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ABSTRACT 
 

In this paper, a deterministic model with optimal control of cholera in Tanzania is proposed and analysed. 

Necessary conditions of optimal control problem were rigorously analysed using Pontryagin's maximum 

principle and the numerical values of model parameters were estimated using maximum likelihood estimator. 

Two control strategies were incorporated such as human education campaign and treatment of water (to reduce 

the growth of the organism) and its' impact were graphically observed.  The goal is to minimize the spread of 

cholera disease in the community and to minimize the costs of control strategies.  The results show that the 

effective use of optimal human education campaign and treatment of water has a significant impact in reducing 

the spread of the disease in the community. 
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I. INTRODUCTION 

 

Cholera is a severe water-borne infectious disease 

caused by the bacterium Vibrio cholerae (V. cholerae) 

(Al-Arydah et al., 2013). Cholera can either be 

transmitted through interaction between humans (i.e., 

fecal-oral) or through interaction between humans 

and their environment (i.e., ingestion of 

contaminated water and food from the environment).  

 

The re-emergence of cholera is presenting 

unprecedented challenges. Africa reported 118,349 

cases to the World Health Organization in 1997, for 

80% of cases worldwide. Africa also had the highest 

overall case-fatality rate (4.9%), compared with 1.3% 

in the Americas and 1.7% in Asia (WHO, 1998). 

Cholera began spreading throughout the Dar es 

Salaam region and 12 other regions: Arusha, Dodoma, 

Geita, Morogoro, Kigoma, Mara, Mwanza, Shinyanga, 

Singida, Tabora, Tanga as well as the island of 

Zanzibar. Tanzania has consistently reported cholera 

cases; annual reports ranged from 1,671 cases in 1977 

to 18,526 in 1992. During the last 2 decades, three 

major choleraepidemics have occurred: 1977-78, 1992, 

and 1997 (WHO, 2016). In 1997, Tanzania had one of 

the highest case-fatality rates in East Africa (5.6%), 

with 2,268 deaths in 40,226 cases (WHO,1998). We 

describe risk factors and pattern of spread of the 1997 

cholera epidemic in a rural area in southern Tanzania. 

As of 19 November 2015, there were 8,954 reported 

cases and 129 deaths according to World Health 

Organization (WHO), and 19 out of 30 regions had 

detected and reported cholera cases on mainland 

Tanzania and Zanzibar (United Nations Resident 

Coordinator's Office (UNRCO) and Ministry of 

Health & Social Welfare (MoHSW). As of 20 April 

2016, a total of 24,108 cases, including 378 deaths, 

had been reported nationwide.   

 

Over the years, mathematical models have been used 

to provide important insights into disease behavior 

and intervention strategies. For instance, the study of 
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an infectious disease model with population-

dependent death rate using computer simulation was 

investigated by Greenhalgh (1992). Mathematical 

models provide results such as thresholds, basic 

reproduction numbers, contact numbers and 

replacement numbers (Benyah 2007). These results 

can help health workers understand and predict the 

spread of an epidemic and evaluate potential 

effectiveness of the different control measures to be 

used. They can improve our understanding of the 

relationship between social and biological factors that 

influence the spread of diseases. 

 

Optimal control problems have generated a lot of 

interest from researchers all over the world, for 

instance (Imanov, 2011) examined application of the 

method of similar solutions in solving time optimal 

control problems with state constraints. Similarly, 

various techniques have been applied to study optimal 

control problems related to dynamical systems. In 

particular, Lemos-Paião, Silva and Torres (2017) 

proposed and analyzed an epidemic model for cholera 

with optimal control treatment. Hakim, Trisilowati 

and Darti (2015) investigated an optimal control 

model of the spread of cholera disease by vaccination. 

Fister, Gaff, Lenhart, Numfor, Schaefer and Wang 

(2016) analyzed optimal control of vaccination in an 

Age-Structured cholera model. However, none of 

these studies have considered the aspect of optimal 

control to reduce spread of cholera disease through 

the combination of the aspects of education campaign 

and treatment of water in a Tanzania.  

 

This particular study is also motivated by large 

number of cases reported in Tanzania. The majority of 

cases had been reported from 23 regions in mainland 

Tanzania (20,961 cases, including 329 deaths) (WHO, 

2016). From the middle of December 2015 to the end 

of March 2016, the number of new reported cases 

started to increase again in Tanzania. It becomes 

significant we carry out a scientific study of this 

disease that has become endemic, so as to enhance its 

control in Tanzania using a mathematical model with 

time dependent controls. It is against this background 

that this study is therefore undertaken as an attempt 

to apply the optimal control theory in minimizing the 

spread of cholera and minimize the cost of applying 

controls, in order to best combat the spread of cholera 

disease. Therefore, this study intends to apply optimal 

control theory to minimize the spread disease by 

some control strategies and minimize the cost of 

applying controls, in order to best combat the spread 

of cholera disease.  

 

II.  MODEL FORMULATION  

 

In this section, we formulate and analysis a 

mathematics model of cholera in Tanzania. The 

modelled populations include human populations and 

the environmental component. The total human 

population is divided into three compartments 

depending on the epidemiological status of 

individuals. These compartments include: Susceptible 

(S (t)), symptomatically infected (I (t)) and the 

concentration of the vibrios in the environment (that 

is contaminated water) (B(t)). We assume that the 

total population is non-constant, which is a 

reasonable assumption for a relatively short period of 

time and for low-mortality diseases such as cholera. 

Furthermore, the susceptible population increases due 

to the incoming of immigrants at the rate  . On the 

other hand the susceptible population decreases due 

to the infection.  k  is the concentration of Vibrio 

Cholera in food and water that yields 50% chance of 

catching cholera disease and the infected people 

recovered from cholera at the rate  .  

 

Human suffer from natural death and also dead due to 

cholera disease at the rates and  d   respectively. Let 

   be the net mortality rate of V. cholerae in the 

aquatic environment and also each infected person 

contribute to the population of V. cholera at the rate 

e .  We assume that a  is the rate of expose to 

contaminated water and K  is the carrying capacity of 

V. cholera. 

 

http://www.sciencedirect.com/science/article/pii/S037704271630526X#!
http://www.sciencedirect.com/science/article/pii/S037704271630526X#!
http://www.sciencedirect.com/science/article/pii/S037704271630526X#!
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Table 1. Parameters used in the model formulation and their description 

Parameter Description 

  Constant human recruitment rate   Natural human mortality rate 

d  Disease related death rate 

n  Loss of rate of V. cholerae in the aquatic environment  

a  Rate of exposure to contaminated water 

k  Concentration of V. cholerae in water that yields 50% chance of 

catching cholera. 

K  The carrying capacity of V. cholerae. 

  Rate at which people recover from  cholera 

r  Growth rate of Per V. cholerae in the aquatic environment 

e  Contribution of each infected person to the population of V. cholera  

w  Net mortality rate of V. cholerae in the aquatic environment. 

 

 

From the description of the dynamics of cholera, the 

following set of non-linear ordinary differential 

equations can be derived:

  dS B
a S S

dt K B
   

    
 

( )
dI B

a S d I
dt K B

   
     

                           (1) 

1
dB B

rB nB eI
dt K

        

 

We introduce the time dependent controls in the 

model (1) for the aim of controlling cholera and study 

the strategies that curtail the spread of the disease. 

For the optimal control problem, we consider the 

following model equations.  

  11
dS B

a u t S S
dt k B

    
    

 

  11 ( )
dI B

u t a S d I
dt k B

    
     

               (2) 

 21
dB B

rB u t nB eI
dt K

        
 

where, the control functions  1u t  and  2u t
 

represent the reduction of contact between infected 

persons and the susceptible and  treatment of water to 

reduce the growth of the organism respectively. We 

apply control theory as a mathematical tool that is 

used to make decision involving complex biological 

situations (Lenhart and Workman, 2007). The 

purpose of introducing controls in the model is to find 

the optimal level of the intervention strategy 

preferred to reduce the spreads and cost of 

implementation of the control. The control variables  1u t  and  2u t  are minimized subject to the 

differential equations (2). The control coefficients 2u
 

and  11 u
 
reduce the organism growth and the 

contacts between the infected and susceptible 

accordingly. To investigate the optimal level of effort 

that would be needed to control the disease, first we 

formulate the objective functional J  which is 

defined by choosing a quadratic cost on the controls. 

The objective is to minimize the spread of cholera 

disease and minimize the cost of interventions to the 

final time, with different relative weights applied 
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toinfective populations. Therefore the objective 

functional J  is defined over a feasible set of control     1 2  andu t   u t  applied over the finite time 

interval  0,T   which is 

    2 2
1 1 2 2

1 2
0

min
2 2

T A u A u
J B B t B I t dt        

     (3)

 

where 1 2andB B    are  the costs associated with 

infective populations and the concentration of the 

vibrios in the environment (that is contaminated 

water) respectively, while 1 2and A A  , are the 

relative cost weights for each control measure. The 

true value of weights is not well known since they 

require extensive field work and data mining. The 

weights used here are intended only for theoretical 

purposes to investigate the effect of various control 

practices. The choice of quadratic cost on the controls 

is done in a similar way as in other epidemiological 

models with controls (Okosun et al. 2012, Lee et al. 

2013, Lenhart and Neilan, 2010). 

 

The target is to minimize the objective functional  J  

defined in equation (3). Therefore we are required to 

find numerically optimal controls 1 2andu u       such 

that     1 2 1 2 1 2min , | ,,J u u J u u u u u
  

                  (4)
 

for  1 2,u u u  such that  1 2,u u  are measurable with  

10 1u   and 20 1u    for   0,t T . 

The necessary conditions that an optimal control 

problem must satisfy come from Pontryagin’s 
maximum principle (Pontryagin et al., 1962). This 

principle converts (2)-(3) into a problem of 

minimizing pointwise a Hamiltonian H , with respect 

to 1 2 and u u  defined by; 

  
2 2

1 1 2 2
1 2

1 1

2 2

1

A u A u
H B B B I

B
        a u t S S

k B

    
    
                       (5) 

where 1 2and     are the adjoint variables or co-state 

variables. By applying Pontryagin’s maximum 
principle (Pontryagin et.al., 1962) and the existence 

result for the optimal control (Fleming and Rishel, 

1975), we obtain 

Proposition 1: For optimal control triple 1 2u and u   

that minimizes  1 2J u ,u over u , there exist adjoint 

variables 1 2 3, and       satisfying 

 

   1
1 1 1 2 21 1

d dH aB aB
u u

dt dS k B k B

            
 2

2 3 2

d dH
d e B

dt dI

          
                    (6) 

       
 

3
1 1 1 22 2

3 2 3 1

1 1

2

d dH aKS aKS
u u

dt dB k B k B

r K B
           u n B

K

         
    

with transversality conditions      1 2 3 0T T T                                         

(7)                                                  

The following characterization holds on the interior 

of the control set u  

   1 2 1
1

max 0, min 1,
aBS

u
A k B

    
           

3
2

2

max 0, min 1,
nB

u
A

                                            (8)                             

where 1 2 3, and     
 
are solutions of (5). 

Proof. The form of adjoint (or co-state) system (6) and 

transversality conditions (7) are standard results from 

Pontryagin’s Maximum Principle (Pontryagin et al. 

1962). To obtain the co-state system (6), the partial 

derivatives of the Hamiltonian (H) (5) with respect to 

each state variable are computed as follows 
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 

 

; 0,

.

.

.

; 0.

S
S

S

R
R

R

d H
 tf

dt

    

    

    

d H
 

dt
tf

    

    
                                         

(9)                                                    

The optimality equations (9) are obtained by finding 

the partial derivative of the Hamiltonian equation (H) 

(5) with respect to each control variable and solving 

for 
 

*
iu (optimal control) where the derivative vanishes. 

That is, 
  

 0
i

H

u

   for 1, 2i   

Solving for 1 2andu u   , subject to the constraints, 

gives the characterization equation (8). Hence proved. 

Note that the state system (2) has initial time 

conditions and the co-state system (6) has final time 

conditions. 

 

III. APPLICATION OF THE MODEL 

 

In this section, we present the data of cholera cases 

and deaths from 1998 to 2010 in Tanzania as 

summarized in Table 2. The method used to estimate 

parameters in this section is maximum likelihood 

(ML) where real data of cholera cases and deaths were 

used. 

 

Table 2: Cumulative Cholera Cases(C) and Deaths (D) 

from 1998 to 2010 

 

Because of the unavailability of data on transmission 

and progression rates, we estimated most of the 

parameters, which makes the setting of initial 

conditions difficult for the purpose of the simulations 

and illustrating the usefulness of the model. 

Many parameters are known to lie within limits. 

Only a few parameters are known exactly and it is 

thus important to estimate the others. The estimation 

process attempts to find the best accordance between 

the computed and observed data. Here, the fitting 

process involved the use of the least squares curve 

fitting method. A Matlab code was used where 

unknown parameter values were given a lower and 

upper bound from which the set of parameter values 

that produced the best fit were obtained. The 

parameter values obtained from the fitting are shown 

in Table 3. 

 

Table 3. Parameter values that give the best fit to the 

data in the model 

Parameters  Literature 

Value 

(range)  

Literature 

Value 

Estimated 

Parameter 

Values 

  (0.3,0.99) 10 9.865 

  (0.001,0.8) 0.022 0.01745 

d  0.5 0.015 0.03075 

a  (0.0044,0.34) 0.5 0.3350 

k  (0.020,.09) 0.000001 0.00000025 

K  (0.002,0.5) 0.00000001 0.00000002 

  0.13,0.5 0.1 0.1814 

r  0.03 (0-0.25) 0.2809 

e  0.06 10 8.76 

 

In this section we study numerically the effects of 

optimal control strategies such as education campaign 

and treatment of infected human in the spread of 

cholera. The solution of the optimal control problem 

was obtained by solving the optimality system of state 

and adjoint systems through forward–backward 

sweep method. The adjoint systems (6) were solved 

YEAR  1998 1999 2000 2001 2002 

C 296 12,266 4,637 2154 12,403 

D 87 591 153 88 314 

YEAR 2003 2004 2005 2006 2007 

C 12,919 9,639 3,284 14,297 2,860 

D 281 242 108 254 70 

YEAR 2008 2009 2010 

C 1,619 6,295 5,566 

D 50 83 95 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

Neterindwa Ainea  et al. Int J S Res Sci. Engg. Tech. 2018 Mar-Apr;4(4) : 865-872 
 

 870 

by fourth order Runge–Kutta scheme using the 

forward solution of the state equations. We describe 

the controls in the following strategies using the 

parameter values in Table 3.  

 

Strategy A: Control with Education Campaign in 

Human Population  1u  

The purpose of education campaign strategy is to 

explore the awareness of the disease, mode of 

transmission, prevention and control measures in 

community. Figure 1 describes the effect of 

implementing education campaign in human and the 

impact is visible in infected individuals and bacteria 

population. 

 
Figure 1. Simulations of the model showing the 

effects of education campaign on the spread of cholera 

 

Strategy B: Control with Treatment of Water  2u
 

In Figure 2, the results show a significant difference 

in the number of infected humans with optimal 

strategy compared to case without controls. 

Specifically, it is observed that in Figure 2(A) the 

control strategy lead to reduce the growth of 

organism as against increase in the uncontrolled case. 

The treatment of water is minimizing the 

concentration of the bacteria population in water. 

Similarly in Figure 2(B), the uncontrolled case results 

in increased number of bacteria while the control 

strategy lead to a decrease in the number of bacteria 

population. 

 
Figure 2. Simulations of the model showing the 

effects of treatment of water 

 

Strategy C: Combination of Education Campaign in 

Human  1u and Treatment of Water  2u   

The results in Figure 3(A-B) show a significant 

difference in the numbers of infectious humans and 

bactreria population with optimal strategy compared 

to the number without controls. Due to the control 

strategies, the number of infected individuals decreses 

while the infectiuos population increases when there 

is no control. In Figure 3 (B), the bacteria population 

decrease in the presence of control strategies while an 

incresed number is observed for the uncontrolled 

case. The presence of treatment of water  and 

education in the community will somehow reduce 

the spread of disease. 
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Figure 3. Simulations of the model showing the 

effects of education campaign in human and 

treatment of water 

 

IV. CONCLUSION  

 

This paper analysed the optimal control using 

Pontryagin’s Maximum Principle where two control 
strategies were numerically studied. Our numerical 

simulation results show that the effective use of 

optimal education campaign in the population and 

treatment water has a significant impact in reducing 

the spread of the cholera disease in the community 

since it leads the decrease in the number of new 

infection cases in Tanzania compared to the case with 

no control. 

V. REFERENCES 

 

[1]. Benyah F.,"Epidemiological Modelling and 

Analysis," 13th Edward A Bouchet/Abdus 

Salam, University of Ghana, Legon, Accra, 9-13, 

2007. 

[2]. Frenk J., Sepulveda J., Gomez-Dantes O., 

McGuinness M.J. and Knaul F., "The New 

World order and international health,". BMJ, 

DOIPubMed, 314:1404-7, 1997.  

[3]. Walt G., "Globalisation of international health. 

Lancet," DOIPubMed, 351:434-7, 1998.  

[4]. World Health Organization, "Cholera in 

1997,"Wkly Epidemiol Rec, PubMed, 73:201-8, 

1998.  

[5]. World Health Organization,"Cholera - United 

Republic of Tanzania".DiseaseOutbreakNews, 

2016. 

[6]. Mhalu F.S., "Health and disease in Tanzania," 

London: Harper Collins Academic, 46-55, 1991. 

[7]. Health Information and Research Section, 

"Health statistics," Ministry of Health, Tanzania, 

1997. 

[8]. Benenson A.S., "Control of communicable 

diseases in man," Washington: Pan-American 

Health Organization, 15: 89-94, 1990.  

[9]. Barua D. and Merson M.H., "Prevention and 

control of cholera," In: Barua D., Greennough 

III W.B., editors. Cholera, New York: Plenum, 

329-49, 1992.  

[10]. Isenberg H.D., "Clinical microbiology 

procedures handbook," Washington: American 

Society for Microbiology, 1992. 

[11]. National Committee for Clinical Laboratory 

Standards, "Performance standards for 

antimicrobial disk susceptibility tests: approved 

standard," Villanova (PA): 4: M2-A4, 1990.  

[12]. Hughes J.M., Boyce J.M., Levine R.J., Khan M., 

Aziz K.M., Huq M.I., "Epidemiology of el Tor 

cholera in rural Bangladesh: importance of 

surface water in transmission," Bull World 

Health Organ, PubMed, 60:395-404, 1982. 

[13]. Birmingham M.E., Lee L.A., Ndayimirije N., 

Nkurikiye S., Hersh B.S., Wells J.G., "Epidemic 

cholera in Burundi: patterns of transmission in 

the Great Rift Valley Lake region," 

DOIPubMed, Lancet, 349:981-5, 1997.  

[14]. Cash R.A., Music S.I., Libonati J.P., Snyder 

M.J.J., Wenzel R.P., Hornick R.B., "Response of 

man to infection with Vibrio cholerae. I. 

Clinical, serologic, and bacteriologic responses 

to a known inoculum," J Infect Dis., 

DOIPubMed, 129:45-52, 1974. 

[15]. Levine M.M., Black R.E., Clemens M.L., Nalin 

D.R., Cisneros L., Finkelstein R.A., "Volunteer 

0 5 10 15
30

30.5

31

31.5

32

32.5

Time

In
fe

c
te

d
 p

o
p
u
la

ti
o
n

 

 
u

1
 0, u

2
 0

u
1
=u

2
=0

0 5 10 15
20

40

60

80

100

120

Time

B
a
c
te

ri
a
 p

o
p
u
la

ti
o
n

 

 

u
1
 0, u

2
 0

u
1
=u

2
=0

A

B



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

Neterindwa Ainea  et al. Int J S Res Sci. Engg. Tech. 2018 Mar-Apr;4(4) : 865-872 
 

 872 

studies in development of vaccines against 

cholera and enterotoxigenic Escherichia coli: a 

review". In: Holme T., Holmegren J., Merson 

M.H., Mollby R., editors, "Acute enteric 

infections in children: new prospects for 

treatment and prevention," Amsterdam: 

Elsevier/North Holland Biomedical Press, 443-

59,1981. 

[16]. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze 

R.V. and Mishchenko E.F., "The  Mathematical 

Theory of Optimal Processes,", New York, 1962. 

[17]. Webber R.H., Mwakalukwa J., "The 

epidemiology of cholera in south-west 

Tanzania," East Afr Med J. PubMed, 60:848-56, 

1983. 

[18]. Rodrigues A., Brun H., Sandstrom A., " Risk 

factors for cholera infection in the initial phase 

of an epidemic in Guinea-Bissau: protection by 

lime juice," Am J Trop Med Hyg, PubMed, 

57:601-4, 1997. 

[19]. Fleming W.H. and Rishel  R.W., "Deterministic 

and Stochastic Optimal Control," Springer 

Verlag, 59:494-494, 1975 

[20]. Lenhart S. and Workman J.T., "Optimal control 

applied to biological models, Mathematical and 

Computational Biology Series,"  Chapman and 

Hall/CRC Press, 2007. 

[21]. Imanov, M.H., " Application of the method of 

similar solutions in the time optimal control 

problems with state constraints," Appl. Comput. 

Math., 10: 463-471, 2011. 

[22]. Greenhalgh D., "Some results for an SEIR 

epidemic model with density dependent in the 

death rate. IMA," J.Math. Appl. Med. Bio, 9: 67-

106,1992. 

[23]. Njagarah J. B. H. and  Nyabadza F., "Modelling 

Optimal Control of Cholera in Communities 

Linked by Migration," Computational and 

Mathematical Methods in Medicine, 

898264:2015. 

[24]. Ana P.Lemos-Paiao, Cristiana J.Silva, Delfim 

F.M.Torres, "An epidemic model for cholera 

with optimal control treatment," Journal of 

Computational and Applied 

MathematicsVolume,318: 168-180, July 2017. 

[25]. Njagarah J. B. H. and Nyabadza F, "developed 

and analyzed the optimal control model of 

cholera in the communities linked by 

migration," 2015. 

[26]. Hakim L, Trisilowati I. Darti, "Optimal Control 

of a Cholera Disease Model with Vaccination," 

International Journal of applied mathematics 

and statistics.  53: 2015. 

[27]. Renee K.Fister,Holly Gaff,Suzanne LenhartEric 

Numfor,Elsa S.chaefer, Jin Wang, " Optimal 

Control of Vaccination in an Age-Structured 

Cholera Model," Mathematical and Statistical 

Modeling for Emerging and Re-emerging 

Infectious Diseases, 221-248, 2016. 

 


