the measured soil properties with soil depth. 

Organic carbon (OC) content was highest in the top soil and gradually reduced with 

soil depth. Variability and value of bulk density was highest at the 0-30 cm depth 

interval. Median BD values of for the 30-60 cm and 60-100 cm depth were similar. 

Proportion of soil particle sizes across all depths followed the order sand> clay> silt. 

Sand content exhibited a decrease with increased soil depth. Moisture content was 

lowest for the 0-30 cm depth interval for both the field capacity and wilting point. 

Least variability of moisture content was observed at the furthest depth (60-100 cm).  

 

 

Figure 4.2: Boxplots showing variation of soil properties with depth 
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Table 4.2 shows the descriptive statistics of MHC at the various depths. Moisture 

holding capacity was highest at the 60-100 cm depth with mean value of 0.043 cm
-

3
cm

-3
. However, mean MHC at the other depths is not significantly different. The 

MHC is slightly more uniform at the top depth (CV= 40 %) compared to the lower 

depths. The highest variability of MHC was at the 30-60 cm depth. Shapiro-

Wilkinson normality test scores (S-W) were significant indicating that MHC data at 

all depths do not fit a normal distribution.  

 

Table 4.2:Descriptive statistics of moisture holding capacity across depths 

DEPTH (cm) MIN MEAN MAX SD CV (%) S-W 

0-30 0.016 0.042 0.1 0.017 40.028 0.88*** 

30-60 0.012 0.04 0.121 0.019 48.214 0.867*** 

60-100 0.014 0.043 0.115 0.02 46.383 0.909*** 

 

4.3.2 PCA of spatial covariates 

A total of 24 PCs were derived from the original 14 spatial covariates used in the 

study. Figure 4.3 depicts the cumulative variance of the derived PCs from the spatial 

covariates. Principal component 1 (PC1), PC2, and PC3 individually account for 

about 19 %, 11 %, and 9 % of the variance in the spatial covariates, respectively. 

Cumulative variance of the last three PCs (PC22, PC23, and PC24) was marginal 

(<< 1 %) and perhaps represents noise within the spatial covariate data. 
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Figure 4.3: Eigenvalues and Cumulative Variance of Spatial Covariates 

Principal Components (PCs) 

 

Principal components 1 to 10 (PC1-PC10) had eigenvalues greater than 1 as shown 

in Fig. 4.3A. These satisfy Kaiser‘s criterion (eigenvalue > 1), implying that PC1 to 

PC10 were significant for subsequent analyses (Young and Pearce, 2013; Bingol et 

al., 2013). Iezzoni and Pritts (1991) highlighted that PCs with an eigenvalue > 1, are 

inherently more informative than any single original covariate taken alone. The ten 

extracted PCs (PC1-PC10) accounted for over 70 % of the total variance in the 

spatial covariate data (Fig. 4.3B). Principal components with a cumulative variance 

of about 80 – 90% suitably substitute original variables (Bingol et al., 2013), 

although a cumulative variance of 70 % is also considered permissible for model 

constructs (SAS, 2017). A variance of 80 % would have been achievable with the 

inclusion of PC11 and PC12 but their eigenvalues fell below the Kaiser threshold. 

Iezzoni and Pritts (1991) argue that PCs with eigenvalue < 1 merit inclusion where 
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physical meaning can be attributable to the PCs. However, for model parsimony, 

inclusion of PC 11 and PC 12 was decided against. Comparable to this study, Wang 

et al. (2012) found that inferential tests yielded PCs that explained cumulative 

variance of between 69 – 75 %. 

 

 

Figure 4.4: Pooled variance of spatial covariates across PC1-PC10 

 

Figure 4.4 shows the pooled variance of the individual spatial covariates across the 

retained PCs (PC1-PC10). Soil unit 1 (STYP_1) had the highest pooled variance 

with a cumulative variance of about 90 %. Aspect (ASP) had the least pooled 

variance on the PCs with a cumulative variance of less than 40 %.Six of the spatial 

covariates with the highest cumulative variance across PC1-PC10 are illustrated in 

Fig. 16. These were soil types (SOILS), geology (GEO), slope (SLP), slope length 

factor (LSF), elevation (DEM) and topographic position index (TPI). Legend item 1 

of the ‗SOILS‘ layer (Fig. 4.5) represents ‗STYP_1‘ (Fig. 4.4) and corresponds to 

indigenous soil type Kichanga. It is a Hyperdystric Cambisol(loamic, 
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ochric)(Appendix 1) with sand proportions ≥ 70 % (Kaingo and Tumbo, 2016). It 

had the largest areal coverage which possiblycaused the observed cumulative 

variance. The other legend items for the ‗SOILS‘ layer are:Mfinyanzi (2), 

Mfinyanzi+Kichanga (3), Ngunja (4), Ngunja+Kichanga (5), Tifu-Tifu (6), Tifu-

Tifu+Kichanga (7), and Wakitope-Mweusi (8). Correspondingly, the largest geologic 

unit (legend item 1) for the geology layer (GEO) (Fig. 4.5), had the 2
nd

 highest 

cumulative variance (Fig. 4.4, GEO_1). This corresponds to the geologic unit code 

XAB (Appendix 6). The XAB lithologic unit is primarily composed of meta-

sedimentary rocks with soils formed frombiotite gneissparent material. The geologic 

legend items are: RAL (2), MBG (3), and NTS (4). 

 

 

Figure 4.5: Spatial covariates with highest cumulative variance contribution 

to PC1-PC10 
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An overall outlook is that soil type and geology had the most influence on the PCs 

(Fig. 4.4). Other studies (Adhikari et al., 2014; Gray et al., 2016; Hengl et al., 2017) 

have emphasized the relative importance of the soils and geology covariates in 

spatial prediction of soil properties. Hengl et al. (2017) observed distinctive patterns 

of lithological classes in output prediction maps for texture and coarse fragments. 

For soil hydrological properties like MHC, particularly, lithological structure or 

parent materials represented by the geology covariate wield strong influence 

(Kodešová et al., 2009; Brocca et al., 2012; Gray et al., 2016). Mineral composition 

and degree of alteration of parent materials determines grain size of soils (Kodešová 

et al., 2009) influencing soil pore architecture with control on the soil moisture 

retention properties. Parent material high in silica content, often contains high quartz 

resulting in coarse sandy soils. Composition of underlying lithological structure for 

both the soil type and geology covariates was quartz (Kaingo and Tumbo, 2016) 

resulting in the observed sandy soils spanning a large extent of the study area (Fig. 

4.5).  

 

4.3.3 3-D mapping with DSM-A scenario 

Figure 4.6 shows the prediction maps of MHC for the DSM-A mapping scenario at 

15-cm, 45-cm and 75-cm depth. Highest predictions of MHC were concentrated in 

the eastern and south-western areas of the study area. High predictions in the south-

western area correspond to a region with relatively high vegetative cover. High 

vegetative cover leads to accumulation of soil organic carbon which enhances the 

moisture retention properties of the soil (Kodešová et al., 2009; Ließ et al., 2016). 

Map predictions for MHC were generally higher for the 45-cm layer. The lowest 
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MHC map predictions are apparent for the 15-cm depth. Textural distribution in the 

horizons is assumed to be responsible for this observed pattern. Upper horizons 

generally had a coarser textural fraction, with finer textural fractions in the mid-

intervals and a slightly fine to coarse fraction at deeper horizons towards the C-

horizons. Spatial prediction patterns of the maps are similar for all algorithms (RF, 

CB and AVG). 

 

 

Figure 4.6: Maps of MHC with Random Forest (RF), Cubist Rules (CB) and 

Ensemble approach (AVG) at 15 cm, 45 cm and 75 cm depth 

 

Figure 4.7 shows the distribution of the training and validation points used for 

development and assessment of mapping framework at 15 cm, 45 cm and 75 cm 

depth. These points were objectively selected through a probabilistic sampling 

design and thus are suitable for statistical validation of maps without bias. Training 



 93 

points ranged from 58-60 while validation points ranged from 37-40. It is important 

to note that the validation data from these locations is independent and was not used 

in training the RF and CB algorithms. Brus et al. (2011) pointed out that unbiased 

and valid prediction map quality estimates are best achieved using independent data 

not used in modelling, and selected by probability sampling.  

 

 

Figure 4.7: Location of training and validation points at 15-cm, 45-cm and 

75-cm depths 

 

Validation results of the prediction maps are given in Table 4.3. Overall observation 

is that MEs are very close to zero; implying limited bias in spatial prediction of 

MHC. The MLAs though tend to overestimate MHC at the 15-cm depth (MEs <0). 
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The cubist algorithm (CB) overestimates MHC at 75-cm depth with ME < 0. 

Random forest algorithm (RF) appears to have the least MEs across the depths. 

Mean error of the CB-RF ensemble (AVG) tends to be lower than the ME for CB. 

Zero MEs of RF and AVG at 45-cm and 75-cm depth, respectively, could be due to 

cancelling out of MHC values straddling above or below the line of best fit (Fig. 

4.8). Observed RMSEs for RF, CB and AVG, ranged from 0.011-0.015 cm
3
cm

-3
, 

0.011-0.013 cm
3
cm

-3
, and 0.008-0.013 cm

3
cm

-3
, respectively. Improvements in 

RMSE by applying MLAs for map prediction have been reported and attributed to 

better statistical learning abilities of the MLAs for non-linear soil data. RMSE for 

the 45-cm depth were lowest compared to other validation depths maps. The RMSE 

values of the CB-RF ensemble (AVG) were the lowest across all the validation 

depths. This suggests higher mapping accuracy of CB-RF ensemble prediction than 

mapping accuracy with RF or CB models alone, likely due to reduction of 

overshooting effects from either MLA (Hengl et al., 2017). 

 

Table 4.3: Validation statistics forMHC mapping with DSM-A scenario 

MLA ME (cm
3
cm

-3
) RMSE (cm

3
cm

-3
) R

2 
(%) 

 15cm 45cm 75cm 15cm 45cm 75cm 15cm 45cm 75cm 

RF -0.001 0.000 0.001 0.011 0.010 0.015 41 74.3 39.667 

CB -0.003 0.002 -0.001 0.012 0.011 0.013 36 65.1 55.747 

AVG -0.002 0.001 0.000 0.010 0.008 0.013 45.4 81.4 53.637 

 

The R
2
 results were between 36 - 81.4 %. Results indicate that R

2
 values were 

highest for the 45-cm depth and overall lowest for the 15-cm depth except for the RF 

algorithm where the 75-cm depth returned the lowest R
2
. Validation results as 
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reflected by RMSE and R
2 

broadly follow variability in MHC data as shown by the 

coefficient of variation (Table 4.3). 

 

 

Figure 4.8: Unit plots for validation of MHC prediction maps 

 

4.3.4 3-D mapping with DSM-B scenario 

Even proportions of measured and PTF-predicted soil MHC data were combined for 

modelling 3-D prediction maps. Figure 4.9 shows the spatial distribution of locations 

with observed and PTF-estimated data. Locations were clustered in such a way that a 

measurement and PTF-estimated point occurred in each geostrata with adjacency. 

Prediction maps of the MLAs under the DSM-B scenario are shown in Fig. 4.10. 

Spatial prediction patterns for DSM-B were similar to the DSM-A scenario (Fig. 

4.6) - though the signal seems lower especially for the south-western region (Fig. 

21).  
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Figure 4.9: Distribution of points with SVM-PTF estimated MHC 

 

 

Figure 4.10: Maps of MHC with Random Forest (RF), Cubist Rules (CB) and 

Ensemble approach (AVG) at 15 cm, 45 cm and 75 cm depth 
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Generally, the cubist algorithm (CB) overestimates MHC at all depths (15-cm, 45-

cm, and 75-cm) with MEs < 0 (Table 4.4). Random forest algorithm (RF) tends to 

underestimate for the 15-cm depth (ME > 0) while the CB-RF ensemble (AVG) 

overestimates at the 75-cm depth (ME < 0) (Table 4.4). The R
2
 values ranged 

between 19-55% (Table 4.4) and were generally lower than the DSM-A scenario 

with the complete measured dataset (Table 4.3). The highest R
2
 values were 

registered with the prediction maps for the 45-cm layer. These results are better than 

those reported by Malone et al. (2009) (8 - 29%). The difference between these 

results could be explained by the approaches applied in the study. Malone et al. 

(2009) used only PTF-estimates for mapping MHC while both measured and PTF-

estimates were combined in this study. 

 

Table 4.4: Validation statistics for MHC mapping with DSM-B scenario 

MLA ME (cm
3
cm

-3
) RMSE (cm

3
cm

-3
) R

2 
(%) 

 15-cm 45-cm 75-cm 15-cm 45-cm 75-cm 15-cm 45-cm 75-cm 

RF 0.001 0.000 0.000 0.012 0.013 0.015 30.7 55.0 33.8 

CB -0.001 -0.001 -0.001 0.014 0.014 0.015 19.0 48.2 34.2 

AVG 0.000 0.000 -0.001 0.011 0.013 0.015 32.1 54.3 35.8 

 

The RMSEs ranged from 0.011 cm
3
cm

-3 
to 0.015 cm

3
cm

-3
 (Table 4.4). The RMSEs 

were marginally higher than in the scenario with completely measured data (Table 

4.3), implying that mapping accuracy decreased with inclusion of PTF-estimated 

data. However, the results are better than for the study by Miháliková et al. (2016) 

who reported RMSEs in the range of 0.035 – 0.092 cm
3
cm

-3
. This disagreement in 
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results could be due to a multifold of factors viz differences in sizes of datasets, 

model used and scale of the mapping areas. Relative decrease in prediction accuracy 

was between 9 – 63 % (Table 4.5), with the 45-cm depth prediction maps showing 

the highest decrease in accuracy. This is most likely linked to error propagation from 

the PTF-estimated MHC data. Malone et al. (2009) reported a propagation of error 

into the spatial model due to use of extrapolated spline estimates. Machine learning 

algorithms have also been reported to be highly sensitive to errors in data (Hengl et 

al., 2017). Therefore, using estimates of MHC enhanced the uncertainty within the 

MLAs during the model training phase resulting in the larger order of difference 

between predicted MHC and observed MHC values. 

 

Table 4.5: Relative RMSE of the MLAs with inclusion of PTF-estimated 

data 

DEPTH AVG (%) CB (%) RF (%) 

15-cm -10.00 -16.67 -9.09 

45-cm -62.50 -27.27 -30.00 

75-cm -15.38 -15.38 0.00 

 

There is indication that the spatial prediction patterns of MHC depend on the spatial 

patterns of input covariates. Misclassification error associated with spatial covariates 

especially categorical covariates (e.g. Soil type and geology) could have also 

resulted in a mismatch of spatial relationships with the dependent variable 

(Stoorvogel et al., 2009; Hengl et al., 2014). 
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Figure 4.11: Unit plots for maps generated with PTF-predicted MHC 

 

Error propagation limits the utility of prediction maps and might influence wrong 

decisions (Heuvelink, 2014). Although Hengl et al. (2014) vouch for application of 

more sophisticated statistical modelling as a mitigating approach, enhanced 

complexity of quantitative models might only provide limited improvements in 

prediction accuracy (Mansuy et al., 2014). The MLAs are data-driven and as such 

only a simulation of observed data. The envisaged improvements in prediction 

accuracy with more model complexity will inevitably plateau. More reliable map 

predictions could perhaps be achieved with higher sampling density and better 

configuration of data points (Minasny et al., 2007; Lark, 2012; Junior et al., 2014). 

This though might be prohibitive due to costs and a trade-off has to be reached about 

the ‗optimal‘ error to accommodate.  
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Spatial accuracy of the covariates needs to be improved more so for 

qualitative/discrete spatial covariates such the soil type and geology layers. Poor 

accuracy of categorical spatial covariates arises due to high short-scale spatial 

variation of the properties combined with a low sampling resolution. Improving 

thematic accuracy of the categorical classes needs more precise delineations 

especially where the target mapping resolution is smaller than the scale of the input 

spatial covariate. High resolution remote sensing data products like the TanDEM-X 

WorldDEM
TM

 offering a resolution of less than 12m (DLR, 2016a; 2016b), 

increasing affordability of technologies such as proximal sensing (Viscarra-Rossel et 

al., 2011; Ji et al., 2015) and low-altitude unmanned aerial vehicles (UAVs) 

(Crommelinck et al., 2016) offers a viable pathway for high-order thematic 

classification for improved prediction map accuracy. The UAVs have potential to 

generate detailed DEM data with pixels of ground resolution of as high as 5 cm 

which could comprehensively improve representation of short scale variations of soil 

properties. 
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4.3CONCLUSIONS 

A framework has been evaluated for 3-D mapping of soil moisture holding capacity 

using machine learning and soil depth functions. Random forests are better for 

predictive mapping than Cubist rules. An ensemble of CB and RF further improves 

accuracy of predictions. Predictive mapping using a combination of measured and 

PTF-predicted MHC data decreases accuracy. Using principal components as 

predictors returns good estimates of MHC. Though the predictions are 2-D surfaces, 

predictions of MHC layers can reliably be made at any depth of interest across the 

continuum of depth interval within which the algorithms were trained. Rendering 

could then be achieved within software libraries that accommodate 3-D plots like the 

plotKML R-package. 
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CHAPTER FIVE  

 

5.0 CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

The following conclusions were drawn from the study: 

i. Stratified random sampling design has slightly better accuracy than the 

spatial coverage sampling design. The stratified random sampling design is 

a probabilistic sampling design and also allows for inferential statistical 

measures like confidence limits to be drawn from the soil moisture holding 

capacity data during mapping. 

ii. Support vector regression algorithmexhibits good accuracy for generating 

pedo-transfer functions in comparison to multiple linear regression 

approach. Apparently, usinglinear kernel based support vector machines 

offers primaryimprovements for observed accuracy.However, SVR-PTFs 

are not a straight forward implementation. 

iii. Machine learning algorithms and soil depth functions had relatively good 

accuracy for 3-dimensional mapping of soil moisture holding 

capacity.Random forests machine learning algorithm had better accuracy 

than cubist algorithm. Spatial prediction patterns of the soil moisture 

holding capacity maps follow the patterns of spatial covariate layers used. 

Prediction accuracy appears to be influenced by the resolution of the spatial 

covariate layers. There is a slight reduction in prediction accuracy with a 

combination of measured and estimated moisture holding capacity data. 
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5.2 RECOMMENDATIONS 

The following recommendations are proposed: 

i. Soil sampling as implemented in this study can be ideally applied for any 

digital soil mapping task where fresh soil sampling has to be performed. 

However, in the circumstances where some data already exists at known 

spatial locations, spatial infilling of the less sampled areas can be 

performed.  

ii. Developed SVR-PTFs are best suited as a backend implementationwith a 

graphical user interface in a modelling framework like a soil information 

system, crop or hydrological models. Therefore, further work will be needed 

towards that end. However, the multiple-linear regression PTFs can easily 

be implemented as an alternative means. The utility of the SVR-PTFs might 

be limited to soil conditions of the dry sub-humid climates and there will be 

need to further explore and extend its robustness for application across other 

pedo-environments. The greatest hindrance though is the limited availability 

of soil moisture data. It will therefore be of essence to collate available soil 

moisture data to build a soilshydraulic properties database for Tanzania to 

facilitate further soil hydrological studies. 

iii. Implementation of the 3-D mapping considers the influence of spatial 

covariates as constant across all depths. This may not be consistentas the 

spatial covariates are often representative of surface features. Therefore, 

further research to better account for variability or influence of spatial 

covariates with depth. Also, how the prediction accuracy of the machine 

learning technique could be improved using finer resolution spatial 
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covariates from proximal sensing and unmanned aerial vehicles needs to be 

studied. 

iv. In the 3-D predictive mapping approach adopted, a 50 % even split of data 

was performed to assess the influence of substitution of measured data with 

PTF-estimated data on mapping accuracy. This split was arbitrary.It will 

therefore be important to explore the desirableproportion of sampling points 

to substitute with PTF-estimated data for ‗optimal‘ accuracy. This will 

provide a better understanding of the trade-off for sampling costs and 

prediction error for mapping soil moisture holding capacity. 
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APPENDICES 

 

Appendix 1: Field data of representative pedon for Kichanga 

 

Profile number: P1-KCH/ILA-MIH 

 

Authors: Jacob Kaingo and Mwango  Date: 190215 Weather: SU/WC4 

 

Region: Morogoro District: Kilosa Ward: Ulaya Village: Ilakala  

 

Description of Location: About 150 m West of Ilakala Catholic Church 

 

Coordinates: 7° 7'45.15"S/36°55'49.91"E Elevation: 549 m asl.   

 

Indigenous Mapping Unit: Kichanga   WRB Soil Name:Hyperdystric 

Cambisol (loamic, ochric) 

 

Soil Temperature Regime: Isohyperthermic  Soil Moisture Regime: Ustic 

Parent material: Quartzite  

 

Landform: Undulating. Slope: Gently sloping North, Straight Convex, Upper-Slope. 

LandUse: Traditional Rainfed arable cultivation. Human Influence: Ploughing, 

Raised beds and Bunding. Surface characteristics: None. Erosion: None.  

Deposition: None.  Natural drainage class: Well drained.  
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Ap       0 - 16/28 cm: Brown (7.5 YR 4/4) moist; sandy loam; friable moist, non-

sticky and non-plastic wet; weak fine and medium crumbly structure; many medium 

and coarse pores, few fine pores; many fine roots and common medium roots; abrupt 

wavy boundary 

 

AB     16/28 - 60 cm: Brown (7.5 YR 4/4) dry, dull brown (7.5YR 6/3) moist; sandy  

loam; slightly hard dry, friable moist, non-sticky and non-plastic wet; moderate fine 

to coarse subangular blocks; very few medium and coarse roots, common fine roots; 

few burrows present; gradual smooth boundary 

 

Bw1     60 - 85 cm: bright brown (7.5 YR 5/6) dry, dull orange (7.5 YR 6/4) moist; 

sandy  loam; slightly hard dry, friable moist, slightly sticky and slightly plastic wet; 

moderate fine to coarse subangular blocks; common fine, few medium, and very few 

coarse roots; few burrows present; gradual smooth boundary  

 

Bw2     85 - 150/160 cm: orange (7.5 YR 6/8) dry, bright brown (7.5 YR 5/8) moist; 

sandy loam; soft dry, friable moist, sticky and plastic wet; weak to moderate fine 

and medium subangular blocks; very few medium, very few coarse, and few fine 

roots; clear wavy boundary 

 

C 150/160 - 200+ cm: Gravelly layer with numerous quartzite residual rocks. 
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Appendix 2: Field data of representative pedon for Ngunja 

 

Profile number: P2-NGJ/ILA-MIE 

 

Authors: Jacob Kaingo and Mwango  Date: 200215 Weather: PU/WC4 

 

Region: Morogoro District: Kilosa  Ward: Ulaya Village: Ilakala   

 

 

Description of Location: About 500 m South West from Nyaranda Primary School  

 

Coordinates: 7° 8'17.95"S/36°54'57.01"E Elevation: 610 m asl.  

 

Indigenous Mapping Unit: Ngunja  WRB Soil Name: Rhodic Acrisol 

(clayic, cutanic, epieutric, profondic) 

 

Soil Temperature Regime: Isohyperthermic  Soil Moisture Regime: Ustic 

 

Parent material:  

Landform: Plateau.  Slope: Very gently sloping North, convex, summit. LandUse: 

Rainfed arable cultivation. Human Influence: Ploughing, Raised beds and Bunding. 

Surface characteristics: None. Erosion: Water, slight sheet and rill, active at present. 

Deposition: none.  Natural drainage class: Well drained  
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Ap       0 - 18/24 cm: Very dark reddish brown (2.5 YR 2/4) moist; sandy clay; 

friable moist, slightly sticky and slightly plastic wet; weak fine subangular blocks; 

many medium and few fine pores; common fine, and few medium roots; abrupt 

wavy boundary  

 

AB     18/24 – 40/50 cm: dark red brown (2.5YR3/6) dry, dark red brown (2.5YR 

3/4) moist; clay; slightly hard dry, friable moist, sticky and slightly plastic wet; 

moderate medium and coarse subangular blocks; many medium and few fine pores; 

many fine, few medium, and very few coarse roots; termites and few burrows 

present; clear wavy boundary 

 

Bt1     40/50 -  100 cm: red (10 R 4/6) dry, dark red (10R 3/4) moist; clay; hard dry, 

friable moist, sticky and slightly plastic wet; moderate to strong fine, medium, and 

coarse subangular blocks; many medium and few fine pores; few fine, very few 

medium, and very few coarse roots; few burrows present; diffuse smooth boundary  

 

Bt2     100 - 145/160 cm: red (10 R 4/6) dry, dark red (10R 3/4) moist; clay; slightly 

hard dry, friable moist, sticky and slightly plastic wet; moderate fine and medium 

subangular blocks; thin clay-iron cutans present; many medium and few fine pores; 

very few fine roots; few burrows present; diffuse wavy boundary  

 

Bt3    145/160 – 200+ cm: red (10 R 4/8) dry, dark red (10R 3/6) moist; clay; 

slightly hard dry; friable moist, sticky and slightly plastic wet; moderate fine and 

medium subangular blocks; thin clay-iron cutans present; many medium and few 

fine pores; few burrows present 
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Appendix 3: Field data of representative pedon for Tifu-Tifu 

 

Profile number: P3-TFT/ILA-SHU 

 

Authors: Jacob Kaingo  Date: 210215 Weather: PU/WC3 

 

Region: Morogoro District: Kilosa  Ward: Ulaya Village: Ilakala  

 

Description of Location: About 800 m east off Kilosa-Mikumi main road at Ilakala 

Mosque 

 

Coordinates: 7° 8'10.50"S/36°56'18.76"E Elevation: 549 m asl.   

 

Indigenous Mapping Unit: Tifu-Tifu   WRB Soil Name: Luvic Stagnic 

Umbrisol (endoeutric, loamic) 

 

Soil Temperature Regime: Isohyperthermic Soil Moisture Regime: Ustic 

 

Parent material: Quartzite 

 

Landform: Depression.  Slope: Gently sloping South, Straight, convex, Back Slope. 

LandUse: Rainfed arable cultivation. Human Influence: Ploughing, Raised beds and 

Bunding. Surface characteristics: None. Erosion: Water, slight sheet and rill, Active 

at present. Deposition: none.  Natural drainage class: Well drained  

 

Ap       0 - 30 cm: very dark grey (7.5 YR 3/1) moist; sandy loam; friable moist, 

slightly sticky and slightly plastic wet; moderate fine and medium crumbly structure; 

common fine and medium pores; common fine, common very fine, and very few 

medium roots; termites present; gradual smooth boundary to 

AB     30 – 50/60cm: very dark grey (7.5 YR 3/1) moist; sandyloam; friable to firm 

moist, slightly sticky and slightly plastic to plastic wet; moderate to strong fine to 
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coarse lumpy structure; common fine and medium pores; very few very fine, few 

fine, and common medium roots; termites present; very few medium distinct clear 

yellowish brown mottles; very few soft fine elongated nodules; gradual wavy 

boundary to 

 

Bgw     50/60 - 75/81 cm: dark brown (7.5YR3/2) moist; sandy loam; firm to very 

firm moist, sticky to very sticky and plastic to very plastic wet; strong coarse 

subangular blocky structure; common fine and medium pores; very few very fine, 

and very few fine roots; many fine distinct clear yellowish brown mottles; very few 

fine hard round concretions; clear smooth boundary to 

 

Btg     75/81 - 98/112 cm: olive yellow (2.5Y 6/8) moist; sandy clay loam; soft dry, 

friable moist, sticky to very sticky and plastic to very plastic wet; strong coarse and 

very coarse subangular blocky structure; broken thin clay cutans present; few fine 

hard round concretions; very few fine hard irregular residual rock fragments; 

common fine and very fine, few medium pores; very few fine, and few medium 

roots; abundant coarse prominent diffuse yellowish brown mottles; abrupt irregular 

boundary to 

 

Bgc    98/112 - 122/134 cm: Pale brown (2.5Y 7/4) moist; sandy clay loam; very 

firm moist, slightly sticky to sticky and slightly plastic wet; strong very coarse/thick 

subangular and prismatic structure; common fine hard round concretions; abundant 

coarse prominent diffuse yellow mottlesclear wavy boudary to 

 

C        122/134 - 200+ cm: Gravelly layer with dominant fine hard round red-black 

concretions and abundant medium and coarse hard angular residual rock fragments. 
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Appendix 4: Field data of representative pedon for Wakitope-Mweusi 

 

Profile number: P4-MWS/ILA-JUU 

 

Authors: Jacob Kaingo  Date: 210215 Weather: SU/WC3 

 

Region: Morogoro District: Kilosa  Ward: Ulaya Village: Ilakala 

 

Description of Location: About 2.2 km South-west from Makondeko sub-village 

trading centre 

 

Coordinates: 7° 8'36.38"S/36°52'16.43"E Elevation: 625 m asl. 

 

Mapping Unit: Wakitope Mweusi   WRB Soil Name: Endogleyic 

Protovertic Eutric Cambisol (colluvic, ruptic) 

 

Soil Temperature Regime: Isohyperthermic  Soil Moisture Regime: Udic 

 

Parent material: Colluvial deposits of quartzite and metamorphic feldspar rocks. 

Landform: Valley floor.  Slope: Nearly Level North; Straight, valley bottom. 

LandUse: Rainfed arable cultivation. Human Influence: Ploughing. Surface 

characteristics: None. Erosion: None.  Deposition: Water deposition, Active in 

recent past. Natural drainage class: Well drained  
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Ap       0 - 22/34 cm: black (10 YR 2/1) moist; clay loam; very few medium distinct 

sharp very pale brown (10 YR 7/4) mottles; friable moist; sticky and slightly plastic 

to plastic wet; weak to moderate very fine to medium crumbly structure; common 

fine and very fine pores; common fine, many very fine, very few medium roots; 

clear wavy boundary to 

 

2AB   22/34 – 42/49 cm: dark brown (10 YR 3/3) moist; sandy clay loam; common 

fine faint clear red mottles (.5 YR 4/8); very friable moist, slightly sticky and 

slightly plastic to plastic wet; weak very fine to medium granular and crumbly 

structure; few fine and very fine pores; many medium and coarse fresh or slightly 

weathered angular quartz gravel, few medium weathered sub-rounded feldspar 

gravel; few fine, common very fine, and very few coarse roots; clear wavy boundary 

to 

 

3Bw     42/49 – 60/64 cm: yellowish red (5YR 4/6) moist; sandy; very friable moist, 

non-sticky and non-plastic wet; weak fine and very fine single grain structure; 

medium fine and pores; abundant medium and coarse fresh or slightly weathered 

angular quartz gravel; very few fine roots, common very fine roots; clear wavy 

boundary to 

4Bhw     60/64 - 80/93 cm: very dark brown (7.5YR 2.5/3) moist; clay loam; very 

few fine distinct clear reddish yellow mottles (5 YR 6/8); firm to very firm moist, 

very sticky and very plastic wet; strong coarse subangular blocks; many fine and 

very fine pores; very few fine and common very fine roots; very few fine roots; clear 

irregular boundary to 
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5Bhg    80/93 – 102/106 cm: dusky red (2.5YR 3/2) moist; clay; common fine 

distinct clear red mottles (2.5 YR 4/6); extremely firm moist, very sticky and plastic 

wet; strong coarse and very coarse prismatic structure; many very fine pores; very 

few fine weathered sub-rounded feldspar gravels; very few very fine, and very few 

fine roots; few burrows present; clear broken boundary to 

 

6Abh     80/106 – 121/141 cm: black (10YR 2/1) moist; clay loam; very firm moist, 

sticky to very sticky and slightly plastic to plastic wet; strong coarse and very coarse 

prismatic structure; common fine and very fine pores; Very few fine strongly 

weathered sub-rounded quartz gravels; very few very fine roots, few fine roots, and 

very few coarse roots; clear irregular boundary to 

 

7Bwg     121/141 - 150/160 cm: dark brown (7.5 YR 3/4) moist; clay; many medium 

prominent diffuse dark red mottles (2.5 YR 3/6); extremely firm moist, very sticky 

and plastic to very plastic wet; strong coarse and very coarse prismatic structure; 

common fine pores; very few fine fresh or slightly weathered angular quartz gravel, 

few fine fresh or slightly weathered sub-rounded feldspar gravel;very few fine roots; 

gradual wavy boundary to 

8Blc    150/160 – 200+ cm: dark red brown (5YR 3/4) moist; sandy clay loam; 

abundant medium distinct diffuse very dark bluish gray mottles (10 B 3/1); 

extremely firm moist, slightly sticky and slightly plastic wet; strong coarse and very 

coarse prismatic structure; many fine pores; abundant fine and medium fresh or 

slightly weathered sub-rounded and rounded feldspar gravels; very few fine roots; 

numerous red-black concretions 
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Appendix 5: Field data of representative pedon for Mfinyanzi 

 

Profile number: P6-MFZ/ILA-MAS 

 

Authors: Jacob Kaingo  Date: 230215 Weather: PC/WC3 

 

Region: Morogoro District: Kilosa  Ward: Ulaya Village: Ilakala  

 

 

Description of Location: Mashineni sub village, about 500 m east from Kilosa to 

Mikumi Road 

 

Coordinates: 7° 9'7.62"S/36°56'18.02"E Elevation: 564 m asl.   

 

Mapping Unit: Mfinyanzi    WRB Soil Name: Pellic Vertisol (ferric, 

humic, mesotrophic) 

 

Soil Temperature Regime: Isohyperthermic   Soil Moisture Regime: Ustic 

 

Parent material:  

 

Landform: Depression. Slope: Very gently sloping East; Straight, lower slope. 

Surface characteristics: None, Erosion: WS and WR, Active at present. Deposition: 

none. Natural drainage class: Well drained  
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Ap       0 - 40 cm: black (10 YR 2/1) moist; clay; very firm moist, very sticky and 

very plastic wet; strong coarse to very coarse subangular blocks; many very fine 

pores; many very fine roots, many medium roots; burrows; diffuse smooth boundary 

to 

 

AB     40 – 64/71 cm: very dark grey (10 YR 3/1) moist; clay; very firm moist, very 

sticky and very plastic wet; strong coarse to very coarse subangular blocks; many 

very fine pores; common fine roots, common very fine roots; burrows; very few fine 

hard and soft round reddish to yellowish red ferruginous concretions; clear wavy 

boundary to 

 

Bw1     64/71 - 130 cm: dark brown (7.5 YR 3/3) moist; sandy clay; very firm moist, 

sticky to very sticky and plastic to very plastic wet; strong coarse to very coarse 

prismatic structure; burrows, termites present; many fine and medium pores; few 

very fine roots, very few fine roots; common very fine both hard and soft irregular 

white siliceous soft segregations, common medium both hard and soft round red 

ferruginous concretions; few fine and medium freshly or slightly weathered angular 

quartz gravel; termite nests present; gradual smooth boundary to 

 

Bw2     130 - 175 cm: dark brown (7.5 YR 3/2) moist; sandy clay; very firm moist, 

sticky and plastic wet; strong coarse to very coarse prismatic structure; common fine 

and medium pores; few very fine and very few fine roots; few medium both hard 

and soft round reddish to yellowish red ferruginous concretions, common very fine 



 124 

hard and soft irregular white siliceous soft segregation; termite nests present; gradual 

smooth boundary;  

 

Bw3    175 – 200+ cm: very dark gray (7.5 YR 3/1) moist;  clay; very firm moist, 

very sticky and very plastic wet; strong coarse to very coarse prismatic structure; 

medium fine and very fine pores; very few very fine, and very few fine roots; very 

few very fine hard and soft irregular white siliceous soft segregation 
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Appendix 6: Attributes of lithological classes of Geology layer 

 

CODE FORMATION TIME SOILS ROCK_TYPE 

MBG Usagarani System - Basic - 

Ultrabasic Intrusiva 

Precambrian Meta gabbroic rocks, meta pyroxienite, 

metaperitite 

Meta - Igneous Rocks 

NTS River Alluvium Post Miocene Orange-red soils and undifferentiated soils 

on precambrian rocks. Sandy to stony loams 

and clays 

Unconsolidated superficial 

deposits and soils 

RAL River Alluvium Quaternary Clays, loams, sands, gravels Unconsolidated superficial 

deposits and soils 

XAB Usagarani system-acid 

gneisses (magmatitic in part) 

Precambrian Biotite gneiss Meta - Sedimentary Rocks 

 


