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ABSTRACT 

 

Reduced Emissions from Deforestation and Degradation (REDD) framework demands 

measuring of carbon stock changes. In most cases, estimates of carbon stocks rely on 

volume and biomass estimation allometric models. Although species-specific and some 

generic models for biomass and volume estimation have been developed for some 

vegetation types such as Miombo woodlands, their use in Acacia-Commiphora woodlands 

in dry areas is questionable as they comprise short-height trees with small to medium  tree 

diameters scattered from each other. This necessitates the need to develop robust generic 

allometric models that accounts for the heterogeneity of tree diversity in the Acacia-

Commiphora woodlands in dry areas. Allometric models for volume and biomass 

estimation were developed by means of destructive sampling of 60 trees with DBH 

distribution ranging from 2.50 to 30.30 cm. Four different model forms were tested and 

the best model for estimating tree’s section biomass and volume were selected based on 

the lowest values of Residual Standard Error (RSE) and Akaike Information Criterion 

(AIC). All selected models had their parameter estimates significantly different from zero 

(P<0.01). The best biomass and volume models were used to estimate total tree biomass 

(above- and belowground) and tree volume at plot level. The estimated total tree biomass 

and volume was 34.69 ± 2.42 t C/ha and 23.11 ± 1.64 m
3
ha

-1
 respectively which is 

equivalent to carbon stock of 17.00 t C/ha. These estimates may be used to set a baseline 

for computation of carbon stock changes which are useful not only for sustainable 

management of the woodland but also for the implementation of REDD
+ 

policy. 
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CHAPTER ONE 

 

1.0 INTRODUCTION 

1.1 Background Information  

Global greenhouse gases (GHGs) emissions from human activities have increased since 

pre-industrial times because emissions have been larger than removals (IPCC, 2007). 

Carbon dioxide gas (CO2) has been the most GHG emitted to the atmosphere (Foster et al., 

2007). According to IPCC (2007), the forest sector contributes about 20 % of the total 

GHGs emissions. The rise in GHGs accelerates climate change leading to challenges in 

mitigation processes. However, to reduce GHGs emissions, there should be accurate 

identification of GHGs emission levels across different sectors (Gibbs et al., 2007).  

 

Mitigation of CO2 emissions in the atmosphere has been the global agenda with mitigation 

options set from national to international levels (Pyo et al., 2012). These include multi-

lateral agreement to limit CO2 emissions under United Nations Framework on Convention 

of Climate Change’s (UNFCCC) Kyoto Protocol with its Clean Development Mechanism 

(CDM) and Joint Implementation (JI) (Grace et al., 2006; Petersson et al., 2012). 

However, CDM and JI excluded avoided deforestation for the 2008-2012 first 

commitment (Grace et al., 2006; Gibbs et al., 2007; Macey et al., 2009). Deforestation and 

forest degradation are the main sources of GHGs in the tropics (Brown et al., 1989; 

UNFCCC, 2006). Recognizing the threats from deforestation and forest degradation, the 

UNFCCC’s mitigation strategies were extended to include Reduced Emissions from 

Deforestation and forest Degradation (REDD) (Gibbs et al., 2007; Parker et al., 2009). 

Currently REDD also include forest conservation, sustainable management of forests and 

enhancement of forest carbon stocks (REDD
+
) (Zahabu, 2012). REDD+ aims to provide 

financial incentives to forest-rich developing countries that can voluntarily reduce CO2 
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emissions from deforestation and forest degradation, sustainably utilize and conserve 

forest and therefore enhance carbon stocks of their forests (Vieilledent et al., 2012). 

REDD
+
 incentives are geared not only facilitate emission reductions in mitigating climate 

change but also conserve biodiversity and protect other ecosystem goods and services in 

developing countries (Zahabu, 2008). Despite the highest need of tree biomass estimation 

models for the preparedness of REDD
+ 

in developing countries, tree volume allometric 

models are still of important use in sustainable forest management (Comley and 

McGuinness, 2005; Mauya et al., 2014; Masota et al., 2014). Both forest biomass and 

volume estimates help to provide managerial information such as evaluation of growing 

stock and timber harvests that determines changes in ecosystem structure and functioning 

over the period of time. 

 

Tanzania mainland has a total area of 88 025 028 hectares (ha) of land (URT, 2001; URT, 

2003). According to MNRT (2015), the total forest area is estimated to be 48.1 million ha, 

which is 55% of the total land area of Tanzania mainland. Woodlands occupy 44.7 million 

ha of Tanzania’s total land area or 92% of the total forest area (MNRT, 2015). Both 

forests and woodlands have a wide range of socio-economic and ecological values 

(Abdallah and Monela, 2007). They also serve as sources and sinks of the atmospheric 

CO2 (Zahabu, 2012). Despite Tanzania’s large forest coverage, the rate of annual loss in 

forest area is 403 000 ha (FAO, 2010). This remarkable loss in forest area would enhance 

livelihoods through carbon market if forest would have been sustainably managed. 

 

1.2 Problem Statement and Justification 

The REDD
+
 incentives is a result-based mechanism (Zahabu, 2012) through which 

developing countries wishing to participate have to establish robust and transparent forest 

C Measurement, Reporting and Verification (MRV) systems (Breugel et al., 2011; 
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Vieilledent et al., 2012; Zahabu, 2012). This requires countries to assess their carbon 

baseline/reference levels (Henry et al., 2011). Forest Measurement, Reporting and 

Verification systems involving carbon stock estimation require tree allometric models for 

different vegetation types. Volume and biomass models for C stock estimation in some 

vegetation types have not been developed in developing countries (Chave et al., 2005; 

Houghton, 2005). Biomass, volume and carbon quantities of trees vary with soil, 

elevation, climate and species (Chave et al., 2005; Vieilledent et al., 2012; Mauya et al., 

2014). This means that the models ideally should be developed location-wise and species-

wise for accurate and precise estimates (Williams et al., 2008; Ryan et al., 2011; Breugel 

et al., 2011; Mauya et al., 2014; Masota et al. 2014). However, in the tropics where there 

are many different species, generic tree biomass regression models are often used (Chave 

et al., 2005; Vieilledent et al., 2012).  

 

Biomass and carbon can be assessed by direct or indirect methods. Direct methods are 

destructive which involve measuring tree biomass and volume directly by weighing trees 

in the field while indirect methods involve the use of easy measurable tree parameters like 

stem diameter at 1.3 m from the ground (DBH) and tree height (Ht) (Henry et al., 2010). 

Weighing trees in the field is the most accurate method of estimating tree biomass but 

extremely time consuming, destructive and costly.  

 

In Tanzania development of biomass estimation models in natural forests is dated back to 

1994 by Malimbwi et al. (1994) who developed tree volume and biomass allometric 

models for Miombo woodlands. Chamshama et al. (2004) also developed biomass and 

volume estimation models for this vegetation type at the same study site. Mugasha et al. 

(2013) developed allometric biomass estimation models for Miombo woodlands based on 

data from different parts of Tanzania. The study by Mauya et al. (2014) developed models 
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for estimation of tree volume in Miombo woodlands of different parts of Tanzania. Also, 

the study by Masota et al. (2014) developed tree volume estimation models for single trees 

in tropical rain forests of Tanzania. Currently, ongoing studies sponsored by Climate 

Change Impacts Adaptation and Mitigation (CCIAM) programme for PhD and Masters 

Students aim to develop biomass and volume models for different vegetation types. In 

plantation forests species covered include Pinus patula in SAO Hill plantations and SUA 

Training Forest located at Olmotonyi, Tectona grandis in Longuza and Mtibwa Forest 

Plantations. In natural forests studies in progress cover Mangrove forests and Acacia-

Commiphora of Kiteto District. Despite of the Same District’s climatic, soil and 

environmental differences compared to Kiteto District, there is no biomass, volume 

models and carbon estimates in progress for Acacia-Commiphora species of Same 

District. This study aimed to developed volume, aboveground and belowground biomass 

estimation models for Acacia-Commiphora woodlands of Same District, Kilimanjaro 

region in Tanzania. The developed models are expected to play key role in estimating C 

stock to be used in among other applications the REDD+ implementation. 

 

1.3 General Objective 

The overall objective of this study was to develop above- and belowground biomass 

models, volume models and to estimate carbon stock for Acacia-Commiphora woodlands 

in Same District of Kilimanjaro region in Tanzania. 

 

1.4 Specific Objectives  

This study was built up by the following specific objectives: 

(i) To develop above- and belowground biomass models for Acacia-Commiphora 

woodlands. 

(ii) To develop volume models in Acacia-Commiphora woodlands. 

(iii) To estimate volume, biomass and carbon stock of Acacia-Commiphora woodlands of 

Same Distict. 
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CHAPTER TWO 

 

2.0 LITERATURE REVIEW 

2.1 Acacia-Commiphora Woodlands 

Acacia-Commiphora woodlands are dominated by mainly two thorn-bush genera of 

Acacia and Commiphora. A genus for Acacia is made up by mainly evergreen trees and 

shrubs in the family Fabaceae (Ross, 1981). They are native to tropical and subtropical 

regions of the world, particularly Australia and Africa (Hayward, 2004). Likewise the 

genus for Commiphora species is composed of most flowering plant in the family 

Burseraceae. The two genera are distributed in different parts of the world. In Tanzania 

Acacia-Commiphora species are widely distributed in different woodlands (NFP, 2001). 

They are distributed in the central and northern dry lowlands of Tanzania (URT, 2001) and 

fall mostly within the Somali-Masai phytochorion. Acacia-Commiphora woodlands in the 

northern part of Tanzania cover the Serengeti and Manyara area to Kilimanjaro (Marshall 

et al., 2012). The thorn-bushes range from east of Kilimanjaro to the coast of Tanga (URT 

2001; URT, 2003). They dominate different ecological regions as they can sustain growth 

in semi-arid and arid dry areas with average of 800 mm of annual rainfall (Marshall et al., 

2012).  

 

2.2 The Role of Forests in Fixation of Carbon Dioxide  

The world’s forests store more than 650 billion tons of carbon where 44% are in the 

biomass, 11% in dead wood and litter, and 45% in the soil (FAO, 2010). According to 

DAFF (2008) Australia's commercial native forests, plantations and wood products 

sequestered a net amount of 56.5 million tons of CO2 in 2005, thereby offsetting total 

GHG emissions by nearly 10% with native forests sequestering an equivalent of 5.5% of 

total emissions. Grace et al. (2006) indicates the mean C sequestration by savanna 
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woodlands to be 7.2 ± 2.0 t C ha yr
-1

. Also the study by Munishi et al. (2010) shows, that 

Miombo woodlands have the potential of sequestering an average amount of 19.12 t ha
-1

. 

This indicates how worth forests play potential role in the fixation of CO2. Thus forests 

and woodlands form a major component of the C reserves in the world’s ecosystems and 

their role in mitigating climate change (Cairns et al., 1997; Henry et al., 2011; Kuyah et 

al., 2012 a, b; Mugasha et al., 2013).  

 

2.3 Allometric Models for Tree Volume and Biomass Estimation  

In forest management estimation of forest biomass and volume has been the tool for 

sustainable forest resources management (Zianis et al., 2005; Brandeis et al., 2006; Henry 

et al., 2011). Fuel wood management has motivated the need for tree biomass estimates 

whereas timber management has driven the need for tree volume estimates (Henry et al., 

2011). Knowledge of a tree’s mass or volume enables quantification of the ecosystem 

services it may provide (Snorrason et al., 2006; Robinson and Kile, 2007; Colgan et al., 

2013), such as fuel wood, harvestable timber, fodder and more recently valuable 

information on the sequestration of GHGs (Munishi and Shear, 2004; Mugasha et al., 

2013). Thus, forest biomass or volume estimates provide managerial information on 

predicting changes in ecosystem structure and functioning over the period of time 

(Comley and McGuinness, 2005; Cole and Owel, 2006).  

 

Determination of forest biomass or volume by non-destructive dendrometric 

measurements of tree such as stem diameter at breast height (DBH) and total tree height 

(Ht), are referred to as allometric approaches. Contrary, allometric models for tree biomass 

or volume estimates are developed by destructive sampling through measuring DBH and 

Ht of the sample trees, which are then felled and weighed to determine their dry weight. 

To develop allometric models, the relationship between tree’s biomass and dendrometric 
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measurement of the sampled tree is then established by regression methods. Such models 

have been developed at local level and at regional level and have been reported elsewhere 

in different parts of the world for different vegetation types (Brown 1997; Malimbwi et 

al., 1994; Chamshama et al., 2004; Chave et al., 2005, Zianis et al., 2005; Comley and 

McGuinness, 2005; Henry et al., 2011; Peterson et al., 2012; Mugasha et al., 2013; Mauya 

et al., 2014).  

 

However, majority of these studies are site specific and/or species specific and few of 

them have included tree belowground biomass (Cairns et al., 1997; Henry et al., 2011; 

Kuyah et al., 2012 b; Mugasha et al., 2013). This means that, our knowledge on tree’s 

belowground biomass (BGB) is limited when compared to their counterpart tree’s 

aboveground biomass (AGB). In most cases, BGB biomass has been estimated as a 

function of AGB (Kuyah et al., 2012 b). In the absence of measured BGB values, many 

studies have revealed that the BGB constitutes a defined proportion of the AGB and the 

values ranges from 17% to 25% (Cairns et al., 1997; Kuyah et al., 2012 b) depending on 

such factors as nature of the plant, its root system and ecological conditions. Also, other 

studies have suggested the use of RS ratio in estimating BGB. Under this approach BGB is 

obtained as the product of AGB and the average RS ratio. However, the approach has been 

proved as not the best method for estimating tree belowground biomass (Mugasha et al., 

2013). 

  

2.4 Forest Carbon Stock Estimates 

About 49% of the total tree biomass is assumed to be carbon (Munishi and Shear, 2005). 

Changes in biomass estimates enable a direct measurement of carbon sequestration or loss 

that can help validate carbon-cycle models (FAO, 2007). Analysing the potential of 

different ecosystems to sequester or store carbon provide understand of whether the 
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corrective measures taken in land cover/land use changes and forest management are 

likely to create net C sources or sinks (Munishi and Shear 2004; Henry et al., 2011). Such 

assessments are also fundamental in quantifying pathways for ecosystem C fluxes and 

sequestration which are becoming of most use in abating climate change (Basuki et al., 

2009). Since carbon estimates are of great use in C credits trading, the estimates help to 

develop the national emission baseline which is of fundamental use in carbon trading 

(Zahabu, 2012). Moreover, forest carbon estimates can be used by decision and policy 

makers when developing forest management plans and conservation policies. 
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CHAPTER THREE 

 

3.0 METHODOLOGY 

3.1 Description of the Study Area 

Same District is located in the semi-arid plains of the Western Pare lowlands located 

between geographical coordinates; latitude 4
0
02’23’’ to 4

0
37’12’’ S and longitude 

37
0
48’20’’ to 38

0
04’16’’E (Fig. 1). Rainfall distribution is bimodal, with an average 

annual rainfall ranging approximately from 400 to 600 mm. Mean temperatures range 

from 16
0
C (July to August) to 32

0
C (January). It is located at an elevation of 2133 m.a.s.l. 

Mkonga Forest Reserve (MFR) located 8 km away from Same District town centre along 

Moshi to Dar es Salaam road was selected as the study site. Mkonga Forest Reserve has a 

total area of 520 ha and was gazette in 1986.  Mkonga Forest Reserve is an Acacia-

Commiphora woodlands dominated with Acacia species like A. tortilis, A. mellifera and A. 

nilotica. Commiphora species include C. africana, C. habessinica, C. schimperi, C. edulis 

and C. campestris. Some associated species include B. aegyptiaca and Cactus spp. 

 

3.2 Pilot Study 

A pilot study was conducted within the study area aiming for collecting data for determination of 

tree variation within Mkonga Forest Reserve (MFR). By using relascope, 16 sweeps were 

randomly established within MFR. At each point, the relascope was used to determine Basal area 

(G) by using Basal Area Factor (BAF) of 1. Data collected in this exercise was used to calculate 

the variance (Pearson et al., 2005) that was used to calculate the required number of plots. 

Number of plots was calculated by using the formula: 

 

                      
     

  …………………………………………………………... (1) 
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Where: n = number of the required sampling units (plots) in the population; t = the sample 

statistic from the t-distribution for the 95% confidence level usually set at 2; CV = 

Coefficient of variation obtained from the standard deviation of the plot’s basal area and E 

= allowable error or the desired half-width of the confidence interval. The number of plots 

at E of 10% was calculated to be 58 plots.  

 

3.3 Plot Sampling, Forest Inventory and Tree Selection 

Five line transects were established at systematic interval of 500 m and in each transect 

circular plots were established systematically at an interval of 200 m from one plot to 

another. Transect and plot distance was established based on the size of study area (See 

plot distribution pattern in Fig. 1). Circular plots with four concentric sub-plots of fixed 

area ranging from plot radius of 1 m (0.00 314 ha), 5 m (0.007 857 ha), 10 m (0.031 429 

ha) to 15 m (0.0 707 ha) was used (NAFORMA, 2010). In each plot, tree numbers, stem 

numbers in case of forked trees and DBH. Tree height was measured for the largest, 

medium and smallest tree in each plot. In each sub-plot, trees were sampled and measured 

in the following manner: i) within 1 m radius: all trees with DBH ≥ 1 cm were recorded; 

ii) within 5 m radius; all trees with DBH ≥ 5 cm were recorded; iii) within 10 m radius; all 

trees with DBH ≥ 10 cm were recorded; and iv) within 15 m radius; all trees with DBH ≥ 

20 cm were recorded. Species botanical name or local name was recorded for each tree 

encountered in a plot.  

 

3.4 Destructive Sampling for Biomass and Volume Estimation Models 

To develop aboveground biomass (AGB), belowground biomass (BGB) and volume 

estimation models, trees were purposively selected for destructive sampling based on tree 

DBH classes and species dominance. Selection of sample trees was aimed at sampling a 

sufficient number of trees to represent different range of tree sizes and species to develop 
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local biomass and volume allometric models (Snowdon et al., 2002; Breugel et al., 2011). 

A total of sixty trees distributed in 58 plots were sampled. Summary statistics of trees’ 

parameters are presented in Table 1.  To provide a spatial distribution; trees for destructive 

sampling were selected outside of the plot boundary especially for larger trees. 
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Figure 1: The map of Tanzania indicating enlarged map of Same District and 

enlarged map of Mkonga Forest Reserve showing the plot distribution 
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3.4.1 Destructive sampling for aboveground data  

Trees selected for destructive sampling in each DBH class were measured for height and 

DBH at 1.3 m. After uprooting, the aboveground tree section were subdivided into main 

stem (up to a minimum diameter of 5 cm); by branches including tops (up to a minimum 

diameter of 2.5 cm); and twigs (with diameter < 2.5 cm). Stems and branches were further 

trimmed off into manageable billets length ranging from 1 to 2 m and then weighed for 

green weight. The green weight, diameter at (mid) and the length of each tree subsection 

were recorded in the field. Two or three small disk samples (depending on the stem 

length) from stem and branches, respectively, were cut and weighed for green weight. 

Disk samples from each aboveground tree section were labeled and stored for further 

laboratory analysis. Small branches with diameter less than 5 cm and twigs were tied into 

manageable bundles to determine their green weight. 

 

3.4.2 Destructive sampling for belowground data  

In Fig. 2 the sketch diagram of tree’s belowground components is shown. To collect data 

from trees’ belowground section; the soil were excavated until all main roots initiating 

from the root crown were visible. Then main roots (largest and medium) were fully 

excavated where possible to the minimum diameter corresponding to the branching 

diameter of smallest root. Smallest roots and side roots were traced to their minimum 

possible diameter. Smallest roots were measured for their branching diameter from the 

root crown. The largest and medium roots were measured for diameter at the branching 

point from their root crown and the cutting diameter that was comparable to the branching 

diameter of the smallest root. All roots initiating from the root crown were then removed 

and weighed to determine their green weight.  
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Figure 2: The sketch diagram of the tree’s belowground components. 

 

Then the root crown was separated from the tap root and then separated from aboveground 

tree component at 15 cm from the ground. The tap root was traced to the minimum 

diameter corresponding to the branching diameter of the largest root. The root crown was 

then weighed and its green weight was recorded. Before weighing belowground 

components were brushed to remove soil and rock particles (Snowdon et al., 2002). The 

remaining part of main roots (largest, tap root and medium) was estimated by using the 

dry weight of the smallest roots. Similarly, the remaining part of the crown was estimated 

by using data of the largest root. Small disk samples were taken from largest, medium and 

small root and one from the root crown. Disk samples were weighed for green weight, 

labelled and made ready for the laboratory procedures for determining their respective 

density and biomass ratio.  

 

3.5 Laboratory Procedures  

Disk samples from each tree section (roots, stems and branches) were soaked in water for 

the period of seven days until when their lumen were fully saturated up with water. Green 

Side root 

Main roots 

Stump 15 cm Largest root 

Medium roots 

Tap root  

Smallest root 

Root crown 
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volume of disk sample was obtained by means of water displacement (Williams et al., 

2008; Pyo et al., 2012). Disk samples were oven dried at 110 
0
C for the period of 48 hrs 

and samples were weighed at the interval of time to determine whether they had attained 

constant weight (Mugasha et al., 2013). Thereafter, biomass ratio was calculated as: 

Biomass ratio = oven dry weight/Fresh weight. 

 

3.6 Computation of Observed Biomass and Volume 

The biomass in kg for each billet and each of the tied bundles was computed by 

multiplying green weight with its respective disk biomass ratio (Ryan et al., 2011; 

Mugasha et al., 2013). Total AGB was computed as the sum of each aboveground tree 

component (stem, branch, and tied bundle of small branches and twigs). Biomass of 

unexcavated remaining part of the main and side roots were estimated by using nonlinear 

regression equations (cutting diameter & dry weight relations) (Snowdon et al., 2002, 

Mugasha et al., 2013). Non-linear regression equations were formulated by using “nls 

package in R Statistical Software” and the best model was selected based on the lowest 

AIC values. Total BGB was computed as the sum of dry biomass of all main root, side 

root and root crown. Total tree biomass was calculated as the sum of total tree AGB and 

BGB. The volume of stem (up to diameter ≥ 5 cm) (Vs) and branches including tree tops 

(up to diameter ≥ 2.5 cm) (Vb) was computed by using Huber’s formula (Abbot et al., 

1997). Aboveground tree volume (AGV) was computed by summing individual tree 

volume component (Vs + Vb).  

 

            
   

  

 
............................................................................................................ (2) 

Where dm is diameter at mid-length of log (m) and L is the length of the log (m). 

 

Table 2 indicates the number of trees encountered during forest inventory in different 

DBH classes and the total number of trees destructively sampled in each DBH class.  
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Table 1: Statistical summary for tree parameters used in developing total tree 

biomass or volume estimation models 

Tree parameter Min. Mean Max. 

Diameter at breast height  (cm) 2.50 14.04 30.30 

Height (m) 1.50 6.10 10.50 

Total tree biomass (kg) 1.89 123.00 713.00 

Tree aboveground biomass (kg) 1.14 101.20 609.60 

Belowground dry biomass (kg) 0.33 21.23 116.20 

Tree aboveground volume (m
3
) 0.002 0.08 0.40 

 

Table 2: Distribution, number of trees encountered in forest inventory for each DBH 

classes and the total number of trees destructively sampled per each DBH 

class. 

Range of DBH 

Distribution 

Number of 

trees 

Trees selected for destructive 

sampling 

1 – 5 82 8 

6 - 10 201 13 

11 – 15 209 16 

16 – 20 116 13 

21 – 25 31 7 

26 – 30 8 3 

30 > 1 0 

Total 648 60 
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3.7 Model Development, Selection and Evaluation  

3.7.1 Development of allometric models for biomass or volume estimation 

To know the relationship between tree DBH and tree’s different section’s dry biomass, 

graphical/scatter plots were used. The plots indicated that the relationship between DBH 

and tree dry biomass were not linear (Fig. 3). Similar trends were observed by Braindeis et 

al. (2006); Zianis (2008); Litton and Kauffman (2008); Kuyah et al. (2012 a, b); Mugasha 

et al. (2013) and Fayolle et al. (2014). To assume linearity, tree data were log-transformed 

(Chave et al., 2005; Fayolle et al., 2014) and then log-transformed data were used to 

develop the models (Model form 1 - 4).  
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Figure 3: Graphical plots of the relationships between DBH and (A) total tree dry 

biomass, (B) tree aboveground biomass, (C) tree stem biomass, (D) branch 

biomass, (E) twig biomss and (F) belowground biomass. 

 

Similarly, for volume estimation models graphical plots indicated that the relationship 

between different tree’s section and DBH was non-linear (Fig. 4). The similar trend was 

observed by Khan
 
and Faruque (2010), Mauya et al., 2014 and Masota et al., 2014. To 

assume linearity data were log-transformed prior linear. 
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Figure 4: Graphical plots of the relationships between DBH (cm) and (A) total tree 

aboveground volume (m
3
), (B) tree volume (m

3
) and (C) tree branch 

volume (m
3
).  

 

Allometric models for total tree biomass, AGB, BGB, stem biomass and branch biomass 

using log-transformed variables were fitted to reduce heteroscedasticity (Ryan et al., 2011; 

Muthuri et al., 2011). For volume and biomass estimation models development, four 

different model forms for estimating aboveground tree volume, stem volume and branch 

volume were fitted. Biomass or volume estimation models were developed by fitting 

general models using 60 representative trees. Four different model forms for biomass and 

volume estimation equations fitted and tested are shown below:- 
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1.                 .....................................................................(Model form 1) 

2.                  .....................................................................(Model form 2) 

3.                          .................................................(Model form 3) 

4.                     ...............................................................(Model form 4) 

 

Where Y = biomass (kg dry mass) or volume (m
3
/tree), D = Diameter at breast height 

(cm); Ht = total tree height (m); a, b and c are regression coefficients.  

 

3.7.1.1 Selecting the best model 

The Goodness of fit was based on Akaike Information Criterion (AIC) (Chave et al., 2005; 

Ebuy et al., 2011; Alvarez et al., 2012; Kuyah et al., 2012a) and Residual Standard Error 

(RSE) (Chave et al., 2005). AIC is based on a penalized likelihood criterion that penalizes 

the model based on the number of parameters used in model fitting (Johnson and Omland, 

2004). The AIC values were calculated as follows:- 

 

               ……………………………………...………………………… (3) 

 

Where, L is the likelihood of the fitted model and p is the total number of parameter in the 

model. The coefficient of determination (R
2
) was reported in this study but was not used 

as the basis for model selection since AIC and RSE reported together provide sufficient 

information on the quality of model fit (Chave et al., 2005; Alvarez et al., 2012; Kuyah et 

al., 2012a; Fayolle et al., 2014). Regardless of AIC and RSE values, selected models 

should have their parameter estimates significant at probability level of 1%.  The AIC and 

RSE values were directly calculated by using R-Software during linear regression 

procedures. Scatter plots of residuals versus measured biomass had to be equally 

distributed. Finally, best tree volume or biomass estimation models were selected based on 

their lowest prediction error or relative error (RE %) in estimating biomass or volume. The 
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RE was calculated using the equation adopted from Kuyah et al. (2012 a) as shown 

below:- 

 

    
                                     

                
       ……………………………… (4) 

 

Where “n” is the number of observations. 

 

3.7.2 Model prediction 

Theoretically, log transformation of data causes biasness in the final biomass or volume 

predicted values and uncorrected values are expected to underestimate biomass values 

(Chave et al., 2005; Alvarez et al., 2012). A correction factor (CF) is required for the back 

logarithmic transformations when applied to generate biomass predictions. The CF is 

always a number greater than 1 and the greater the RSE the higher values of CF and the 

poorer the model performance in estimating biomass or volume values. Defined in 

equation (5) adopted from Chave et al. (2005; 2014), CF was calculated for all of the 

models developed for estimation of biomass or volume of different tree sections and the 

presented models already include the correction factor (Appendix B & C). 

 

                                  …………………………………………. (5) 

 

Where RSE is residual standard error of the model obtained from the linear regression 

outputs. 

 

3.7.3 Testing the Applicability of the Existing Models 

To know the applicability of the existing locally developed or regional models, AGB 

models developed by Mugasha et al. (2013) here referred Mugasha AGB and Chave et al. 

(2014) here referred Chave were used to test their applicability in Acacia-Commiphora 

woodlands. To estimate predicted biomass by Chave, the average basic wood density 
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(0.58) for African tropical tree species in Brown (1997) was used. The models used are 

shown below:- 

 

1. Chave et al. (2014)                           

2. Mugasha et al. (2013)                                

 

 

Where;   is diameter at breast height (DBH), Ht is total tree height and   is basic wood 

density (BWD). 

 

Likewise for volume models, the general volume model by Mauya et al. (2014) here 

referred Mauya and the volume by Malimbwi et al. (1994) here referred Malimbwi were 

used to test their applicability in Acacia-Commiphora woodlands. Mauya’s model covered 

miombo woodlands from different parts of Tanzania and Malimbwi’s model was 

developed from miombo woodlands of Kitulangaro forest reserve in Morogoro region. 

The models used are shown below:- 

 

1. Mauya et al. (2014)                                      

2. Malimbwi et al. (1994)                                    

 

3.8 Estimation of Volume, Biomass and Carbon Stock  

The best models for total tree biomass and tree aboveground volume (AGV) estimation 

were used to compute the biomass (kg/tree) and volume (m
3
) of all sampled trees from the 

forest inventory. Individual tree biomass and volume estimates were extrapolated to plot 

estimates by dividing individual tree estimates to respective plot area. Carbon stock was 

computed as 49% of the estimated biomass (Munishi and Shear, 2004). Estimates at the 

plot level were converted to per hectare basis by dividing with the area of each plot. The 

total estimated volume or biomass for the study area was determined by computing the 

average biomass or volume estimates at the plot level. Confidence interval of estimated 
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volume or biomass was computed by formula adopted from Nickless et al. (2011) as 

shown below:- 

 

                                                            ..…… (6) 

 

Where Y is the sample plot biomass or volume, np is the number of sample plots and Sp is 

the standard deviation across the sample plots.  
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CHAPTER FOUR 

 

4.0 RESULTS AND DISCUSSION 

This study developed generic biomass and volume estimation models for estimating the 

standing stock of Acacia-Commiphora species in the dry woodlands of Same District. A 

total of sixty sample tree were destructively sampled. All of the developed linear 

regression models were statistically highly significant (P<0.01) and generally had a good 

fit. The residual plots for models were relativelly normally distributed. The present study 

is unique for tree volume and biomass estimates as most of the tree sizes in Acacia-

Commiphora species of semi-arid region of Same District were included in model 

development (Table 1). The present study also developed specific models for the 

estimation of belowground biomass and total biomass of stems and branches. The two 

components have less been modelled independently in most of the studies. Also, the study 

covered a number of diversified tree species as sixty sample trees were destructively 

sampled from twelve different Acacia-Commiphora tree species where Acacia tortilis was 

the dominant species (Apendix A). 

 

4.1 Biomass Models 

4.1.1 Twigs biomass model 

Twigs data from sixty sample trees were used to develop twigs biomass estimation 

models. Table 3 shows the twigs biomass models developed in this study. Model form 4 

had the lowest AIC and RE% values and was selected as the best model in estimating twig 

biomass. The model has R
2
 of 65.45 % which is in line with the R

2 
(0.65) obtained by 

Niiyama et al. (2010) for leaf biomass model and very close to the reported R
2
 of 68.0% 

for twig biomass estimation model by Mugasha et al. (2013) in the Miombo woodlands. 

The R
2
 values obtained in the present study is lower to R

2
 (0.74) reported by Braindeis et 
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al. (2006) for leaf biomass estimation models in mixed dry forest species but very higher 

compared to the R
2
 values (R

2 
= 0.40) obtained by Mate et al. (2014) for predicting branch 

and twig biomass of Afzelia quanzensis. Also the lowest AIC value obtained in this study 

when tree height was included in model development is in with the study results by 

Mugasha et al. (2013). From the result, it is valid to conclude that twig biomass has a 

positive relationship (r = 0.66; P<0.01) with the parameter DBH
2
H.  

 

Table 3: Model parameters, selection and performance for estimating twig biomass.  

Tree 

Component 

Model  

form 

Parameter estimates RSE AIC R
2
 CF RE 

% a b c  

Twig 

biomass 

1 -1.23** 1.62**  0.75 139.83 62.73 1.33 0.15 

 2 -1.23** 0.81**  0.75 139.83 62.73 1.33 0.15 

 3 -1.38** 1.08** 0.87* 0.73 136.84 65.70 1.30 0.32 

 4 1.38** 0.62**  0.73 135.27 65.45 1.29 0.11 

** Parameter estimate significant at 1% (p<0.01) level of significance i.e scaling factors a, b and c differ significantly 

from zero; * Parameter estimate not significant at 1% (p>0.01) level of significance. 

 

4.1.2 Branch biomass models 

Branch biomass estimation models were developed using only 42 trees with DBH greater 

or equal to 10 cm.  This is similar as what was done by Mugasha et al. (2013) in 

developing branch biomass estimation model. Generally, branch biomass as the function 

of DBH only or the combination of DBH and Ht had poor relationship (53<R
2
<55%). 

Similar poor relationship between branch biomass and their predictor variables (DBH 

and/or Ht) compared to other tree sections was observed elsewhere (Dezzeo and Chaco´n, 

2005; Mugasha et al., 2013; Yusuf et al., 2013; Mate et al., 2014). Model 4 had the lowest 
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AIC and RSE values of 101.40 and 0.78 respectively and was selected as the best model 

for branch biomass estimation.  

 

Table 4: Models parameters, selection and performance for estimating branch 

biomass for trees with DBH ≥ 10 cm. 

Tree 

Component 

Model  

form 

Parameter estimates RSE AIC R
2
 CF RE 

% a b c 

Branch 

biomass 

1 -4.77** 2.84** - 0.79 103.66 52.66 1.37 0.33 

 2 -4.77** 1.42** - 0.79 103.66 52.66 1.37 0.33 

 3 -5.55** 2.46** 0.96* 0.77 103.27 55.28 1.36 0.39 

 4 -5.62** 1.17** - 0.78 101.40 55.15 1.35 0.36 

** Parameter estimate significant at 1% (p<0.01) level of significance i.e scaling factors a, b and c differ significantly 

from zero; * Parameter estimate not significant at 1% (p>0.01) level of significance. 

 

4.1.3 Stem biomass models 

Parameter estimates for stem biomass models are presented in Table 5. Model 3 had the 

lowest AIC and RSE values and was selected as the best models in estimating tree stem 

biomass. About 90.00 % (R
2
 = 90.00; P<0.01) of the variability in stem biomass was 

explained by the predictor variables (DBH and Ht) as shown in Table 5. The R
2
 observed 

in this study is in line with the R
2
 values (ranging from 0.70 to 0.94) values reported by 

Yusuf et al. (2013) in models for estimating stem biomass of different Acacia species in 

Ethiopia. However, the R
2
 is higher compared to the reported values by Mugasha et al. 

(2013) for stem biomass estimation with the value range from 0.68 to 0.80 for DBH only 

as independent variable and between 0.69 and 0.80 with both DBH and Ht as independent 

variables. The good fit of the selected model in the present study when compared to model 

form 1 and 2 concurs with what was observed by Guendehou et al. (2012) in developing 
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stem biomass estimation model of selected tropical tree species in West Africa. This is 

contrary to Cienciala et al. (2013) who reported marginal improvement for some study site 

when Ht was used in model development while the other sites with the single predictor 

variable (DBH) had better performance compared to those with both DBH and Ht. Stem 

predicted biomass from all sample trees by the selected model constituted 67.20 % of the 

total observed biomass. This is in line with Nygard et al. (2004) who reported one third of 

the total fuel wood yield to be constituted by the trunk wood in the north Sudan savanna. 

 

Table 5: Model parameters, selection and performance to estimate tree stem biomass. 

Tree 

Component 

Model 

Form 

Parameter estimates RSE AIC R
2
 CF RE 

% a b  c 

Stem 

biomass 

     1 -2.35** 2.17** - 0.54 99.35 85.59 1.15 0.14 

   2 -2.35** 1.09** - 0.54 99.35 85.59 1.15 0.14 

 3 -2.56** 1.43** 1.19** 0.46 80.71 89.78 1.11 0.05 

 4  -2.55** 0.84** - 0.46 80.87 89.41 1.11 0.07 

** Parameter estimate significant at 1% (p<0.01) level of significance i.e scaling factors a, b and c differ significantly 

from zero; * Parameter estimate not significant at 1% (p>0.01) level of significance. 

 

4.1.4 Biomass models for estimating total stem and branch biomass  

Table 6 shows model parameters and the goodness of fit for different tree models 

developed to estimate trees’ total branch and stem biomass. Model 4 had the lowest AIC 

and was selected accordingly. Generally, the fitted models to estimate total tree stem and 

branch biomass indicated the better performance judged by higher coefficient of 

determination (R
2
) with the value range from 84.95 to 88.18%. Likewise, including height 

parameter in model development resulted to improvement of the model and such similar 
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improvement in model fit when height is included is reported elsewhere (Malimbwi et al., 

1994; Mugasha et al., 2013). 

 

 

Table 6: Model parameters, selection and performance for estimating tree stem and 

branch biomass. 

Tree 

Component 

Model 

Form 

Parameter estimates RSE AIC R
2
 CF RE 

% a b  c 

Total Stem 

and branch 

biomass 

     1 -2.29** 2.33** - 0.59 110.63 84. 95 1.19 0.14 

   2 -2.29** 1.16** - 0.59 110.63 84. 95 1.19 0.09 

 3  -2.49** 1.63** 1.12** 0.53 98.16  88.18 1.15 0.04 

 4   -2.48** 0.89** - 0.52 96.85  88.04 1.15 0.01 

** Parameter estimate significant at 1% (p<0.01) level of significance i.e scaling factors a, b and c differ significantly 

from zero; * Parameter estimate not significant at 1% (p>0.01) level of significance. 

 

4.1.5 Aboveground biomass models  

For aboveground biomass, Model form 4 gave the lowest AIC and RSE values (102.38 

and 0.55) and was selected as the best model in estimating tree aboveground biomass 

(Table 7). The model indicated that 84% of the variability in aboveground biomass is 

explained by the predictor variable DBH
2
H. This is slightly higher compared than the R

2 

values (0.82) reported in Chaturvedi et al. (2012) for the similar model for tree biomass 

estimation in dry tropical species. The similar improvement in model fit when Ht was 

included in AGB model development was also observed by Segura et al. (2005) with the 

R
2
 of 0.87. Similarly Guendehou et al. (2012) reported the improvement in model fit 
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across all Acacia tree species under study when tree height was included in model 

development.  

 

Table 7: Model parameters, selection criterion and performance for estimating total 

tree aboveground biomass. 

Tree 

Component 

Model  

form 

Parameter estimates RSE AIC R
2
 CF RE 

% a b c 

AGB 1 -1.07** 2.03**  0.60 113.21 80.37 1.20 0.08 

 2 -1.07** 1.01**  0.60 113.44 80.37 1.20 0.10 

 3 -1.26** 1.37** 1.08** 0.55 103.35 83.89 1.16 0.04 

 4 -1.25** 0.78** - 0.55 102.38 83.61 1.16 0.04 

** Parameter estimate significant at 1% (p<0.01) level of significance i.e scaling factors a, b and c differ significantly 

from zero; * Parameter estimate not significant at 1% (p>0.01) level of significance. 

 

4.1.6 Belowground biomass models 

Coefficient and model performance criteria are presented in Table 8.  For Model 4, the 

combination of DBH
2
 and Ht explained 85.34% of the variation in BGB and resulted to 

the lowest AIC and RSE values. The R
2
 obtained in this study is slightly lower than the 

value reported by Mugasha et al. (2013) for the site specific models (ranging from 0.87 

and 0.93). Models developed for estimating BGB had better model fit in terms RE % 

(0.07) when compared to their counterpart AGB estimation models. The four models 

developed had the RE% ranging from 0.05 to 0.00 indicating that any of the model can be 

used to estimate BGB since their RE% are within the acceptable limits. In the absence of 

Ht data model form 1 and 2 can be used to estimate BGB but if Ht data are available the 

present study recommends model form 4 to be preferred when estimating tree’s 

belowground biomass.  
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Table 8: Model parameters, selection and performance to estimate belowground 

biomass. 

Tree 

Component 

Model 

form 

Parameter estimates RSE AIC R
2
 CF RE 

% a b  c 

BGB 1 -2.56** 2.00**  0.54 100.38 83.17 1.16 0.05 

 2 -2.56** 1.00**  0.54 100.36 83.17 1.16 0.05 

 3 -2.70** 1.50** 0.80** 0.51 94.11 85.33 1.14 0.01 

 4 -2.70** 0.76** - 0.50 92.11 85.34 1.14 0.00 

** Parameter estimate significant at 1% (p<0.01) level of significance i.e scaling factors a, b and c differ significantly 

from zero; * Parameter estimate not significant at 1% (p>0.01) level of significance. 

 

4.1.6.1 Root to shoot (RS) ratio 

The computed RS ratio had the overall average value of 0.23 (Table 10). It can be 

observed that the RS obtained in this study had a slight variation across the DBH classes 

(Table 10). This concurs with what was reported by Niiyama et al. (2010). The overall RS 

obtained is slightly lower than the reported value of 0.26 by Cairns et al. (1997) ranging 

from 0.20 to 0.30. Also the RS ratio observed in this study is close to the range of RS ratio 

(0.27 to 0.58, with a mean of 0.42) reported by Ryan et al. (2011) which is in line with the 

average RS ratio by Mugasha et al. (2013), both of the two studies covered miombo 

woodlands. Such variations in RS ratio is attributed by many factors that include inherent 

species characteristics, site moisture, nutrient availability, regeneration strategies and 

completion for light as stipulated by Mokany et al. (2006). 

 

4.1.7 Total tree biomass models 

Table 9 shows parameter estimates and model performance criteria for total tree biomass 

estimation. Including tree height as the predictor variable improved the model fit. For 

example, including tree height in model development improved the model fit by reducing 
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overestimation of the measured biomass from 0.09% to 0.03% (Table 9). This is similar as 

what was observed by Malimbwi et al. (1994) where including height in the polynomial 

equation improved the model fit by increasing the value of R
2
 from 0.84 – 0.92 to 0.90 – 

0.96. Model 4 gave the lowest AIC and RSE (94.74 and 0.52) and was selected as the best 

candidate model for estimating total tree biomass. The AIC and RSE values for all 

developed total tree biomass estimation models ranged from 106.45 to 94.74 and 0.57 to 

0.52 respectively. This concurs with Cairns et al. (2003) found that biomass predictive 

models with predictor variable DBH
2
H estimated biomass that was very close to the 

measured biomass (small RE %).  

 

Table 9: Model parameters, selection and performance criteria to estimate total 

biomass. 

Tree 

Component 

Model  

form 

Parameter estimates RSE AIC R
2
 CF RE 

% a b c 

Total 

biomass 

1 -0.85** 2.02**  0.57 106.45 81.99 1.18 0.09 

 2 -0.85** 1.01**  0.57 106.43 81.99 1.18 0.09 

 3 -1.03** 1.39** 1.01** 0.52 96.01 85.40 1.14 0.03 

 4 -1.02** 0.78** - 0.52 94.74 85.18 1.14 0.03 

** Parameter estimate significant at 1% (p<0.01) level of significance i.e scaling factors a, b and c differ significantly 

from zero; * Parameter estimate not significant at 1% (p>0.01) level of significance. 

 

4.1.8 Potential of previously developed biomass models 

The performance of existing tree AGB estimation models were evaluated based on their 

small RE% in estimating tree aboveground biomass of 60 sample trees (Table 10). From 

Fig. 4 and Table 10 it was found that tree AGB estimation model developed in this study 

performed better in estimating tree AGB when compared to Mugasha and Chave’s 
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regional AGB estimation models. The model by Mugasha et al. (2013) significantly 

underestimated AGB by 0.16%. Chave’s model underestimated AGB by 0.69% and the 

model was not statistically significant as indicated by the Student t-test (p > 0.05). The 

higher underestimation of the predicted biomass estimated by Chave’s model is possibly 

due to the average density (0.58) for African tropical tree species since it is not known 

whether this value corresponds to the average real wood density values for the species 

under study. As DBH becomes larger (i.e 23 cm and above) Mugasha’s model seems to 

perform better when compared to the other two models. The underestimation found from 

both of the two regional models justifies why models should be applied to their range and 

environmental conditions or vegetation types. 

  

Table 10: Table to show variation of root/shoot ratio (RS) and comparison between 

existing AGB models with AGB model developed in this study based on 

their relative error % in estimating predicted biomass across DBH classes. 

DDH class (cm) N RS This study RE % Mugasha RE % Chave RE % 

1 – 10  20 0.23 -0.65 -2.58 -3.35 

11 – 20 30 0.24 0.38 -0.32 -1.40 

21 – 30 10 0.21 -0.31 -0.15 -3.59 

Overall 60 0.23 0.05 -0.16 -0.69 

“N” represents number of observation 
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Figure 5: Comparison between the AGB model of this study and the existing AGB 

models. 

 

4.2 Volume Allometric Models 

Similar approach implemented in developing tree biomass estimation models was used to 

develop tree volume estimation models. This study developed allometric models to 

estimate the tree’s branch volume, stem volume and total tree volume. Models were 

developed by using the relationship between the tree’s section volume and the predictor 

variable DBH, DBH
2
 and DBH

2
H. Model 3 as the only additive model, was developed 

based on the predictor variable DBH and Ht. Including tree height as the predictor variable 

in estimating tree’s component volume had slight variation in terms of RSE, R2
, and AIC 

values as compared to models with DBH only. This is similar as what was reported by 

Mauya et al. (2014). 
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4.2.1 Branch volume models 

Contrary to the procedure adopted in developing branch biomass estimation model, 

models for estimating branch volume were developed by using the total number of sample 

trees. Similarly as observed in branch biomass models, the fit of branch volume models 

were not as good as the fit of stem and total volume models. The study by Mauya et al. 

(2014) and Masota et al. (2014) observed similar poor performance of branch volume 

models as compared to other tree components.  Model form 4 had the lowest AIC values 

and was selected as the candidate model for estimating tree branch volume (Table 11). 

About 79.61% of the variability in branch biomass was explained by the predictor variable 

DBH
2
H.  

 

Table 11: Model parameters, selection criteria and performance to estimate tree 

branch volume (m
3
/tree). 

Tree 

Component 

Model  

Form 

Parameter estimates RSE AIC R
2
 CF RE 

% a b c 

Branch 

volume 

1 -10.28** 2.38** - 0.71 130.87 79.51 1.25 0.13 

 2 -10.28** 1.19**  0.71 130.87 79.51 1.25 0.13 

 3 -10.31** 2.07** 0.47* 0.71 131.45 80.00 1.25 0.14 

 4 -10.29** 0.89**  0.71 130.58 79.61 1.25 0.15 

** Parameter estimate significant at 1% (p<0.01) level of significance i.e scaling factors a, b and c differ 

significantly from zero; * Parameter estimate not significant at 1% (p>0.01) level of significance. 

 

4.2.2 Stem volume models 

For volume models of the stem, model form 4 had the lowest AIC values and was selected 

accordingly. As shown in Table 12, about 92.73% of the variation in stem volume was 

explained by the predictor variable DBH
2
H. Also, the selected model had the lowest RE% 
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(0.04%) as compared to the other models. This concurs with what was observed by 

Ounekham (2009) who found that, the variable DBH
2
H was highly significantly related to 

stem volume. Parameter estimates of the selected model were significantly different from 

zero (p<0.01).  Model 3 its parameter estimate for the height variable was not statistically 

significant different from zero at the chosen level of probability and was not considered 

for estimating stem volume. 

 

Table 12: Model parameters, selection criteria and performance to estimate stem 

volume (m
3
/tree). 

Tree 

Component 

Model  

Form 

Parameter estimates RSE AIC R
2
 CF RE % 

a b c 

Stem 

volume 

1 -8.44** 2.01** - 0.36 51.75 91.81 1.07 0.08 

 2 -8.44** 1.00**  0.36 51.75 91.81 1.07 0.09 

 3 -8.53** 1.67** 0.544* 0.34 45.07 92.91 1.06 0.05 

 4 -8.54** 0.76**  0.34 44.57 92.73 1.06 0.04 

** Parameter estimate significant at 1% (p<0.01) level of significance i.e scaling factors a, b and c differ 

significantly from zero; * Parameter estimate not significant at 1% (p>0.01) level of significance. 

 

4.2.3 Total tree volume models  

Parameter estimates and model performance criteria are as shown in Table 13. Model 3 

had the lowest AIC values and was selected accordingly. Including height in model 

development, improved the model fit by reducing AIC and RSE from 45.22 to 39.30 and 

0.34 to 0.32 respectively. High R
2
 values ranging from 0.93 to 0.94 ascertains the 

goodness of fit of models. Braindeis et al. (2006) found that including tree height variable 

improved the model fit by increasing the value of R
2
 from 97.08 to 99.16 in estimating 

total volume in Puerto Rican subtropical dry forests. Also, the highest R
2 

obtained in this 
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study is very close to the reported R
2
 (ranging from 0.92 - 0.97) by Guendehou et al. 

(2012) for tropical tree species from West Africa. Model form 3 had the lowest values of 

AIC (39.30) and RSE (0.32) and was selected accordingly. The similar model form was 

judged to the best model in estimating tree total biomass by Masota et al. (2014). Also the 

model of this type, was found to be the best in category of models with both DBH and Ht 

by Mauya et al. (2014) for the general tree volume model in the study sites. Considering 

the AIC and R
2
 values for the developed volume estimation models for different tree 

components, the model fit improved from branches to total tree volume models. Similar 

improvement in model fit was reported by Masota et al. (2014) when developing tree 

volume estimation models in the tropical rain forests in Tanzania. 

 

Table 13: Model parameters, selection criteria and performance to estimate tree 

aboveground volume (AGV m
3
/tree). 

Tree 

Component 

Model  

Form 

Parameter estimates RSE AIC R
2
 CF RE 

% a  b  c  

Total tree 

volume 

1 -8.38** 2.13** - 0.34 45.22 93.36 1.06 0.07 

 2 -8.38** 1.06**  0.34 45.22 93.36 1.06 0.05 

 3 -8.46** 1.82** 0.49** 0.32 39.30 94.19 1.05 0.05 

 4 -8.47** 0.81** - 0.33 40.65 93.85 1.06 0.03 

** Parameter estimate significant at 1% (p<0.01) level of significance i.e scaling factors a, b and c differ 

significantly from zero; * Parameter estimate not significant at 1% (p>0.01) level of significance. 

 

4.2.4 Potential of previously developed volume models 

The performance of existing tree volume estimation models were evaluated based on their 

small RE% in estimating tree volume of 60 sample trees (Table 14). From Fig. 5 and 
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Table 13 it can be observed that, volume estimation model developed in this study 

performed better in estimating tree volume compared to Mauya’s and Malimbwi’s volume 

models. The model by Malimbwi et al. (1994) significantly overestimated predicted 

volume by 2.00% while Mauya’s model overestimated total tree volume by 5.04%. The 

test of statistical significance by using the Student t-test indicated that overestimation by 

Mauya’s model was not statistically significant (p > 0.05).  The overestimation of Mauya’s 

Model in predicting volume could mainly be associated with the fact that the model was 

developed by wide range of tree DBH classes (1.20 cm to 95.00 cm) as compared to DBH 

classes (2.50 cm to 30.30 cm) used in this study simply because in Acacia-Commiphora 

species of dry areas it is rare to find large trees. The better performance of Malimbwi’s 

models it is mainly due to the reason that most of tree DBH classes (9.30 cm to 43.00) 

used in model development where also included within tree sampling of the present study. 

 

Table 14: Table to show the comparison between previously volume models with the 

volume model developed in this study based on their relative error % in 

estimating predicted volume across DBH classes. 

DBH class (cm) N This study RE % Mauya RE % Malimbwi RE % 

1 – 10  20 -0.20 0.21 -0.60 

11 – 20 30 -0.01 1.22 0.33 

21 – 30 10 0.75 7.43 3.70 

Overall 60 0.27 5.04 2.00 

“N” represents number of observerations 
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Figure 6: Comparison between the volume estimation model of this study and the 

existing volume models. 

 

4.3 Forest Structure 

Table 15 shows the statistics of the number of stems per hectare, basal area (m
2
/ha), 

volume (m
2
/ha), aboveground biomass, total biomass and average stand biomass estimates 

for different tree sections obtained in this study. 
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Table 15: Number of Stems (N) per hectare and Basal Area (G), Branch volume, Stem 

Volume, Total tree volume, Total biomass and average stand biomass 

estimates for different tree sections. 

Stand parameter Average plot estimate 

 

Confidence 

interval 

Number of stems per hectare (N) 870.24 91.31 

Basal area (G) (m
2
/ha) 5.53 0.39 

Stand tree branch volume (m
3
/ha) 7.91 0.57 

Stand tree stem volume (m
3
/ha) 15.88 1.12 

Total tree volume (m
3
/ha) 23.11 1.64 

Twig biomass (t/ha) 10.24 0.73 

Branch biomass (t/ha) 6.43 0.52 

Total stem and branch biomass 18.03 1.30 

Stem biomass (t/ha) 10.86 0.78 

Aboveground biomass (t/ha) 28.66 2.03 

Belowground biomass (t/ha) 5.96 0.42 

Total tree biomass (t/ha) 34.69 2.42 

 

 

4.3.1 Stem density and basal area estimates 

The average number of stems per hectare (870.24 ± 91.31) obtained in this study (Table 

15) is comparatively lower than the value (1376 ± 255) reported by Kaniki (2010) in 

Communal forest in Rombo District. Also, the number of stems per hectare observed in 

this study is comparatively higher than the reported value by Bernado (2009) for Acacia 

tree species under ‘ngitili’ in Shinyanga region. However, the observed values in this 

study are within the range of stem density from 300 to 900 per hectare reported by 
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Timberlake et al. (2010) for higher stem densities in semi-arid dry forests. Similar studies 

from the related woodlands like Miombo woodlands from different parts have been 

reported slightly lower stem density per hectare ranging from 276 to  647 (Malimbwi et 

al., 1994; Njana, 2008; Shirima et al., 2011; Kuyah et al., 2014; Alemu et al., 2014).  

 

The average basal area (5.53 ± 0.39 m
2
/ha) obtained in this study is in line with the 

reported value of 5.22 m
2
/ha but slightly higher than the basal area value (3.39 m

2 
ha

-1
) 

reported by Monela et al. (2005) for Acacia species in Shinyanga region. Kaniki (2010) 

reported the basal area with the value range from 2.60 ± 0.32 to 3.17 ± 0.45 m
2
/ha for 

Communal and Private forests management respectively. Also, the basal area observed in 

this study is within the range of the basal area from 3.60 to 10.10 m
2
/ha

 
reported by 

Timberlake et al. (2010) in the Sudanian warm dry forests of western Africa. Alemu et al. 

(2014) reported the average basal area values of 9.33 m
2
/ha of Boswellia papyrifera 

woodlands in north western lowlands of Ethiopia and the value is comparatively larger to 

observed values in this study.
 
The differences in basal area estimates are more likely 

associated with different management strategies. For, example Mkonga Forest Reserve is 

managed by the Central Government since 1986 and since then there is minimal forest 

disturbances like charcoaling, livestock browsing and firewood extraction.  

 

4.3.2 Total stand volume  

The mean tree aboveground volume at the plot level was estimated to be 23.11 ± 1.64 

m
3
/ha (Table 15). The mean volume quantified in this study is comparatively higher than 

the reported value of 16.67 m
3
/ha by Bernado (2009) for Acacia tree species under ‘ngitili’ 

in Shinyanga Region. However, quantified volume in this study is comparatively lower 

than that of 43.90 m
3
/ha reported by Chamshama et al. (2004) for the miombo woodlands 

of Tanzania. There are relatively few data from similar vegetation types against which the 
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present study could make more comparison on the volume results. A number of studies on 

allometric models have been done in African savannas. However, most of them have 

reported the biomass of specific, individual species and few have considered the total 

biomass estimates rather than volume estimates.  

 

4.3.3 Biomass and carbon stock estimation 

The average biomass estimates for the total tree biomass was 34.69 ± 2.42 t/ha and AGB 

estimates was 28.66 ± 2.03 t/ha (Table 15). The AGB obtained in this study is slightly 

lower than the quantified biomass of 33 t/ha by Malimbwi et al. (1994) in Miombo 

woodlands of Kitulangalo Forest Reserves but higher than the biomass estimate value 

(25.4 t/ha) for Acacia abyssinica reported by Giday et al. (2013). Also the study by 

Colgan et al. (2013) estimated average plot biomass of 27.0 t/ha in the Savannah 

woodlands of Phalaborwa and Kruger National Park both of South Africa. Similar biomass 

estimates was obtained by Mate et al. (2014) in tree species of Mozambique Miombo 

woodlands. The AGB reported in this study is comparatively higher as compared to the 

value reported by Timberlake et al. (2010) with the ranging from 13 to 18 t/ha for Somali–

Masai bush land.  

 

The estimated average biomass in this study is equivalent to 17.00 t C/ha. The carbon 

estimate quantified in the present study is within the range reported by Shackleton and 

Scholes (2011) who quantified the carbon stock with the value range from 9.50 to 20.50 t 

C/ha. Also, Williams et al. (2008) reported carbon stocks in savannas of Mozambique 

with comparative figures from Zimbabwe, most of which fell in the range from 16 to 26 

C/ha. However, The Carbon estimates obtained in this study is comparatively lower than 

the reported mean carbon density (23.40 ± 4.00 C/ha) by Shirima et el. (2011) in the 

Miombo woodlands in Tanzania’s Eastern Arc Mountains. 
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4.3.4 The relationship between total stand volume and aboveground biomass  

The higher value of AGB as compared to total volume values (Table 15) obtained in this 

study is mainly associated by the fact that volume models did not include twigs as 

compared to AGB models. As it can be observed in Table 15, stem and branch biomass in 

total contributes 18.03 t/ha which is 62.92% of the total aboveground biomass. This 

implies that twigs had much influence in the developed aboveground biomass estimation 

models since during data collection leaves and small branches (< 2.5cm) were grouped 

together as twigs. Higher value of AGB as compared to volume suggests that the wood 

density of studied species is above 1 g/cm
3
, however, it should be noted that such higher 

value is because of the differences in modeling noted above. Thus, the present study 

provided good AGB estimates confined to branch and stems and this can be compared to 

total volume for a roughly wood density value of 0.78 g/cm
3
. 
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CHAPTER FIVE 

 

5.0 CONCLUSION AND RECOMMENDATION  

5.1 Conclusion  

This study developed biomass and volume estimation models by using 60 sample trees 

selected to cover a wide range of tree sizes identified from DBH distribution during the 

forest inventory exercise. Biomass and volume models were developed by regressing 

tree’s section biomass or volume and the predictor variable DBH and Ht. Including height 

parameter in model development improved the model fit throughout the fitted models for 

different tree sections. The predictor variable DBH
2
H had lowest AIC values and highest 

positive relationship for most of the tree’s section biomass and volume models. All of the 

selected models had good fit for predicting total tree biomass and tree section’s biomass or 

volume since total variation explained by the relationship between dependent variables 

and predictor variables was at least 52 %. Generally, the biomass and volume models 

developed in this study provide a useful tool for biomass or volume estimation in Acacia-

Commiphora of Same District and related sites. Belowground biomass models in this 

study provides the stepping stone when estimating tree’s below- ground biomass since 

tree’s below ground biomass is less studied for different vegetation type. Also the 

quantified biomass, volume and carbon stocks may set a baseline for calculating changes 

in carbon stocks over time that can be useful in implementing the REDD
+
 policy in 

Tanzania.  

 

5.2 Recommendations 

For accurate tree volume, biomass and carbon estimates the use of locally developed 

generic models is important since most of the existing biomass or volume estimation 

models tended to significantly underestimate and overestimate biomass and volume 
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estimates respectively. As observed by this study, that including tree height in biomass or 

volume estimation models had a significant improvement in the model fit so where there is 

no dense forest with closed canopies like in Acacia-Commiphora woodlands, this study 

recommends  the use of tree height as the predictor variable in estimating tree volume or 

biomass. Similar studies have to be done for the same vegetation types from different parts 

of Tanzania so as to come up with the regional biomass or volume estimation models 

within Acacia-Commiphora tree species and shrubs of different environmental conditions.  
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APPENDICES 

 

A. List of sample tree species identified in their local and scientific names together with their tree diameter at breast height 

B.  (DBH), tree height (Ht) and measured biomass. 

Tree 

number 

Local name Scientific name DBH 

(cm) 

Ht 

(m) 

Measured 

Volume (m
3
/tree) 

Measured dry 

Stem and branch 

Measured dry 

AGB (kg/tree) 

Measured Dry total 

biomass (kg/tree) 

1 Msusu Commiphora 

schimperi 

16.00 7.00 0.06 18.18 23.28 31.45 

2 Mghaa Acacia tortilis 13.00 8.00 0.06 52.43 64.4 134.51 

3 Mghaa Acacia tortilis 8.00 7.50 0.06 38.69 60.64 93.06 

4 Mghaa Acacia tortilis 18.00 8.50 0.14 121.29 156.77 226.53 

5 Msusu Commiphora 

schimperi 

14.80 7.50 0.07 40.43 51.57 57.31 

6 Kimodoa/Mnoa Acacia mellifera 12.50 8.50 0.06 43.57 76 94.02 

7 Mtundawe Pappea sp 8.40 5.50 0.03 20.42 46.64 52.78 

8 Mkoshi wa nd'ovu Acacia sp 10.00 7.00 0.03 43.10 77.94 89.18 

9 Mkoshi wa nd'ovu Acacia sp 3.90 5.00 0.00 3.64 8.57 10.05 

10 Mghaa Acacia tortilis 13.00 6.00 0.06 44.16 59.63 79.23 

11 Msusu Commiphora 

schimperi 

10.60 5.00 0.02 5.69 11.49 14.96 
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12 Mghaa Acacia tortilis 29.30 9.50 0.18 236.30 310.58 385.59 

13 Kiloriti/Mzameli Acacia nilotica 6.50 4.50 0.01 4.33 11.74 14.41 

14 Kiloriti/Mzameli Acacia nilotica 19.00 6.50 0.14 93.59 135.93 165.63 

15 Mponda Commiphora 

africana 

4.50 2.50 0.01 3.86 8.11 10.18 

16 Msusu wa Mafuta Commiphora sp 19.00 6.00 0.10 32.69 39.88 58.19 

17 Mghaa Acacia tortilis 29.00 8.50 0.35 462.66 609.59 713.02 

18 Kiloriti/Mzameli Acacia nilotica 18.20 7.00 0.12 86.34 178.77 201 

19 Kimodoa/Mnoa Acacia mellifera 18.60 6.50 0.10 126.18 181.15 205.59 

20 Mkongori Unidentified 13.40 5.00 0.06 48.23 69.71 93.08 

21 Kimodoa/Mnoa Acacia mellifera 16.50 6.00 0.05 52.49 62.91 75.48 

22 Ulimbo Commiphora sp 3.50 1.50 0.00 0.76 1.14 1.9 

23 Mghaa Acacia tortilis 16.00 8.50 0.12 100.98 112.39 141.39 

24 Kimodoa/Mnoa Acacia mellifera 17.00 7.00 0.16 157.07 237.83 276.63 

25 Idudu Maerua triphylla 13.30 6.00 0.10 77.21 110.01 145.82 

26 Mghaa Acacia tortilis 23.10 9.00 0.25 217.48 267.75 323.87 

27 Kimodoa/Mnoa Acacia mellifera 13.00 5.50 0.05 57.71 95.53 114.58 

28 Mkonga Balanites 

aegyptiaca 

14.90 4.00 0.04 36.03 73.33 86.6 

29 Msusu wa Maziwa Commiphora sp 15.20 5.20 0.08 41.72 57.01 65.36 

30 Mghaa Acacia tortilis 10.20 6.50 0.05 40.76 57.58 74.03 

31 Msusu wa Commiphora sp 7.00 3.00 0.01 2.98 5.82 8.16 
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Maziwa 

32 Kiloriti/Mzameli Acacia nilotica 5.80 4.00 0.01 5.47 11.16 13.84 

33 Msusu wa 

Maziwa 

Commiphora sp 3.50 1.50 0.00 0.47 1.94 2.28 

34 Kimodoa/ 

Mnoa 

Acacia mellifera 15.30 7.00 0.08 76.55 104.68 130.57 

35 Kimodoa/Mnoa Acacia mellifera 13.60 7.50 0.07 45.91 83.71 97.48 

36 Mghaa Acacia tortilis 20.30 9.50 0.14 107.69 150.18 186.05 

37 Mghaa Acacia tortilis 30.30 10.50 0.39 381.27 513.02 629.24 

38 Mghaa Acacia tortilis 22.30 6.50 0.23 203.37 264.72 310.45 

39 Kiloriti/Mzameli Acacia nilotica 18.50 6.00 0.08 85.34 113.46 129.06 

40 Kiloriti/Mzameli Acacia nilotica 13.40 6.00 0.08 63.85 92.57 107.10 

41 Kimodoa/Mnoa Acacia mellifera 14.30 7.50 0.06 56.81 91.69 107.03 

42 Kimodoa/Mnoa Acacia mellifera 3.40 2.50 0.00 2.46 4.00 4.50 

43 Msusu wa Mafuta Commiphora sp 20.80 4.50 0.13 51.13 74.93 86.74 

44 Mghaa Acacia tortilis 11.40 7.50 0.04 28.07 40.04 52.23 

45 Kiloriti/Mzameli Acacia nilotica 12.30 4.50 0.04 22.70 39.59 50.07 

46 Mghaa Acacia tortilis 23.00 9.00 0.16 126.10 163.43 193.23 

47 Mghaa Acacia tortilis 9.00 6.50 0.03 28.82 33.04 41.91 

48 Kimodoa/Mnoa Acacia mellifera 8.50 4.00 0.03 23.40 38.22 43.97 

49 Mghaa Acacia tortilis 18.00 7.00 0.13 94.18 109.59 135.12 

50 Mghaa Acacia tortilis 23.50 7.50 0.14 123.95 167.67 202.86 
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51 Mkonga Balanites 

aegyptiaca 

9.50 5.00 0.02 16.80 59.70 67.26 

52 Mdudu Boscia coriacea 4.50 2.50 0.01 5.77 8.08 10.51 

53 Mghaa Acacia tortilis 12.00 5.50 0.07 55.23 70.60 89.34 

54 Kimodoa/Mnoa Acacia mellifera 6.40 3.50 0.01 11.87 23.08 27.55 

55 Kimodoa/Mnoa Acacia mellifera 2.50 1.80 0.00 1.72 5.97 7.10 

56 Msusu wa Mafuta Commiphora sp 9.50 5.00 0.02 4.44 6.37 7.73 

57 Kimodoa/Mnoa Acacia mellifera 6.30 5.00 0.01 9.27 13.52 15.73 

58 Mghaa Acacia tortilis 21.00 7.50 0.16 137.33 179.13 220.04 

59 Mghaa Acacia tortilis 22.00 9.00 0.13 97.34 119.21 153.03 

60 Mghaa Acacia tortilis 25.20 8.50 0.15 131.26 184.27 216.36 

 TOTAL OBSERVED   5.03 4309.58 6031.26 7381.97 
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C. Models developed for estimating biomass of different tree sections indicated in non-linear formats. 

Tree component Model 

form 

Models with only DBH (CF 

included) 

Model 

form 

Models with both DBH and Ht (CF 

included) 

Total tree biomass 1                     3                              

 2                      4                         

Tree aboveground biomass 1                     3                             

 2                      4                         

Stem + Branch biomass 1                     3                             

 2                      4                         

Stem biomass 1                     3                             

 2                      4                         

Branch biomass DBH ≥ 10 cm 1                     3                             

 2                       4                         

Twig biomass 1                     3                            

 2                      4                        

Belowground biomass 1                     3                            

 2                      4                        
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D. Models developed estimating volume of different tree sections indicated in non-linear formats. 

Tree component Model 

form 

Models with only DBH (CF 

included) 

Model 

form 

Models with both DBH and Ht (CF 

included) 

Total tree volume 1                      3                               

 2                       4                          

Stem volume 1                      3                               

 2                       4                          

Branch volume 1                        3                                

 2                        4                           

 


