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EXTENDED ABSTRACT

Maize (Zea mays L.), rice (Oryza sativa), and sorghum (Sorghum bicolor L. Moench) are

major staple food crops to the most population in Tanzania. The three crops provide the

primary source of livelihood for the majority of rural farming households. Of the three

crops, maize is  the most important,  accounting for about 20% of the total  agricultural

GDP, followed by rice.  Sorghum plays  an important  role  in  fighting hunger  and food

insecurity in central Tanzania, particularly in Dodoma and Singida regions. Unfortunately,

like any other crops, some uncertainty exists about the future productivity and profitability

of these important food crops. Such uncertainty hinders the implementation of different

agricultural policies, plans and strategies set to achieve an agriculture revolution, hence

impacting  the  decision  of  investment  in  agricultural  technologies.  The  inadequacy  of

accurate  and  timely  information  on  productivity  and  profitability  of  crops  have  a

tremendous impact on farmers'  decisions,  as well as on policy and planning. Hence,  a

complete model to help in forecasting and economic analyses of crucial crop sub-sectors

while including their stochastic nature is essential. In this regard, stochastic risk analysis

models were developed and demonstrated to analyse risk and uncertainty in forecasting

and economic analyses of major cereal crops in Tanzania. Most of the available models in

economic analyses and forecasting yields, prices, and net returns of agricultural systems

are deterministic. These models ignore the inherent risk of random variables and provide

only  a  point  estimate  for  the  key  output  variables  (KOVs)  instead  of  values  with

probability  distributions.  Therefore,  this  study was conducted to address three specific

objectives.  The first  objective was to develop and demonstrate  a stochastic  simulation

model for analysing the future viability of main cereals crops in semi-arid and sub-humid

areas  of  Tanzania.  For  this  reason,  a  Maize-Sorghum-Rice  Simulation  Model

(MASORISIM) was developed to simultaneously forecast yields, prices, and probable net
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returns for maize, sorghum, and rice as probability distributions. It utilizes deviations from

historical yields and prices (2008 – 2018) to forecast random variables for seven years

from  2019  –  2025.  Since  the  analysis  involved  yields  and  prices  of  three  crops,  a

multivariate probability distribution was built in the model to incorporate correlations of

the variables and control  their  heteroscedasticity.  The forecasting results on crop yield

show an increasing trend for maize and rice with a marginal increase for sorghum in the

Dodoma region by 2025. Likewise, the yield for rice is expected to rise in Morogoro with

a slight increase for maize and a decreasing trend for sorghum during the same period.

Meanwhile, the prices for the three crops all are projected to increase in the two regions.

The  results  on  economic  feasibility  using  NPV values  revealed  a  high  probability  of

success for all crops in both regions except maize in Morogoro. The results for maize in

Morogoro  presented  a  2.93% probability  of  negative  NPV.  Of  the  three  crops,  maize

indicated the highest relative risk associated with NPV for both regions and was relatively

higher in Morogoro (55.1%) than in Dodoma (34.2%). Although the results on production

indicate  increasing trends for the crops,  the increase is relatively small,  particularly in

Morogoro, which is one of the food basket regions in the country. The second specific

objective of the study was to develop and illustrate a bio-economic simulation model for

analysing  the  economic  feasibility  of  improved  management  practices  on  maize

production  in  the  Wami  Basin of  Tanzania.  The bio-economic  simulation  model  is  an

integrated decision support system (IDSS) developed to link data from two biophysical

models, namely APSIM and DSSAT and econometric model (Simetar) for comprehensive

decision-making. Under this objective, the economic feasibility of two farm management

practices  was  analysed.  These  practices  included  the  application  of  40  kg  N/ha  and

adjustment of plant population at a rate of 33 000 plants/ha from the current rate of 18 000

to 20 000 plants/ha. The simulated yield from the two crop models was then entered into

the  bio-economic  IDSS  model  along  with  output  prices,  and  cost  for  each  option  to
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simulate  the  probable  economic  net  returns  to  farmers.  The APSIM and DSSAT crop

models were used in this study because the two models are capable of simulating yield as

a function of the soil-plant-atmosphere conditions with and without the proposed farm

management  practices.  However,  crop  models  normally  simulate  yields  and  cannot

simulate  other  variables  like  prices  and  costs  of  management  alternatives  to  inform

economic decisions. The bio-economic simulation model, therefore, was built to bridge

the gap. The results on the economic viability show that the application of 40 kg N/ha was

more profitable than the plant population of 33 000 plants/ha having a zero probability of

negative returns. Both APSIM and DSSAT models suggest that when plant population is

adjusted from current average of 20,000 plants/ha to 33 000 plants/ha, there is 16% and

27% probability of negative returns in semi-arid part, with a 14% and a 30% probability in

sub-humid  area.  However,  the  net  return  for  farms  supplemented  with  the  two

management options (40 kg N/ha and the 33 000 plants/ha) has a slight difference from

the  farms  with additional  of  40  kg N/ha  alone.  However,  the  results  suggest  that  the

application of either  fertilizer  alone reduces the risks associated with the annual mean

returns. The increase in plant population at a rate of 33 000 plants/ha without application

of 40 kg N/ha has a high probability of economic failure. The third specific objective was

to demonstrate user-friendly Monte Carlo simulation procedures to simulate the economic

viability of different rice farming system in Tanzania. Production data for three seasons

were used to demonstrate how panel survey data can be made stochastic to include risk

available in the data. In this analysis, the rice farming systems entailing traditional and

improved practices were compared by considering the risk associated with each system,

and the best farming system was identified. The systems were categorized based on the

type of seeds used (local or improved), application of fertilizers, and application of the

systems  of  rice  intensification  (SRI)  practices  (partially  or  fully).  The  results  of  the

economic  analysis  show  a  high  probability  of  success  for  rice  farmers  using  all  the
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recommended  SRI  principles.  Moreover,  rice  farms  that  partially  applied  the  SRI

principles did not realize better returns compared to their counterpart farmers that fully

adopt the SRI package. Rice farms that applied fertilizers plus improved seeds were also

better-off  compared  to  rice  farms  under  traditional  practices.  The  study  revealed  that

farmers who use SRI partially and fully had 2% and zero probabilities of negative annual

net cash income (NCI), respectively. Meanwhile, farmers using fertilizers and improved

varieties had a 21% probability of negative NCI. The farmers using improved and local

rice varieties had 60% and 66% probabilities of negative returns, respectively. With high

dependence on rain-fed farming, production of main cereal crops is likely to face a high

degree of risk and uncertainty threatening incomes, livelihoods, and food availability to

poor households. However, there is a high chance that such households will be better-off if

improved  technologies  like  the  application  of  recommended  fertilizers  and  SRI  are

properly  applied.  Nonetheless,  the  adjustment  in  plant  population  has  demonstrated  a

slightly impact on both yield and economic returns, particularly under rain-fed production

system.  With  evidence  from  crop  models  like  APSIM  and  DSSAT,  bio-economic

integrated studies are, however, needed to explore the potential of more crop management

practices and technologies for better decision-making. This study forms a basis for more

studies  that  include  risks  and  uncertainty  to  improved  decision  marking  for  farmers,

government,  and stakeholders  in  the agricultural  sector.  The methodology used in  this

study can be expanded to include more zones and other non-cereals crops and livestock

farming systems.
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CHAPTER ONE

1.0 GENERAL INTRODUCTION

1.1 Background Information 

Maize (Zea mays L.), rice (Oryza sativa), and sorghum (Sorghum bicolor L. Moench) are

major staple food crops to the most population in Tanzania. The three crops provide the

primary  source  of  livelihood  for  80% of  the  population  (URT,  2014;  Kahimba  et  al.,

2015).  Maize  alone  accounts  for  about  72%  of  total  cereal  production,  followed  by

rice/paddy 23%, sorghum 5%, and 1% for the remain cereals (URT, 2014). Despite their

importance in the economy, the full potential of these cereals to create food security in

Tanzania  is  only  marginally  due  to  low performance.  For  example,  the  existing  land

productivity of maize is below 2.0 MT against the productivity potential of 6 -7.5 MT per

hectare. Also, the productivity potential for paddy is as high as 6-8 MT, while the average

actual productivity is below 3.0 MT per hectare (URT, 2013). In Tanzania, more than  of

rice is produced under lowland rain-fed system. However, apart from overdependence on

rain-fed agriculture,  other  constraints  leading to  the lower performance of these crops

include the inadequate application of agricultural  technologies,  unreliable  markets,  and

climate change and variability (URT, 2013; Kahimba et al., 2015). 

Maliondo et al. (2012) claimed that despite their importance, the main cereals in Tanzania

are sensitive to extreme climatic variables. Hence, if the sector is adversely affected by

any climatic shock, their productivity would be at risk leading to food insecurity for a

large number of people (Kahimba et al., 2015). Crop modelling studies including Ehrhart

and Twena (2006), Munishi et al. (2010), Jack (2010), Rowhani et al. (2011), and Arndt et

al. (2012) to mention a few, concluded that future yields of the most critical food crop
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yields like maize, sorghum, and rice might significantly decline, mainly due to projected

changes in temperature and rainfall. Besides, prices of cereal crops are in Tanzania change

seasonally.  They  tend  to  drop  during  the  harvesting  period,  especially  when  there  is

bumper  harvest  and increase  during  the  shortage,  which  increases  further  the  risk for

farmers. 

The government of Tanzania has formulated several policies and plans in response to the

low performance  within  the  agricultural  sector.  These  initiatives  include  the  National

Agricultural Policy (URT, 2013); Agriculture Climate Resilience Plan (URT, 2014), the

Agricultural  Sector  Development  Programme Phase  II  (URT,  2016),  and the  Tanzania

Agriculture  and Food Security  Investment  Plan (URT,  2011)  to  mention  a  few.  These

initiatives  are  connected  to  the  Comprehensive  African  Agriculture  Development

Programme (CAADP), the African Union initiative for restoring agricultural development

in Africa through the New Partnership for Africa's Development (NEPAD) (URT, 2013).

However,  there  is  still  a  concern  about  the  achievements  of  set  goals  under  these

initiatives,  especially  for  ensuring  household  food  security,  improved  agricultural

productivity, profitability, and alleviation of rural poverty (Leyaro et al., 2014; Mourice et

al., 2015).

1.2 Problem Statement and Justification

Forecasting and feasibility analyses of agricultural production and prices are critical for

farmers, government, and agribusiness industries (Kantanantha, 2007; Meena and Singh,

2013). Because of the unique position of food production on food security, governments

have become both principal suppliers and central users of agricultural  forecasts (Allen,

1994). Governments need internal projections of yields and prices to execute policies that

provide  technical  and  market  support  for  the  agricultural  sector  (Kantanantha,  2007;
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Kahimba  et al., 2015). Lack of accurate and timely information on crop yield and price

forecasts may have partly been responsible for not attaining most of the goals initiated by

many governments, particularly in developing countries (Meena and Singh, 2013; Mourice

et al., 2015). 

Farmers,  policymakers,  and commodity  traders,  therefore,  need reliable  and up-to-date

information  on  expected  yields  and  prices  for  their  decision  making  (Allen,  1994;

Richardson  et al., 2008). Likewise, Kantanantha (2007) argued that accurate and timely

crop yield and price forecasts on national to community scales are increasingly becoming

important in both developing and developed countries. In Tanzania, information on crop

yields  and prices  has  become an essential  component  for  the Ministry  of  Agriculture,

particularly the National Food Security Division (NFSD). The NFSD has a responsibility

to ensure food availability at all levels and at all  times.  Hence, it  has to carry out the

overall monitoring and forecasting of food production based on crop performance in the

country and early warning systems for food security. 

However, it is difficult to make the right forecasting and feasibility analyses because the

analysts have to take into account uncertainties in yields and prices influenced by factors

such as weather, demand, supply as well as resource limitations (Richardson et al., 2000;

Kantanantha, 2007). These factors are out of control of the farmer or a decision-maker and

pose difficulties in making the right forecasting and feasibility analyses. These difficulties

challenge the involved parties, particularly governments, in determining a solution that

will help producers reach their  goals (Maliondo  et al., 2012; FAO, 2008). In dynamic

modelling, the best way to analyse the uncertainty nature of yields and prices is to allow

the  model  to  incorporate  the  stochastic  behaviour  of  the  variables  by  mimicking  the
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historical  situation  (Richardson  et  al., 2000;  2007;  Lien  et  al., 2007;  Rezende  and

Richardson, 2015). 

As yield and price have a tremendous impact on the farmers’ final returns, there is, a need

to  take  into  account  the  uncertainty  of  these  factors  to  enhance  decision  making  and

planning (Kantanantha,  2007).  In other words,  forecasting and feasibility  analyses that

include the uncertainty nature of agricultural  production are essential  for planning and

decision making. However, the current models used in forecasting and viability analyses

are commonly deterministic and have limited ability to include the dynamic behaviour of

random variables  such as  yields  and prices  (Richardson  et  al., 2000;  Maliondo  et  al.,

2012; Kahimba  et al., 2015). Stochastic models produce outcomes that incorporate the

uncertainty of random variables, but they have not been developed to a level of usefulness

in forecasting and feasibility analyses (Allen, 1994; Richardson et al., 2000; 2007; 2008;

Basso et al., 2013). 

Hence,  some  uncertainty  remains  about  the  feasibility  of  the  agriculture  sector  in

Tanzania,  particularly  the  main  cereal  sub-sectors  during  the  coming  years.  Such

uncertainty is affecting the implementation of different policies and plans set to address

the low productivity  of main food crops in  the country and also the decision on new

investments in the farm sector. For example, one of the ASDP II objectives is to improve

agricultural productivity and profitability driven by improved research, extension, input

access and mechanization (URT, 2016). Achieving this objective may need a thorough

analysis  of the risk and uncertainty associate  with agricultural  production.  A complete

integrated model which requires minimum data is unavoidable, and this study paves a way

to related studies.  
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1.3 Objectives 

1.3.1 Overall objective 

The overall objective of this study was to develop, validate and demonstrate stochastic

simulation  procedures  that  include  risk  and  uncertainty  in  forecasting  and  feasibility

analyses  of  maize,  sorghum,  and  rice  sub-sector  in  Tanzania.   The  study’s  specific

objectives are presented below.

  

1.3.2 Specific objectives

i. To develop a stochastic simulation model for analysing the future viability of main

cereal crops in semi-arid and sub-humid areas of Tanzania; 
ii. To  develop  a  bio-economic  simulation  model  for  estimating  the  benefits  of

recommended  farm  management  practices  on  productivity  and  profitability  of

maize production in the study area and;
iii. To demonstrate  Monte Carlo simulation  procedures for analysing the economic

feasibility of different rice farming systems is the study area.

1.4 Research Questions

This study is governed by four core research questions as follows:

i) What are the probable profits of major cereal crops in the study area for the next

seven years from 2019 through 2025?
ii) What are the benefits of recommended farm management practices on productivity

and profitability of maize production in the study area?
iii) What is the economic viability of rice farming systems in the study area? 

Question one evaluates the economic viability of three cereal crops (maize, sorghum and

rice) for the next seven years from 2019 through 2025. The question first forecasts the

probable yields and prices (stochastic variables) of the three crops using historical data.

The forecasted yields and prices are later combined with production costs, interest rates

and inflation rates which are also random variables to calculate the stochastic in annual net
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returns and the net present value of the three crops. Question two evaluates the benefits of

recommended  management  practices  on  maize  production  in  the  study area.  Question

three addresses the economic feasibility of rice farming systems in the study area and

identify the best one.   

1.5 Conceptual Framework of the Study 

This study follows the Monte Carlo Simulation (MCS) framework. The MCS performs

risk analysis by building models of possible results by substituting a range of values (a

probability  distribution)  for  any  factor  that  has  inherent  uncertainty  (Palisade,  2020;

Richardson  et al., 2008).  MSC calculates  results  over  and over,  each time by using a

different set of random values from the probability functions (Palisade, 2020). Depending

upon the number of uncertainties and the ranges specified for them, an MCS could involve

thousands or tens of thousands of recalculations before it is complete. The analysis under

MCS  produces  distributions  of  possible  outcome  values  (Richardson  et  al., 2008).

Through  these  probability  distributions,  a  variable  can  have  different  probabilities  of

different outcomes occurring. 

Unlike deterministic modelling, probability distributions are a much more realistic way of

describing risk and uncertainty in random variables in forecasting and economic analyses.

Figure 1.1 shows a diagram flow chart of the typical Monte Carlo simulation procedures

followed  in  this  study.  The  figure  demonstrates  how different  data  sets  can  be  made

stochastic to include inherent risk. The amber arrows show that historical or time-series

data can be assembled and entered in the Monte Carlo simulation engine to generate a

stochastic risk analysis/forecasting model.  The blue arrows show how cross-sectional or

panel survey can be made stochastic for scenario analysis. Likewise,  the green arrows

illustrate how data from biophysical models like APSIM and DSSAT can be linked with
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Monte Carlo simulation models to create an integrated decision support system for better

decision making.

Figure 1.1: The Schematic process of Monte Carlo simulation model
Source: Configured by the author 

1.6 Organisation of the Thesis

This dissertation is  organized in the form of publishable  manuscripts  according to  the

format of Sokoine University of Agriculture (SUA). The whole thesis is divided into six

chapters.  Chapter  one  covers  the  background  of  the  study,  problem  statement  and

justification,  objectives,  research  questions  and  conceptual  framework  of  the  study.

Chapter  two  presents  the  literature  review  and  analytical  framework.  It  provides  an

overview of risk analysis, theoretical overview of deterministic and stochastic risk analysis

models  and  the  analytical  framework  of  this  study.  The  three  specific  objectives  are

presented  by  three  Manuscripts,  in  Chapter  Three,  Chapter  Four  and  Chapter  Five,

respectively. The overall conclusions and recommendations are presented in Chapter Six.
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CHAPTER TWO

2.0 LITERATURE REVIEW AND ANALYTICAL FRAMEWORK  

2.1 Overview of Risk Analysis 

Risk is typically defined as an adverse event, such as losing money on a venture or losing

yield in agricultural production, which results in a negative return to the farmer (Palisade,

2020). The process of risk analysis uncovers not only the adverse outcomes but also the

positive potentials (Hardaker  et al.,  2004; Richardson  et al., 2008; Palisade, 2020). By

exploring  the  full  space  of  possible  outcomes  for  a  given  situation  like  agricultural

production, a good risk analysis can both identify pitfalls and uncover new opportunities

(Palisade, 2020). Risk analysis can be undertaken qualitatively or quantitatively. Palisade

(2020) also highlights that assessing risk qualitatively involves a situation by instinct or

“gut  feel”  and  is  characterized  by  statements  like,  “that  seems  too  risky”  or  “we’ll

probably get a good return on this.” 

On the other hand, qualitative risk analysis which is the focus of this study attempts to

assign numeric values to risks, either by using empirical data or by quantifying qualitative

assessments (Richardson  et al., 2008; Palisade, 2020). Quantitative risk analysis can be

performed mainly in two different ways. The very dominant one way is by using single-

point estimates which is deterministic in nature and stochastic risk analysis. Risk analysis

is,  therefore,  part  of  every  decision  we  make.  We  are  always  faced  with  ambiguity,

uncertainty and variability (Palisade, 2020). Risk analysis is a systematic use of available

information to determine how often specified events may occur and the magnitude of their

consequences (Richardson et al., 2008; Palisade, 2020). Likewise, agricultural production

in Tanzania is faced by these challenges leading to low performance of the sector. Even

though we have  unprecedented  access  to  information,  we can’t  accurately  predict  the
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future. Sub-section 2.2 and 2.3 elaborates the quantitative risk analysis using deterministic

and stochastic approaches correspondingly. 

2.2 Theoretical Overview of Deterministic Risk Analysis Models

Deterministic risk analysis involves assigning values for discrete scenarios to see what the

outcome might be in each (Hardaker et al., 2004; Richardson et al., 2008; Palisade, 2020).

For  instance,  in  financial  modelling,  an  analyst  commonly  examines  three  different

outcomes which are worst case, best case and most likely case. 

i) Worst case scenario – this occurs when all costs are the highest possible value, and

sales revenues are the lowest of possible projections. The outcome in this scenario is

losing money.
ii) Best case scenario – this occurs when all costs are the lowest possible value, and

sales revenues are the highest of possible projections. The outcome in this scenario

is making a lot of money.
iii) Most likely scenario – the values under this scenario are chosen in the middle for

costs and revenue, and the outcome shows making a moderate amount of money. 
  

Deterministic risk analysis models are the most traditional statistical tools or methods used

in many yield and price economic forecasting and risk analyses (Lobell et al., 2013; Basso

et al., 2013). Deterministic models ignore risk and provide only a point estimate for key

output variables (KOVs) instead of values with probability distributions that presents the

possibilities of success and failure (Pouliquen, 1970; Reutlinger, 1970; Hardaker  et al.,

2004). The deterministic models include regression analysis and process-based models.

Regression models  are the most widely used method in forecasting yields,  prices,  and

many variables. The predictive power of these models is usually selected based on the

values  of  R-squares  and  other  model  performance  criteria  (Jha  and  Sinha,  2013;

Choudhury and Jones, 2014). The distribution of the error-term (ê), which carries the risk
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component in deterministic models, is always not well explained (Richardson et al., 2006;

2008; Basso et al., 2013). 

The  most  commonly  used  deterministic  regression  model  is  the  Box-Jenkins  ARMA

(autoregressive  moving  average)  which  has  been  used  in  yield  forecasting  by  many

scholars, including Najeeb  et al. (2005), Badmus and Ariyo (2011), Gerretsadikan and

Sharma (2011); Suleman and Sarpong (2012). Other models include Simple Exponential

Smoothing,  Double  Exponential  Smoothing,  and  Damped-Trend  Linear  Exponential

Smoothing (Boken, 2000; Pal et al., 2007; Choudhury and Jones, 2014). The advantage of

a statistical model is that the calculations are easy, less time is required to run the model,

and the data requirements are limited. The limitation of these models is that they have

limited power to estimate the distribution of the risk component of the model (Richardson

et al., 2008; Basso et al., 2013).  

Process-based models are deterministic simulation tools used in crop yield forecasting.

These models are complex, and they go beyond regression analysis to include data for the

agroecosystem such as soil, temperature, water, and solar radiation (Hadar and Russell,

1969; Russell and Gardingen, 1997;  Hoogenboom, 2000 and Basso et al., 2013). Unlike

deterministic statistical models, process-based models are built to consider the continuum

soil-plant-atmosphere  and  corresponding  daily  changes  on  the  daily  accumulation  of

biomass and nitrogen (Asseng  et al., 2013 and  Basso  et al., 2013). Examples of these

models  include  the  Agricultural  Production  Systems  Simulator  (APSIM),  the  System

Approach  to  Land  Use  Sustainability  (SALUS),  and  the  DSSAT  [www.dssat.net].

Although process-based models are claimed to be the most appropriate  tools for yield

forecasting, they are based on agronomic perspectives excluding the entailing economic

variables like price and costs, which are vital for estimating farm returns on investments.
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There  are  several  challenges  with  deterministic  models.  These  challenges  include

consideration of only discrete outcomes and ignoring hundreds or thousands of others.

They give equal weight to each outcome, and no attempt is made to assess the likelihood

of  each  outcome.  These  models  also  ignore  the  interdependence  between  inputs,  the

impact of different inputs related to other outcome and other nuances. However, despite its

drawbacks and inaccuracies, many analysts and organizations operate using this type of

analysis. 

2.3 Theoretical Overview of Stochastic Risk Analysis Models 

Stochastic risk analyses or models are techniques that allow analysts to account for risk in

quantitative analysis and decision making (Hardaker  et al., 2004; Palisade, 2020). These

techniques  are  used  in  such  widely  disparate  fields  as  finance,  project  management,

energy,  engineering,  insurance,  oil  and  gas,  transportation  research  and  development,

environment  and  agriculture  (Richardson  et  al., 2000;  2007;  2008;  Palisade,  2020).

Stochastic risk analysis uses a computerized mathematical technique called Monte Carlo

simulation  to  furnish  the  decision-maker  with  a  range  of  possible  outcomes  and  the

probabilities they will occur for any choice of action (Palisade, 2020). In Monte Carlo

simulation, uncertain inputs in a model are represented using ranges of possible values

known as probability distributions. By using probability distributions, variables can have

different  probabilities  of  a  different  outcome occurring.  Probability  distributions  are  a

much  more  realistic  way  of  describing  uncertainty  in  variables  of  a  risk  analysis

(Richardson et al., 2000). 

Monte  Carlo  simulation  was  first  used  by  scientists  working  on  the  atom bomb;  the

technique was named for Monte Carlo, the Monaco resort town renowned for its casinos

(Palisade, 2020). Since its introduction in World War II, Monte Carlo simulation has been
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used  to  model  a  variety  of  physical  and  conceptual  systems.  Standard  probability

distributions include normal, lognormal, uniform, triangular, PERT, and discrete. 

i) Normal distribution or “bell curve” – the analyst defines the mean or expected

value and a standard deviation to describe the mean. Values in the middle near the

mean are most likely to occur. The normal distribution is symmetric. 
ii) Lognormal distribution – values are positively skewed and non-symmetric like a

normal distribution. It is used to represent values that don’t go below zero but have

unlimited positive potential.
iii) Unform distribution – all values have an equal chance of occurring, and the user

defines the minimum and maximum.
iv) Triangular distribution – the analyst under this distribution defines the minimum,

most likely, and maximum values. Values around the most likely are more likely to

occur. 
v) PERT distribution – the analyst defines the minimum, most likely, and maximum

value,  just  like  triangular  distribution.  Values  around the  most  likely  are  more

likely to occur. However, values between the most likely and extremes are more

likely to occur than the triangular, but the extremes are not as emphasized. 
vi) Discrete distribution – the analyst defines specific values that may arise and the

likelihood of each. 

Stochastic models are tools used to estimate probability distributions of possible outcomes

by  giving  a  chance  for  random  variation  in  one  or  more  inputs/values  over  time

(Richardson et al., 2008). The random variation is usually based on variabilities observed

in  historical  information  for  a  selected  period  using  standard  time-series  techniques

(Richardson et al., 2000; 2006). Stochastic models are also called Monte Carlo simulation

models, used as a quantitative analysis tool to understand and quantify risk and uncertainty

of the analysed  KOVs (Basso  et  al., 2013).  These models  are  also used in  feasibility

analyses of proposed management options to provide a range of outcomes embedded with
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risk and uncertainty. They produce more reliable results for decision-makers and policy

advisers in  a  probabilistic  way (Richardson  et  al., 2007;  Basso  et  al., 2013).  In  other

words, these models simulate a thousand samples for the risky variables to estimate the

probable outcomes for KOVs. The simulated sample of values for each KOV constitutes

an estimate of the variable’s probability distribution, which can be used to make decisions

in a risky environment (Richardson et al., 2000; 2007).

Monte Carlo simulation provides several advantages over deterministic, or “single-point

estimate” analysis:

 Probabilistic  results  – the model  produce results  that  show not  only what  could

happen, but how likely each outcome is. 
 Graphical  results –  because  of  the  data  the  model  generates,  it’s  easy  to  create

graphs of different outcomes and their chances of occurrence. This is important for

communicating findings to other stakeholders. 
 Sensitivity  analysis –  with  just  a  few cases,  the  deterministic  analysis  makes  it

difficult  to  see  which  variables  impact  the  outcome  the  most.  In  Monte  Carlo

simulation, it’s easy to see which inputs had the most significant effect on bottom-

line results. 
 Scenario  analysis –  in  deterministic  models, it  isn’t  easy  to  model  different

combinations  of  values  for  different  inputs  to  see  the  effects  of  truly  different

scenarios. Using Monte Carlo simulation, analysts can see exactly which inputs had

which  values  together  when  certain  or  specific  outcomes  occurred.  This  is

invaluable for pursuing further analysis. 
 Correlation  of  inputs –  in  Monte  Carlo  simulation,  it’s  possible  to  model

interdependent  relationships  between  input  variables.  It’s  important  to  accurately

represent  how,  in  reality,  when  some  factors  go  up,  others  go  up  or  down

accordingly.



18

Stochastic simulation models, therefore, have, for a long time, played a role in economics

–  whether  it  is  pure  economic  theory  particularly  policy-oriented,  macro-and  micro-

economics,  or  what  has  progressively  come  to  be  called  empirical  or  experimental

economics (Nyangito, 1992; Velupillai and Zambelli, 2015). Stochastic models which are

developed following the Monte Carlo simulation protocols involve simulating uncertain

economic systems that are a function of risk variables, for the express purpose of making

better  decisions  (Richardson  et  al., 2008).  Although  stochastic  models  have  a  great

potential to analyse risk in agriculture, there is currently little research work employing

this technique. 

2.4 Analytical Framework of the Study

In stochastic models, the risk is assumed to mimic historical risk, so past variability is

used  to  estimate  parameters  for  the  probability  distributions  of  random variables  in  a

model (Nyangito, 1992; Richardson et al., 2000; Hardaker et al., 2004). In cross-section

analyses  or  experimental  studies,  the  variability  of  the  observed/experimental  data

(deviations from the mean) is used to estimate the probability distributions of the uncertain

variable (Richardson et al., 2008). Probability distributions are estimated a large number

of times to formulate probabilistic projections for the risky variables. The interaction of

the risk variables with other variables in the system allows the analyst to project under risk

on  how  the  decision  would  likely  perform  under  alternative  management  strategies

(Bizimana and Richardson, 2019). In this way, stochastic simulation models can provide

decision-makers  with  useful  information  about  the  probable  outcomes  of  alternative

management decisions under risk (Richardson et al., 2008). 
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Hence,  the  development  of  a  stochastic  model  generally  starts  with  developing  a

deterministic  model  and  then  converting  it  to  be  stochastic  by  making  some  of  the

exogenous variables stochastic (Richardson et al., 2007; Rezende and Richardson, 2015;

Bizimana and Richardson, 2019). For instance, the forecast for a stochastic variable such

as maize yield (Y) can be represented as: 

Y
~ =  Ŷ  +  e~  …………………………………………………………….

(2.1) 

where  Ŷ  is  the  deterministic  component  and  e~  is  the  stochastic

component. 

On the one hand, the variable in the equation is then forecasted by simulating values from

a probability distribution.  On the other hand, in a traditional environment (deterministic

feasibility studies), use the Ŷ  values as the forecast, and ignore the e~  by assuming a zero

risk.  Monte  Carlo  simulation  feasibility  studies  estimate  parameters  for  the  e~

distributions based on historical or observed data and simulate a large number of iterations

to generate a probabilistic forecast or feasibility analysisY
~ .

Since the study has three specific objectives, three Monte Carlo simulation models were

developed,  validated  and  used  for  analysis.  The  following  are  typical  steps  used  in

developing the models:

i) Probability  distributions  for  all  risk  variables  were  defined,  parameterized,

simulated.
ii) The  simulated  values  were  validated  to  ensure  that  the  random  variables  are

simulated  correctly  and demonstrate  the appropriate  properties  of  the parent  or

historical distribution.
iii) Stochastic  values  sampled  from  the  probability  distributions  make  the  entire

analysis stochastic.
iv) The completed stochastic models were simulated for 500 iterations using the Latin

Hypercube  Simulation  technique.  The  Latin  Hypercube  sampling  procedure
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segments the distribution into N (500) intervals and makes sure that at least one

value is randomly selected from each interval.
v) The results  of the 500 samples were used to  estimate the empirical  probability

distributions of the KOVs, which include annual net returns and net present values.
vi) The results are provided in the form of probabilities and probabilistic forecasts for

the KOVs.  

Monte Carlo simulation in probabilistic forecasting (specific objective one) 

In  addressing  the  first  specific  objective,  a  Monte  Carlo  simulation  model,  namely

“MASORISIM” was developed based on the steps outlined by Richardson et al., (2008).

The MASORISIM which stands for maize-sorghum-rice simulation model was designed

to  simulate  risk  ( e~ )  in  the  forecasting  of  yields,  prices,  and  net  returns  for  maize,

sorghum, and rice crops. The first task performed by the MASORISIM was to show how

variability in historical data (time series) for yields and prices of cereals (maize, sorghum

and rice crops) can be used to  forecast  the possible  future outlook.  Past  variability  in

yields  and  prices  of  agricultural  sectors  can  be  used  to  predict  the  future.  The  same

procedures for analysing the future based on historical trends have been used by many

scholars including Richardson et al. (2000; 2007; 2008), Outlaw et al. (2007), Palma et al.

(2011), Rezende and Richardson et al. (2015). 

The MASORISIM was not only developed to include the randomness (stochastic nature)

of yields and prices of cereal crops but also to address the three critical problems in farm-

level simulation modelling. These challenges include:

i) Non-normally distributed random yields and prices of cereal crops 
ii) Correlation of yields and prices within and across enterprises (maize, sorghum and

rice sub-sectors) 
iii) Heteroscedasticity of random variables (prices and yields) over time
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The procedure for MASORISIM model is well elaborated in Manuscript one in Chapter

Three of this thesis.

Monte Carlo simulation in integrated decision support systems (specific objective two)   

The Monte Carlo simulation procedures were also used to develop a bio-economic model

which is an integrated decision support system (IDSS) used to estimate the distribution of

economic returns of rice farming systems for better decision making. The bio-economic

simulation is a cutting-edge integrated risk assessment approach emphasized by global

agriculture modelling communities (Rosenzweig et al., 2015). The model was named bio-

economic  simulation  because  it  links  data  from  biophysical  (process-based)  and

econometric models to simulate the targeted key output variables. 

The bio-economic  simulation  model  changes  all  the  random variables  such  as  yields,

prices, production cost, interest rates, and discount rates into stochastic. The best way to

capture  risks  and uncertainties  in  stochastic  modelling  is  to  include  the  variability  of

random variables into the model (Richardson et al., 2000; 2007). It shows how data from

different sources are converted into a stochastic form. Data from two crop models, namely

APSIM and DSSAT, were used in the model. First, the models simulated the impact of

nitrogen fertilizers, and improved plant population on maize yield and the simulated yields

from the two process-based models were then entered into the bio-economic simulation

model for economic analysis. The typical procedures for bio-economic simulation are well

elaborated in Manuscript two in Chapter Four of this thesis.

Monte Carlo simulation on scenario analysis (specific objective three) 

The third specific objective was to demonstrate how the Monte Carlo simulation protocols

can be programmed to evaluate the economic viability of different rice farming system in
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Tanzania.  In this dissertation,  production data for three were used to demonstrate how

panel survey data can still be made stochastic to include risk available in the data. In this

analysis,  the  rice  farming  systems  entailing  traditional  and  improved  practices  were

compared  by  considering  the  risk  associated  with  each  system,  and  the  best  farming

system was identified. The farming systems were categorized based on the type of seeds

used (local or improved), application of fertilizers, and application of the systems of rice

intensification (SRI) practices (partially or fully).  The detailed analytical procedures are

well explained in manuscript three in Chapter Five of the dissertation.

Reference 

Asseng, S.,  Ewert, F., Rosenzweig, C., Jones, J.W., Hatfield,  J.L., Ruane, A.C., Boote,

K.J.,  Thorburn,  P.J.,  Rotter,  R.P.,  Cammarano,  D.,  Brisson,  N.,  Basso,  B.,

Martre, P., Aggarwal, P.K., Angulo, C., Bertuzzi, P., Biernath, C., Challinor,

A.J., Doltra, J., Gayler, S., Goldberg, R., Grant, R., Heng, L., Hooker, J., Hunt,

L.A.,  et  al.,  (2013).  Uncertainty  in  simulating  wheat  yields  under  climate

change. Nature Climate Change DOI: 10.1038/nclimate1916.



23

Badmus, M. A. and Ariyo, O. S. (2011) ‘Forecasting Cultivated Areas and Production of

Maize  in  Nigeria  Using  ARIMA  model,’  Asian  Journal  of  Agricultural

Sciences 3(3), 171- 176.

Basso,  B.,  Cammarano,  D. and Carfagna,  E.  (2013).  Review of crop yield forecasting

methods and early warning systems. In Proceedings of the first meeting of the

scientific  advisory committee of the global strategy to improve agricultural

and rural statistics, FAO Headquarters, Rome, Italy (pp. 18-19).

Bizimana,  J.  C.  and Richardson,  J.  W.  (2019).  Agricultural  technology  assessment  for

smallholder  farms:  An  analysis  using  a  farm  simulation  model

(FARMSIM). Computers and electronics in agriculture, 156, 406-425.

Boken,  V.K.  (2000).  Forecasting spring wheat  yield using time series analysis:  a case

study for the Canadian Prairies, Agronomy Journal, 92(6), 1047-1053.

Choudhury,  A.  and  Jones,  J.  (2014).  Crop  yield  prediction  using  time  series  models.

Journal of Economics and Economic Education Research, 15(3), 53.

Gerretsadikan, A and Sharma, M.K. (2011) ‘Modeling and forecasting of rainfall data of

mekele  for  Tigray  region  (Ethiopia),’  Statistics  and  Applications  9(1-2),

31-53.

Hadar, J. and Russell, W.R. (1969). Rules for ordering uncertain prospects. The American

Economic Review 59(1): 25-34.

Hardaker, J. B., Huirne, R. B. M., Anderson, J. R. and Lien. G. (2004). Coping With Risk

in Agriculture. Wallingford, Oxfordshire, UK: CABI Publishing.

Hoogenboom,  G.  (2000)  ‘Contribution  of  agrometeorology  to  the  simulation  of  crop

production and its applications,  Agricultural and Forest Meteorology,  103(1-

2), 137–157.



24

Jha,  G.  K.,  and Sinha,  K.  (2013).  Agricultural  price  forecasting  using  neural  network

model:  An innovative  information  delivery  system. Agricultural  Economics

Research Review, 26(347-2016-17087), 229-239.

Lobell, D. (2013). The use of satellite data for crop yield gap analysis. Field Crop Res.

143, 56–64.

Najeeb,  I.,  Khuda,  B.,  Asif,  M.,  and  Abid,  S.A.  (2005).  Use  of  ARIMA Model  for

Forecasting Wheat Area and Production in Pakistan.  Journal of Agricultural

and Social Sciences 1(2), 120- 122.

Nyangito,  H.O.  (1992). Economic  evaluation  of  alternative  livestock  disease  control

methods in Kenya.  Dissertation for Award Degree of Doctorate at University

of Tennessee. 263pp.

Outlaw, J.L., Ribeira, L.A., Richardson, J.W., da Silva, J., Bryant, H., Klose, S.L. (2007).

Economics  of  sugar-based  ethanol  production  and  related  policy  issues.

J. Agric. Appl. Econ. 39 (2), 357–363.

Pal, S., Ramasubramanian, V. and Mehta, S.C. (2007). Statistical models for forecasting

milk production in India.  Journal of Indian Society of Agricultural Statistics

61(2), 80–83.

Palisade  (2020).  Advanced  Risk  Analysis  for  Microsoft  Excel.

https://www.palisade.com/risk/risk_analysis.asp

Palma, M.A., Richardson, J.W., Roberson, B.E., Ribeira, L.A., Outlaw, J., and  Munster,

C.  (2011).  Economic  feasibility  of  a  mobile  fast  pyrolysis  system  for

sustainable bio-crude oil production.  Int. Food Agribus. Manag. Rev. 14 (3),

01–16.

https://www.palisade.com/risk/risk_analysis.asp


25

Pouliquen, L. Y. (1970). Risk analysis in project appraisal.  World Bank Staff Occasional

Papers  (11),  International  Bank  for  Reconstruction  and  Development,  The

John Hopkins University Press.

Reutlinger, S. (1970). Techniques for project appraisal under uncertainty. World Bank Staff

Occasional  Papers  (10),  International  Bank  for  Reconstruction  and

Development, The John Hopkins University Press.

Rezende, M.L., and Richardson, J.W. (2015). Economic feasibility of sugar and ethanol

production  in  Brazil  under  alternative  future  prices  outlook.  Agricultural

Systems, 138, pp.77-87.

Richardson, J. W., Schumann, K. and Feldman, P. (2006). Simetar: Simulation for excel to

analyse risk. Department of Agricultural Economics, Texas A&M University.

Richardson, J.W., Herbst, B.K., Outlaw, J.L., and Gill II, R.C. (2007). Including risk in

economic  feasibility  analyses:  The  case  of  ethanol  production  in  Texas.

Journal of Agribusiness 25(2): 115–132

Richardson, J.W., Klose, S.L., and Gray, A.W. (2000). An applied procedure for estimating

and simulating multivariate empirical (MVE) probability distributions in farm-

level risk assessment and policy analysis. Journal of Agricultural and Applied

Economics, 32(2), pp.299-315.

Richardson, J.W., Schumann, K., and Feldman, P. (2008). Simulation and econometrics to

analyse risk. Simetar, Inc.: College Station, TX.

Rosenzweig, C., Jones, J., Antle, J. and Hatfield, J. (2015). Protocols for AgMIP Regional

Integrated  Assessments,  version  6.0.  [http://www.agmip.org/wp-

content/uploads/2015/09/AgMIP-RIA-Protocols-V6sm.pdf]  site  visited  on

30/06/2017.

http://www.agmip.org/wp-content/uploads/2015/09/AgMIP-RIA-Protocols-V6sm.pdf
http://www.agmip.org/wp-content/uploads/2015/09/AgMIP-RIA-Protocols-V6sm.pdf


26

Russell, G. and Gardingen, P.R. (1997). Problems with using models to predict regional

crop production.  Scaling up: from cell  to landscape, Cambridge University

Press, Cambridge. pp. 273–294.

Suleman, N. and Sarpong, S. (2012). Forecasting Milled Rice Production in Ghana Using

Box-Jenkins  Approach.  International  Journal  of  Agricultural  Management

and Development, 2(2), 79-84.

Velupillai,  K.  V.,  and  Zambelli,  S.  (2015).  Simulation,  computation  and  dynamics  in

economics. Journal of Economic Methodology, 22(1), 1-27.



27

CHAPTER THREE

3.0 MANUSCRIPT ONE 

The manuscript has been published to the journal of Agricultural Systems with reference

number  AGSY_102693.  The  manuscript  is  part  of  the  special  issue  (SI)  of  Risk

Management  in  Agriculture:  what  challenges  and prospects?  The published version  is

available at: https://doi.org/10.1016/j.agsy.2019.102693 

3.1 Abstract

Maize (Zea mays L.), sorghum (Sorghum bicolor L. Moench), and rice (Oryza sativa) are

essential staple crops to the livelihoods of many Tanzanians. But the future productivity of

these crops is highly uncertain due to many factors including overdependence on a rain-

fed production system,  poor  agricultural  practices,  and climate  change and variability.

Despite the multiple risks and constraints, it is vital to highlight the pathways of cereal

production in the country. Understanding the trends of cereal production helps to inform

policymakers, so they can make better decisions to improve the viability of the sector and

its potential to increase food production and income for the majority population. A Monte

Carlo simulation model was developed to evaluate  the economic performance of main

cereal  sub-sectors  in  semi-arid  and  sub-humid  agro-ecological  zones  in  Tanzania.  A

https://doi.org/10.1016/j.agsy.2019.102693
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multivariate probability distribution model was embedded in the model to simulate many

variables. Historical data for eleven years from 2008 to 2018 of yields and price data for

maize, sorghum, and rice were used in the model to simulate and forecast yields and prices

in  Dodoma  and  Morogoro  regions  of  Tanzania  for  seven  years,  from 2019  to  2025.

Dodoma and Morogoro regions represent semi-arid and sub-humid agro-ecological zones,

respectively.  The simulated yields and prices were used with total  costs and total  area

harvested for each crop to calculate the probable net present value (NPV). The results on

crop  yield  show an  increasing  trend  for  maize  and rice  with  a  marginal  increase  for

sorghum in the Dodoma region by 2025. Likewise, the yield for rice is expected to rise in

Morogoro with a slight rise for maize and a decreasing trend for sorghum. Meanwhile, the

prices for all three crops are projected to increase in both regions in the future timescale.

Generally, results on economic feasibility in terms of NPV revealed a high probability of

success for all the crops in both regions except maize in Morogoro. The results for maize

in Morogoro presented a 2.93% probability of negative NPV. Of the three crops, maize

indicated the highest relative risk associated with NPV for both regions and is relatively

higher in Morogoro (55.1%) than Dodoma (34.2%). This study helps to understand better

the outlook of the main cereal crop sub-sectors in two agro-ecological zones of Tanzania

over  the  next  seven  years  up  to  2025.  Although  the  results  on  production  indicate

increasing  trends  for  cereal  crops  in  the  study  areas,  the  increase  is  relatively  small,

particularly in Morogoro, which is  one of the national  food basket regions.  With high

dependence on rain-fed agriculture, the production of main cereals in Tanzania is likely to

face a high degree of risk and uncertainty that will affect livelihoods, incomes, and food

availability to the poor households.

Keywords:  Cereal  crops,  MVE  probability  distribution,  MASORISIM,  stochastic

simulation, Semi-arid, Sub-humid, Simetar
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3.2 Introduction

Maize (Zea mays L.), sorghum (Sorghum bicolor L. Moench), and rice (Oryza sativa) are

major staple food crops in Sub Saharan Africa (SSA) consumed by people with varying

food  preferences  and  socio-economic  backgrounds  (Waithaka  et  al., 2013).  The  three

staple crops are grown in diverse agro-ecological zones and farming systems and account

for the largest share of calories and protein consumed in SSA (Macauley and Ramadjita,

2015). However, recent productivity trends and current performance of food crops in SSA

are progressively less able to meet the needs of its rapidly increasing population (Wilson

and Lewis,  2015).  The low productivity  of  these  crops  in  SSA is  attributed  to  many

constraints including high dependence on rain-fed agriculture, drought, floods, pest and

diseases,  and  inadequate  application  of  improved  seed  and  fertilizers  leading  to  food

insecurity  in  rural  areas  (Ziervogel  et  al., 2006;  Cooper  et  al., 2008;  Ziervogel  and

Ericksen, 2010; URT, 2013a; 2013b; Kahimba et al., 2015; Wilson and Lewis, 2015). 

As the population of SSA is likely to grow to around 1.7 billion by 2050, demand for food

to feed the people also increases (Waithaka  et al., 2013).  In the African Union (AU),

recommitments  have  been  made  to  transform  agricultural  productivity  in  Africa  by

focusing on vulnerable social groups. One of the examples is the Comprehensive Africa

Agriculture Development Programme (CAADP) under the 2014 Malabo Declaration on

Accelerated Agricultural Growth and Transformation for Shared Prosperity and Improved

Livelihoods  (AU,  2014).  Addressing  the  low performance  of  agriculture  in  SSA has,

therefore, become a focal point towards attaining an agriculture revolution. For instance,

under the third commitment  of the Malabo Declaration,  African leaders  agreed to end

hunger in Africa by 2025 by at least doubling current agricultural productivity levels (AU,

2014). 
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The same commitment is embraced in the Tanzania National Agriculture Policy, which is

an instrument for facilitating the attainment of Tanzania Development Vision 2025 (TDV-

2025).  Its  objective,  among  others,  is  to  have  modernized  agriculture  for  increased

agricultural  productivity  and  profitability  by  2025  (URT,  2013a).  Additionally,  the

rationale  of  the  current  Agricultural  Sector  Development  Strategy  Phase  II  (ASDP-II)

(2015/2016–2014/2025) is to operationalize the transformation of the agricultural sector

from  low  productivity  into  a  semi-industrialized,  modernized,  highly  productive,

commercial and more resilient to climate change and variability (URT, 2016a).

Nevertheless, some uncertainty remains about the future productivity and profitability of

staple food crops in Tanzania. These uncertainties hinder the implementation of different

agricultural  policies,  plans and strategies for achieving an agriculture revolution in the

country, hence impacting decisions of investment in agrarian technologies (Ingram et al.,

2008; Thornton et al., 2011; Yao et al., 2011; Msongaleli et al., 2017). Moreover, Lack of

timely  and accurate  information  on future yields  and prices  trends  of important  crops

affect the food security, import and export plans, crop insurance policy and government

aid  to  farmers  at  national,  regional,  village  and household  levels  (Kantanantha,  2007;

URT, 2014; Kahimba  et al., 2015). In general, there is limited information in terms of

understanding future yields and prices of major food crops in Tanzania. This information

is essential to ensuring food availability and household income predominantly for the most

impoverished population. Therefore, it emphasizes the need for location-specific research

to estimate  the feasibility  of producing staple  crops in Tanzania  while  considering the

stochastic  nature of agricultural  production increases  the level  of understanding in the

agricultural sector.
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The present study applies a multivariate empirical (MVE) probability distribution model

to  forecast  yields  and  prices  of  maize,  sorghum,  and  rice  in  Dodoma  and  Morogoro

regions of Tanzania.  A stochastic simulation model was first developed, with an MVE

probability  distribution  built-in  to  capture  correlations  among  the  variables.  The

forecasting  analysis  performed  for  seven years  through 2025.  Dodoma and Morogoro

represent the semi-arid and sub-humid agro-ecological zones, respectively. The forecasted

values were combined with production costs, harvested area (ha), and quantities of inputs

used in production to estimate the probable net present value (NPV) of each crop for seven

years. The MVE distribution model has been used in many studies, including Richardson

et  al. (2000,  2006;  2007;  2008),  Hardaker  et  al. (2004)  and Rezende and Richardson

(2015).  A seven-year  horizon (2019–2025) in  this  study is  in  line  with  the Tanzanian

National Agricultural Policy, TDV-2025, ASDP-II, and CAADP. These policy documents

have a common goal of modernizing agriculture in Tanzania to a highly productive and

profitable sector by 2025. Therefore, this study provides a roadmap of cereal production

from 2019 to 2025, and the findings will help the government,  especially the National

Food Security Division (NFSD) and regional officials to develop better plans for future

production, storage, marketing, and in ASDP II result measurement framework.

The scope of this study provides a computational framework nested in the MASORISIM

model for quantifying the possible variability on yield and price of staple crops and the

probable economic implications at the agro-ecological zone or regional level. Nonetheless,

given  the  ability  of  a  MASORISIM to  simulate  multiple  correlated  random variables

concurrently, this study demonstrates a base for similar studies to be conducted, including

those on non-cereal food and cash crops, possibly covering the entire country.
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3.3 Materials and Methods

3.3.1 Description of the study area 

The study area encompassed two agro-ecological zones: (i) the semi-arid zone represented

by the Dodoma region; and (ii) the sub-humid represented by Morogoro Region (Figure

3.1). Dodoma Region is in the central part of Tanzania mainland and lies between GPS

coordinates of 6° 9′ 40.2624″ S and 35° 44′ 43.5336″ E. Much of the region is a plateau

rising  gradually  from some  830m in  Bahi  swamps  to  2000m above  sea  level  in  the

highlands North of Kondoa (URT, 2012a).

A semi-arid climate characterizes the region, receiving <800mm of rainfall with the mean

number  of  rain  days  between  10  and  20  per  annum.  Dodoma  is  one  of  the  regions

dominated by a long dry season lasting from late April to early December and a short

single wet season during the remaining months (Schechambo et al., 1999; Kempf, 2007;

Yanda  et  al., 2015).  The  temperature  in  the  region  varies  according  to  altitude,  but

generally, the average maximum and minimum for October to December are 31°C and

18°C, respectively. The average rainfall for Dodoma Region is low (570mm on average)

and unpredictable  in frequency, and the amount.  To some extent,  the rain is  higher in

Mpwapwa and Kondoa Districts (URT, 2012a).

Based  on  the  2012  population  and  housing  census,  there  were  about  2.1  million

inhabitants  in  the  Dodoma  Region,  with  an  average  annual  increase  of  2.1%  (URT,

2013b). Major food crops grown in the Dodoma Region are sorghum, maize, paddy (rice),

beans, bulrush millet, groundnuts, and finger millet with sunflower and sesame being the

main cash crops. Dodoma is one of the regions with numerous livestock, including cattle,

goats, sheep, poultry, and pigs. The region also grows maize is particularly in Kondoa, and

Kongwa Districts, followed by Chamwino and Mpwapwa Districts, while rice is highly
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produced in the Bahi District. Sorghum is a dominant crop in Dodoma is positively grown

in Chamwino, Kondoa, Bahi, and Mpwapwa Districts.

The Morogoro Region is in the Mid-Eastern part of Tanzania Mainland. It lies between the

GPS coordinates of 6° 49′ 49.3428” S, and 37° 40′ 14.1204″ E. Morogoro is among the

largest regions in Tanzania having a total area of about 73 000 km2 much of which have

good potential for agriculture. Morogoro region is characterized by a sub-humid climate

with an average temperature of 24°C, having a minimum of 18°C in the highland areas,

and a maximum of 30°C in the lowland areas (URT, 2012b). The average rainfall  for

Morogoro Region is between 500mm in lowland areas and 2 200 mm in the mountainous

zones. The region had about 2.2 million inhabitants, with an average annual increase of

2.5% (URT, 2013b). Major food crops grown in the Morogoro Region are maize,  rice,

sorghum, bulrush millets, and beans, whereas the main cash crops include sugarcane, rice,

cotton, sisal, and tobacco. Livestock keeping is also an important activity in the region.

Maize is predominantly grown in Gairo, Kilosa, and Mvomero Districts, while Ulanga

District and Morogoro Municipal Council are the least maize producer in the region. 

Morogoro District Council Rural (MDCR) produces the highest volume of sorghum in the

region, followed by Kilosa, Gairo, and Mvomero Districts. Kilombero District leads in

rice production, followed by Ulanga and Kilosa Districts. For the last ten year (2008 -

2018), the hectares harvested maize was estimated at 183 142 and 438 945, followed by

rice between 111 821 and 189 226. Sorghum is grown under the smallest area estimated at

10 679 and 24 743 ha. Meanwhile, the harvested areas in Dodoma follows between 141

870 – 253 551 ha for maize, 198 183- 324 920 ha for sorghum, and 7 933 – 11 570 ha for

rice. (URT, 2012a; 2012b; 2016b; 2017). Morogoro has been named one of the national

food  basket  regions  together  with  Mbeya,  Ruvuma  and  Iringa  Regions.  Morogoro  is
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leading in rice production by >12% of the total rice produced in the country and the 8th

region  in  maize  production  (Cochrane  and  Souza,  2015).  Dodoma  region  is  vital  in

sorghum production, accounting to over 31% of the total area and about 24% of sorghum

produced in the country (Cochrane and Souza, 2015; URT, 2017). Food prices are slightly

higher in Dodoma and other deficit regions than the Morogoro Region.

Figure 3.1:  The study area

3.3.2 Data  

This  study  uses  data  from many  different  sources,  including  a  series  of  focus  group

discussions (FGDs) with representatives from the National Bureau of Statistics (NBS),

and  Ministry  of  Agriculture  (MoA)  particularly  the  National  Food  Security  Division

(NFS)  and  the  Agricultural  Marketing  Section  (AMS).  Other  sources  are  household

surveys under Trans-SEC, and Scale-n projects conducted in both Dodoma and Morogoro

Regions  supplemented  with  grey  literature  from  government  agricultural  documents.

Trends on yield and total area harvested (ha) for each crop were obtained from the NFS
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and AMS. The missing data were acquired and compiled from the Regional Agricultural

Offices in Dodoma and Morogoro Regions where crop yields per district are collected

annually and kept in paper-based files. Similarly, the cost of production per unit area for

each crop was obtained from different sources Such as literature review and FGDs where

farmers and experts on maize, sorghum, and rice supply chains were involved. The data

also were supplemented by household surveys conducted under Scale-N and Trans-SEC

projects and through reviewing Regional Agricultural Reports (URT, 2012a; URT, 2012b).

The costs of production (TZS/ha) comprise of: land preparation, seeds, planting, weeding,

fertilizer  and pesticide  application,  harvesting,  and postharvest  handling.  Appendix 3.1

summarizes the production costs used in this study.

Annual  price  data  for  cereals  were  obtained  from the  regional  agricultural  marketing

departments, where daily prices of all crops are collected and archived or published. Table

3.1 presents the historical mean yields (in t/ha) and prices (in TZS/t)  for all  crops per

region.  For  convenience,  the  variables  were  abbreviated  for  the  Dodoma  Region  as

follows MzY1=maize  yield,  SoY1=sorghum yield,  RcY1=rice  yield;  MzP1=maize  price,

SoP1=sorghum price, and RcP1=rice price and variables for Morogoro were subscripted by

a number two.

Table 3.1: Historical mean yields and prices per crop per region 

Year
Yields for Dodoma Prices Dodoma

(x 100,000)
Yields for Morogoro Prices Morogoro

(x 100,000)
MzY1 SoY1 RcY1 MzP1 SoP1 RcP1 MzY2 SoY2 RcY2 MzP2 SoP2 RcP2

t/ha t/ha t/ha TZS TZS TZS t/ha t/ha t/ha TZS TZS TZS
2008 0.60 0.70 0.80 3.487 2.804 10.210 1.30 1.30 1.30 3.551 3.929 9.220
2009 0.30 0.60 0.80 4.111 3.633 11.685 0.90 0.90 1.00 4.173 4.918 10.932
2010 0.63 1.20 1.23 3.904 3.634 11.950 1.33 1.14 1.75 3.748 6.072 10.201
2011 0.90 0.90 1.10 4.196 4.177 14.103 1.60 1.10 1.40 4.094 5.997 11.376
2012 0.50 1.00 0.60 5.748 4.956 19.263 0.80 0.80 1.30 5.202 6.992 16.253
2013 0.60 1.10 0.70 6.969 7.088 16.956 0.80 1.00 1.20 6.033 9.054 13.305
2014 1.00 0.90 2.00 5.125 5.049 13.563 0.84 0.80 2.14 4.243 8.253 11.726
2015 0.85 0.94 1.90 5.560 5.450 17.252 0.99 0.77 2.02 5.338 8.153 16.074
2016 1.10 0.80 1.70 6.809 7.264 16.771 1.20 1.10 2.10 6.944 11.954 16.962
2017 0.90 0.50 1.04 8.042 9.235 18.631 1.50 0.98 1.89 7.590 12.032 16.942
2018 1.10 1.07 1.80 4.959 5.140 17.792 1.53 1.21 2.6 4.357 10.289 17.218
 Source of Data: MoA (NFSD and AMS)
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Table 3.2 provides additional data and assumptions used in the model. The data include:

(i)  the approximated area growing maize,  sorghum, and rice for each region compiled

from NSCA, AASS, NBS, FGDs and regional  agricultural  offices  (RAO); (ii)  average

production cost for each crop enterprise collected from FGDs, and scale-n project and (iii)

inflation rate and the discount rate were obtained from NBS website, Bank of Tanzania

(BOT)  and  the  trading  economics  website  [www.tradingeconomics.com].  The  site

provides  a  collection  of  economic  indicators,  including  actual  values,  historical  data

charts, time-series, and long-term forecasts. An inflation rate ranging from 3.5 – 16% was

assumed for projected production costs. A discount rate of 7 – 16% was assumed in the

discounting process of future returns. The historical inflation and discount rates used in

this study were collected from the NBS website (Table 3.3). Since inflation and discount

rates  are  random  variables,  their  stochastic  behaviour  were  also  included  in  the

MASORISIM model.

Table 3.2: Additional data used the model 

Variable Units
Agro-ecological zones

Dodoma Morogoro
Area under maize (harvested area) ha 141 870 – 253 551 183 142 – 438 945  
Area under sorghum (harvested area) ha 198 183 – 324 920 10 679 – 24 743
Area under rice (harvested area) ha 7 933 – 11 570 111 821 – 189 226
Average production cost for maize TZS/ha 473 000 561 000
Minimum production cost for maize TZS/ha 355 000 430 000
Maximum production cost for maize  TZS/ha 597 000 676 000
Average production cost for sorghum TZS/ha 378 000 375 000
Minimum production cost for sorghum TZS/ha 328 000 324 000
Maximum production cost for sorghum  TZS/ha 439 000 428 000
Average production cost for rice TZS/ha 745 000 760 000
Minimum production cost for rice TZS/ha 450 000 500 000
Maximum production cost for rice  TZS/ha 960 000 980 000
Inflation rate for production cost % 3.50 – 16.00 3.50 – 16.00
Discount rate for NPV % 7.00 – 16.00 7.00 – 16.00

Notes: Source of data include FGDs, NBS, MoA, (details of costs are in Appendix 3.1).

Table 3.3: Average consumer prices inflation rate and per annum discount rate from 

2008 to 2018

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Inflation rate 10.3 12.3 7.2 12.7 16.0 7.9 6.1 5.6 5.2 5.3 3.5
Discount rate 15.99 3.70 7.58 12.00 12.00 16.00 16.00 16.00 16.00 9.00 7.00

Source: NBS 
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3.3.3 Stochastic simulation procedures 

The MASORISIM model was developed and used in this study. MASORISIM is a Monte

Carlo simulation model used in this  study to forecast yields,  prices and net returns of

maize,  sorghum and  rice  cereals  for  the  next  7-years.  The  MASORISIM model  was

programmed in Microsoft  Excel  using the Simetar© add-in,  following a procedure by

Richardson  et al. (2000; 2008). Since the study comprises yields and prices three crops

and two agro-ecological zones, the multivariate empirical (MVE) distribution was used in

the  model  to  account  for  the  correlation  among  the  stochastic  variables  according  to

Richardson et al. (2000). The MVE distribution was applied because the yields and prices

of maize, sorghum, and rice are correlated and non-normally distributed. 

Additionally, the production of cereal crops in Tanzania, as well as the rest of SSA, is

affected  by  weather  leading  to  the  high  variability  of  yields  and  prices.  Given  this

inconsistency,  imposing  the  MVE  distribution  in  the  MASORISIM  to  capture  the

heteroskedasticity variability is important (Richardson et al., 2008). Eleven years (2008–

2018) of historical yield data for maize, sorghum, and rice were used alongside 11-years of

local prices to develop the MASORISIM model for the three crop sub-sectors at the agro-

ecological level. The model was simulated for a period of seven years from 2019 up to

2025 using stochastic yields and prices from the historical trend to forecast the distribution

of the probable yields and prices. The simulated variables were combined with the total

area harvested to simulate total revenue for each crop. Next, the inflated production cost

was deducted to calculate the stochastic annual net cash income and the net present value

(NPV) per crop per agro-ecological zone. The key benefit of the MASORISIM model is

that it produces both the deterministic and stochastic results for better decision making. 
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The MASORISIM model is a step-wise process that considers changing traditional trend

forecasts to stochastic simulations of random variables. Since historical data were used,

the de-trending of the random variables (yields and prices) was the first step to estimate

the deterministic component of yields and prices. De-trending of historical data helps to

remove possible systematic risk inherent in the random variables. The next steps involved

the calculation  of the stochastic  parts  and finally  combining the deterministic  and the

stochastic elements to simulate random values for stochastic modelling.

Steps for simulation procedures are summarized as follows:

Step 1: Estimation of deterministic components

The yields and prices are de-trended as the yield and price data are from historical data.

Alternative functional forms (linear, quadratic, and cubic) were tested to remove systemic

risk, and the polynomial function of degree three (a cubic regression) was selected based

on the R-Square (R2). The deterministic component of the probability distribution from the

trend regression for two equations is expressed without an error term (êt,  ij), as shown in

Equation (1) and (2).

ijtijt TbaY ,,
ˆˆˆ  (3.1)

ijtijt TbaP ,,
ˆˆˆ  (3.2)

where: 

̂ = intercept; 

b̂ = slope; 

T= time (Year);

i = crops (maize, sorghum, and rice); 

j = regions (Dodoma and Morogoro);

Ŷ = average yield for crop i in the year t;

P̂  = price for crop i in the year t;

Step 2: Estimation of stochastic components
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The unexplained variability about the deterministic component or êt,ij (Equations 3.1 and

3.2) is the stochastic component for each variable (i) for each year (t). The residuals from

the cubic regression forecasts constitute the  êt,ij  and are divided by their respective trend

forecasted values for each year to calculate the fractional deviates denoted by  Fêt,ij, and

sorting of the fractional residuals denoted by St,ij expressed as follows:

For yield: 

ijtijtijt eTbY ,,, ˆˆˆˆ  (3.3)

ijtijtijYt YYe ,,,
ˆˆ  (3.4)

ijtijYtijYt YeeF ,,,
ˆ/ˆˆ  (3.5)

)ˆ( ,, ijYtijYt eFSortedS 

(3.6)

For price:

ijtijtijt eTbP ,,, ˆˆˆˆ  (3.7)

ijtijtijPt PPe ,,,
ˆˆ  (3.8)

ijtijPtijPt PeeF ,,,
ˆ/ˆˆ  (3.9)

)ˆ( ,, ijPtijPt eFSortedS 

(3.10)

where: 
Y and P represent the deterministic component of the Equation (3) and (7).

Step 3: Setting the Pseudo minimum (Pminê) and maximum (Pmaxê)

The  (Pminê)  and  (Pmaxê)  provide  the  endpoints  for  the  distribution,  calculated  by

multiplying the minimum and maximum residuals by 1.0001.
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Step 4: Estimation of the correlated uniform standard deviates (CUSD’s) 

Estimating the CUSD's is a crucial  step in the stochastic simulation as it appropriately

correlates  the  random variables  to  retain  the  observed  stochastic  dependency  between

variables. The Simetar add-in for Excel generates a correlated uniform standard deviate

(CUSD) by calculating the square root of the correlation matrix and multiplying it by a

vector of independent standard normal deviates. It then converts the resulting correlated

standard normal  deviates  to  CUSDs using the inverse transform of a  standard normal

distribution (Richardson et al., 2008). The resulting vector of simulated CUSDs is used to

simulate random prices and yields that are appropriately correlated. The CUSDs are used

to avoid either over or under-stating the variance and mean for cash receipts if price and

yield are correlated, and the correlation ignored (Richardson et al., 2000; 2008). Stochastic

prices and yields for maize, sorghum, and rice for each agro-ecological zone are simulated

for seven years using a correlation matrix method. This method ensures that the regions

are simulated using local prices and yields. Since we have three cereal crops, and three

price sets, the correlation matrix is a 6×6 dimension for each zone for each agro-ecological

zone.  Given six random variables  and seven years,  the model  simulated  42 correlated

yields and prices per zone using the unsorted deviations from cubic regression. Additional

details for steps 1, 2, 3, and 4 are in Appendix 3.2.

Step 5: Generation of random variables 

Step 5 involves a combination of the deterministic forecasts and the stochastic parameters

to calculate the random values for a stochastic model. The analysis applies the CUSD to

the inverse transform of the empirical distribution defined by the Si  and F(Si) using the

EMP functions demonstrated in Equations 3.11 and 3.12. The two equations are simulated

for 500 iterations using the Latin Hypercube procedure to simulate the random yields and

prices for seven years. The Latin Hypercube sampling procedure segments the uniform
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distribution into N (500) intervals  and makes sure that  at  least  one value is  randomly

selected from each interval.  In other words, it  ensures that  all  areas of the probability

distributions are considered in the simulation (Richardson et al., 2008).

))),(,(1(*ˆ~
,,,,, ijtijtijtijtijt CUSDSFSEMPYY 

(3.11)

))),(,(1(*ˆ~
,,,,, ijtijtijtijtijt CUSDSFSEMPPP 

(3.12)

Where:

tilde  (~)  represents  a  stochastic  variable;  EMP() is  the Simetar  function  which

simulates an empirical  distribution defined by St,ij,  and F(St,ij) using the inverse

transform method. F(St,ij) is the frequency distribution for the fractional deviates

from the trend (St,ij), and CUSD defined above.

Step 6: Model simulation and evaluation  

This step consists of checking the completeness and accuracy of the simulated values. The

Student's-t-test determines if the correlation coefficients for two matrices (historical and

simulated)  are  statistically  equal  at  the  indicated  confidence  level.  For  example,  in

Appendix  3.3,  the  simulated  correlation  coefficients  were  statistically  equal  to  the

historical  correlation coefficients  on a critical  value of 2.94 at  the confidence level  of

99.6%. It also checks if the mean of each simulated and historical variables is statistically

equal at a given confidence level (Richardson et al., 2000; 2008). Hence, the calculated t-

test  statistics  are  all  less  than  the  critical  value  of  2.25,  so  we fail  to  reject  the  null

hypothesis that the simulated mean of price and yield is statistically equal to the historical

mean at the 95.0% confidence level. Additional details describing the evaluation tests are

provided in Appendix 3.3.
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Step 7: Simulation of key output values (KOVs)  

After  the evaluation of random variables  used in  the model,  the final  step consists  of

formulating a stochastic simulation model in order to simulate the KOVs as illustrated in

Equations 3.13 to 3.17.

ijijij Ya
~

*~  (3.13)

  
  )~1(*

~
*~

,,, tijtijtij rkac

(3.14)

ijijij FCcC ~~
(3.15)

ijijij PV ~*
~~

 (3.16)

ijijij CV
~~~  (3.17)

Where: 
Tilde (~) indicates a stochastic variable;

ijY
~

 stochastic yield from Equation (3.11)

i = the three crops maize, sorghum, and rice; 
j = regions (Dodoma and Morogoro); 
µt,ij = production for crop i for region j in year t; 
a t,ij = land area devoted to crop i, for region j (in hectares) in year t; 
kt,ijθ = variable cash cost per ha for every input (θ) applied to crop i, 
θ = inputs like land preparation, seeds, fertilizers, weeding, herbicides, transport, 
labor, storage and marketing cost;

,
~
tr  = stochastic annual inflation rate in the price per unit of input θ for year t, 

simulated by a Simetar function “=UNIFORM(MIN, MAX)”, where MIN=3.0, 
and MAX=5.32;
ct,ij = total variable costs for each crop i in year t,
FCt,ij = fixed cost, (the FC for was set equal to zero as the crops mainly cultivated 
at small-scale level with limited machinery loans, land loans, property taxes, and 
insurance). 

ijtC ,

~
= total production cost for each crop i, for each region j in year t;

ijtV ,

~
= total receipts or gross revenue for each crop i, per region in year t;

ijtP ,

~
 stochastic price from Equation (3.12)

ij~  = Net return for each crop i, region j.
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Stochastic inflation rates for variable inputs were simulated using a uniform distribution

function denoted by U(Min, Max). The uniform function is used in Simetar to return a

random  number  between  the  specified  minimum  and  maximum,  where  each  number

between the range has an equal probability of being observed. Simetar simulates it with

the=UNIFORM (min,  max) function.  The historical  values  for each cost were used to

parameterize the U(Min, Max) distribution for variable costs per hectare. Likewise, the

inflation rate of values between 3.5 and 16.0% was simulated as=UNIFORM(3.5, 16.0) to

generate  a  range  of  random numbers  between 3.0  and  5.32%.  The  generated  random

numbers  were  used  to  inflate  the  current  total  cost  over  the  7th  forecasting  horizon.

Similarly,  the area  of  production  per  each crop is  stochastic  and is  simulated  using a

uniform distribution.  For example,  the total  harvested area (in  ha) under maize in the

Dodoma region was  estimated  between the  range of  141 870 – 253 551 (Table  3.2);

therefore, a uniform function was simulated as=UNIFORM(141 870, 253 551) to generate

the area between the two boundaries inclusively. 

The net  present  value  (NPV) for  each  crop for  seven  years  was  calculated  using  the

stochastic  net  crop  returns.  An  annual  discount  rate  of  7.0  –  16.0%  was  used  for

calculating the present value of net crop returns across seven years. For the two agro-

ecological regions, the NPV for each crop was calculated as follows:

  


T

t t

ijt
ij R

VPN
1

), )
)

~
1(

~
(

~ 
  (3.18)

where: 

R
~  =  stochastic  discount  rate  simulated  by  a  Simetar  function

“=UNIFORM(MIN, MAX)”, where MIN=7.0%, and MAX=9.0%. 

t = number of periods (1, 2, 3, …7 years)
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Cumulative distribution functions (CDFs) and the probability  density functions (PDFs)

were used to verify the simulated variables for the KOVs. Fan graphs were developed to

show how the relative variability of a stochastic variable changes over time from the year

2019 through 2025.

3.3.4 Probability of target values 

Richardson and Mapp (1976) defined the probability of economic success as the chance of

NPV being greater than zero. Therefore, when the NPV is positive, the business earns a

higher rate of return than the discount rate. In this study, the probability of NPV being

negative for each crop was estimated, i.e., the probability of failure. 

3.4 Results and Discussion 

The first step performed by the MASORISIM model is the simulation of yields and prices

of the main cereals for seven years from 2019 to 2025 using the Multivariate empirical

distribution (step 1–5) followed by an evaluation stage (step 6) before the simulation of

key output variables (step 7). The strength of the MASORISIM was not only on its ability

to account for non-normally distributed random variables and historical correlations, but

also its capability to handle the heteroscedasticity of random variables in two regions and

to produce results that are consistent with historical data based on the statistical tests in

Appendix 3.3. 

3.4.1 Crop yields  

Results of maize  yield are presented in Table  3.3,  which summarizes  the statistics  for

maize yield (t/ha), and displays the distribution of yield in the 1st and 7th year for the two

regions.  The  mean,  standard  deviation  (STDV),  coefficient  of  variation  (CV),  and

minimum and  maximum  statistics are  presented  for  each  year.  The  CVs  measure  the
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relative  risk/variability  associated  with  yield.  The  mean  represents  the  deterministic

component  of  the  model  while,  the  minimum  and  maximum  represent  the  stochastic

component. The relative variability of the average maize yield for each year in Dodoma

and  Morogoro  regions  corresponds  to  a  range  of  23.5–24.2%  and  24.1–24.8%,

respectively. In Dodoma, the annual mean yield for maize is projected to have an increase

of about 0.362 t/ha with an increase in minimum and maximum yield of 0.208 t/ha and

0.509 t/ha by 2025, respectively. In Morogoro, the mean, minimum and maximum yield

for maize is expected to increase by 0.154 t/ha, 0.075 t/ha and 0.155 t/ha, respectively.

Figure  3.2  and  Figure  3.3  show the  difference  between  the  deterministic  forecast  vs.

stochastic forecast.

Table 3.4: Summary statistics of deterministic and stochastic forecasted maize yield

(t/ha) from 2019 to 2025 

2019 2020 2021 2022 2023 2024 2025
Dodoma region
Mean 1.142 1.201 1.258 1.325 1.383 1.447 1.504
SD 0.27 0.29 0.30 0.32 0.33 0.34 0.36
CV 23.64 23.91 24.09 23.91 24.19 23.53 24.02
Min 0.646 0.681 0.715 0.750 0.785 0.819 0.854
Max 1.575 1.659 1.744 1.828 1.913 1.997 2.081
Morogoro region  
Mean 1.283 1.290 1.309 1.323 1.343 1.365 1.384
SD 0.31 0.32 0.32 0.33 0.32 0.34 0.34
CV 24.16 24.58 24.13 24.77 24.05 24.73 24.27
Min 0.875 0.887 0.900 0.912 0.925 0.937 0.950
Max 1.806 1.832 1.858 1.884 1.910 1.935 1.961

Note: SD = Standard deviation; CV = Coefficient of variation; mean = deterministic forecastic; Mini&Max 
= stochastic forecasts 
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Figure 3.2: Deterministic forecasts (a) vs. stochastic forecasts (b) for maize, 

sorghum and rice yield in Dodoma

 
Figure 3.3: Deterministic forecasts (a) vs. stochastic forecasts (b) for maize, sorghum

and rice yield in Morogoro

Figure 3.4 presents the probability distribution functions (PDF) for total maize production

in tons for the year 2019 and 2025. The mean for each function is represented by a vertical

bar at the centre, while vertical bars at the left and right sides represent the confidence

intervals at the alpha level equal to 5%. In Dodoma, the production distribution for the
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year  2025  is  illustrated  in  Figure  3.4-a.  The  average,  minimum,  and  maximum  total

production of maize in 2025 is likely to be 297 402 tons, 124 768 tons, and 512 829 tons,

respectively, which is relatively higher compared to 224 776 tons, 92 262 tons and 395

460 tons in 2019 correspondingly. In Morogoro, the PDF chart for maize production in the

year 2025 in terms of average (430 182 tons), minimum (175 061 tons), and maximum

(844 996 tons) in Figure 3.4-b contrasts  with 2019 data  with average (399 306 tons),

minimum (160 988 tons) and maximum (792 859 tons). This difference implies that, for

the next 7-years, the total production of maize is likely to increase in both regions, but the

increase is relatively small in Morogoro as compared to Dodoma.

Figure 3.4: PDF approximations of total maize production (in 1000 tons) for the

year 2019 and 2025: a=Dodoma region and b=Morogoro region; Mzµ1=

production  (MT)  of  maize  in  Dodoma;  Mzµ2=  production  (MT)  of

maize in Morogoro.

Rising maize production in the semi-arid area is consistent with Kilembe  et al. (2013),

who  highlighted  that  by  2050,  maize  yield  in  the  semi-arid  part  of  Dodoma  would

experience an increase of >25% due to climate change and variability. As for sub-humid

areas, the relatively lower increase in maize production could be due to many factors,

including rising maximum and minimum temperatures, increasing variability of rainfall,

and  increasing  frequency  and  severity  of  extreme  events  (Kahimba  et  al., 2015).

Additionally, the lower increase in maize yield could be associated with low adoption of
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the conservation  agriculture  technologies  in  the  country.  These  technologies  provide  a

viable means of strengthening resilience in  agro-ecosystem and livelihoods if  they are

properly applied (URT, 2014).

Table 3.4 presents results on sorghum yield for the two regions. Dodoma region forecasts

show a slight annual increase in sorghum yield. For example, the average yield in Dodoma

is would experience a very small  increase of about 0.008 t/ha by 2025. Likewise,  the

minimum  and  maximum  yield  would  slightly  increase  to  0.007  t/ha  and  0.016  t/ha,

respectively.  Sorghum yield in  Morogoro is  likely  to decrease between 0.910 t/ha and

0.961 t/ha on average with the minimum and maximum yield between 0.742 t/ha and

0.702t/ha and 1.196 to 1.132 t/ha respectively. The relative risk associated with the mean

yield is higher in Dodoma (21.80–23.78%) than in Morogoro (16.25–16.62%). -0.051 t/ha,

-0.04 t/ha and -0.064

Table 3.5: Summary statistics of deterministic and stochastic forecasted sorghum 

yield (t/ha) from 2019 to 2025

2019 2020 2021 2022 2023 2024 2025
Dodoma region
Mean 0.898 0.896 0.901 0.902 0.904 0.910 0.906
SD 0.20 0.21 0.21 0.21 0.21 0.21 0.21
CV 21.80 23.00 22.98 23.22 23.78 22.69 22.86
Min 0.502 0.503 0.504 0.506 0.507 0.508 0.509
Max 1.225 1.227 1.230 1.233 1.236 1.238 1.241

Morogoro region  
Mean 0.961 0.950 0.943 0.933 0.924 0.913 0.910
SD 0.16 0.16 0.15 0.15 0.15 0.15 0.15
CV 16.53 16.41 16.25 16.41 16.55 16.42 16.62
Min 0.742 0.735 0.729 0.722 0.716 0.709 0.702
Max 1.196 1.185 1.175 1.164 1.154 1.143 1.132

Note: SD = Standard deviation; CV = Coefficient of variation; mean = deterministic forecastic; Min&Max = 
stochastic forecasts 

Figure 3.5 depicts  total  sorghum production distribution for the years 2019 and 2025.

Dodoma's production PDF for the year 2025 lies very close to the distribution in the year

2019 (Figure 3.5-a), while, Morogoro has a production PDF for the year 2025, which lies

slightly to the left of a PDF in 2019. The left shift of a PDF implies a small decrease in
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total sorghum production in the sub-humid region and a very small increase in production

for the semi-arid region. The results are in agreement with observations by Msongaleli et

al. (2015),  where more than twenty Global  Circulation  Models  (GCMs) and two crop

models (DSSAT and APSIM) were used to assess future production of sorghum in central

Tanzania.  They  reported  that  sorghum  yield  is  likely  to  increase  in  central  Tanzania

between 5.4% and 6.9% in the near-term (2010–2040). 

However, the study didn't develop much about the production of sorghum in sub-humid

areas.  Elsewhere  in  Africa,  sorghum  production  is  projected  to  increase  in  semi-arid

regions by a range of 19 to 72% across Eastern and Southern Africa (Turner and Rao,

2013;  Zinyengere  et  al., 2014).  The  increase  in  sorghum yields  reported  by  different

scholars  under  different  climate  change  scenarios  may  be  attributed  to  increases  in

temperatures and the slight changes in projected rainfall, which appear to create conducive

conditions for sorghum growth, being more tolerant to heat and water stress (Msongaleli

et al., 2015). 

Figure 3.5: PDF approximations of total sorghum production (in 1000 tons) for

the year 2019 and 2025: a=Dodoma region and b=Morogoro region;

Soµ1= production  (MT)  of  sorghum in  Dodoma;  Soµ2= production

(MT) of sorghum in Morogoro.

The results on rice yield are presented in Table 3.5. Rice yield is likely to increase for all

regions by 2025. An increase in mean yield of about 0.583 t/ha was projected in Dodoma



50

with a minimum increase of 0.296 t/ha and a maximum yield of about 0.846 t/ha for year

2019 and 2025. Similarly, the mean yield of rice in Morogoro is would expect an increase

of 1.132t/ha for the year 2025. The maximum yield would be an increase of about 0.938

t/ha by 2025.

Table 3.6:  Summary statistics of deterministic and stochastic forecasted rice yield 

(t/ha) for seven years        

2019 2020 2021 2022 2023 2024 2025
Dodoma region 
Mean 1.806 1.902 1.997 2.093 2.205 2.284 2.389
SD 0.54 0.57 0.59 0.62 0.64 0.68 0.72
CV 29.78 29.82 29.73 29.71 28.98 29.65 30.15
Min 0.945 0.994 1.044 1.093 1.142 1.191 1.241
Max 2.706 2.847 2.988 3.129 3.270 3.411 3.553

Morogoro region 
Mean 2.421 2.543 2.662 2.787 2.899 3.033 3.142
SD 0.42 0.45 0.47 0.50 0.50 0.55 0.55
CV 17.32 17.56 17.52 17.97 17.32 18.12 17.49
Min 1.708 1.793 1.877 1.962 2.047 2.131 2.216
Max 3.151 3.307 3.464 3.620 3.776 3.932 4.089

Note: SD = Standard deviation; CV = Coefficient of variation; mean = deterministic forecastic; Mini&Max 
= stochastic forecasts 

The PDFs in Figure 3.6 portrays the total production of rice (tons) in the two regions. The

PDF for the year 2025 in Morogoro lies more to the right of the year 2019, indicating a

significant  increase of  rice production  in both regions  (Figure 3.6-b).  In  Dodoma,  the

distribution of total rice production for 2025 is expected to be 9 270 tons, 22 303 tons, and

39 696 tons for the minimum, average, and maximum, respectively (Figure 3.6-a). Rice

production in Morogoro is forecasted to range between 250 852 tons, 473 958 tons, and

755 308 tons for minimum, average, and maximum values, respectively. This implies a

substantial increase in rice production, predominantly in the sub-humid region. However,
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the rising in rice production in semi-arid areas is consistent with Lamboll  et al. (2001).

They argue that an increasing trend in low rice-producing areas like Dodoma may have

been influenced by many factors, including the rice irrigation projects funded mainly by

the  International  Fund  for  Agricultural  Development  (IFAD).  As  rice  has  become  a

substantial  cash  and food crop,  farmers  have  increased  their  productivity  by  adopting

technologies such as the application of improved seeds and system of rice intensification

(SRI) in addition to having favourable markets and timely payments. Furthermore, since

rainfall is unfavourable to semi-arid areas, farmers have learned to collect runoff water

and  divert  it  into  bunded  fields  or  paddies  to  facilitate  the  storage  of  water  for  rice

growing. This also prevents erosion, which may occur when the runoff catchment area

becomes too big.

Figure 3.6: PDF approximations  of  rice  production (in 1 000 tons)  for the year

2019  and  2025:  a=Dodoma  region  and  b=Morogoro  region;  Rcµ1=

production (MT) of rice in Dodoma; Rcµ2= production (MT) of rice in

Morogoro.  

3.4.2 Cereal prices

Figure  3.7  and  Figure  3.8  show  the  difference  between  deterministic  and  stochastic

forecasting  for  prices  of  cereals  in  Dodoma  and  Morogoro,  respectively.  The

MASORISIM model was able to capture the stochastic nature of the prices for the three

crops. Table 3.6 summarizes the deterministic mean prices and stochastic prices (minimum

and maximum). The results show that prices for all three crops for each region are likely
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to  increase  throughout  the  forecasting  horizon.  By  2025  a  higher  price  of  maize  is

forecasted  in  Dodoma  compared  to  Morogoro.  The  deterministic  results  show  an

increasing  average  price  from TZS 0.719 to  0.903  million/t  and  TZS 0.659 to  0.816

million/t  for  the  two  regions,  respectively,  over  the  next  seven  years.  However,  the

stochastic results show a possibility that the price may go up to TZS 1.2 million/t and 1.0

million/t in Dodoma and Morogoro by 2025, respectively. 

The  minimum  and  maximum  prices  for  Dodoma  are  forecasted  at  TZS  0.518–0.651

million/t  and  TZS  0.938–1.178  million/t,  respectively.  The  minimum  maize  price  for

Morogoro is expected to range between TZS 0.454–0.562 million/t with maximum values

ranging between TZS 0.825 to 1.021 million/t. The higher price of maize in Dodoma could

be influenced by many factors,  including the increasing  population  in  the region.  The

growing  population  in  Dodoma  is  likely  to  be  associated  with  the  total  shift  of  the

administrative  activities  of  the  Tanzanian  government  from  the  Dar  es  Salaam  city,

accelerating to a higher demand for food.

Table 3.6 also shows probabilities of the price being above the deterministic mean over the

forecasted period.  For example,  for the next  seven years,  maize price has a 39.0% to

42.3% and a 43.9% to 47.6% probability that it will be above the deterministic mean in

Dodoma  and  Morogoro,  respectively.  These  probabilities  represent  the  risk  and

uncertainties which are always ignored when deterministic forecasting is used.
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Table 3.7: Summary statistics of deterministic vs. stochastic price (in 1 000 TZS) for 

Seven Years  

2019 2020 2021 2022 2023 2024 2025
Maize price/t in Dodoma 
Mean  718.43  749.58  781.06  812.84  840.97  872.46  904.15 
SD  117.08  121.52  126.40  133.22  139.21  143.52  143.64 
CV  16.30  16.21  16.18  16.39  16.55  16.45  15.89 
Min  518.10  540.27  562.43  584.60  606.77  628.93  651.10 
Max  937.66  977.78  1 017.90  1 058.02  1 098.14  1 138.26  1 178.37 
Prob(>Mean) 39.0% 41.0% 42.2% 39.3% 42.3% 39.0% 39.9%
Maize price/t in Morogoro   
Mean 660.42 685.51 711.61 737.34 762.92 790.41 816.83
SD 111.62 115.66 119.82 126.29 130.59 133.93 136.25
CV 16.90 16.87 16.84 17.13 17.12 16.94 16.68
Min 453.67 471.69 489.70 507.71 525.72 543.74 561.75
Max 824.52 857.25 889.99 922.73 955.47 988.21 1 020.94
Prob(>Mean) 47.1% 47.6% 43.9% 46.0% 46.5% 44.2% 45.7%
Sorghum price/t in Dodoma   
Mean  787.77  832.12  872.22  916.86  960.61  1 001.30  1 046.13 
SD  144.12  151.15  154.73  167.01  173.91  181.34  185.12 
CV  18.29  18.16  17.74  18.22  18.10  18.11  17.70 
Min  543.77  573.53  603.30  633.06  662.82  692.59  722.35 
Max  1 055.39  1 113.15  1 170.92  1 228.68  1 286.45  1 344.22  1 401.98 
Prob(>Mean) 44.4% 43.3% 41.8% 42.5% 43.7% 43.3% 42.1%
Sorghum price/t Morogoro   
Mean  1 249.56  1 325.69  1 401.12  1 478.05  1 552.82  1 628.53  1 703.26 
SD  122.07  130.22  136.97  144.73  151.76  159.44  167.83 
CV  9.77  9.82  9.78  9.79  9.77  9.79  9.85 
Min  1 076.22  1 141.45  1 206.68  1 271.91  1 337.14  1 402.37  1 467.60 
Max  1 461.13  1 549.69  1 638.24  1 726.80  1 815.36  1 903.92  1 992.48 
Prob(>Mean) 40.4% 40.5% 40.6% 39.3% 42.0% 39.1% 39.8%
Rice price/t in Dodoma   
Mean  1 966.96  2 040.32  2 113.62  2 186.94  2 260.14  2 333.55  2 406.97 
SD  239.69  248.76  257.57  266.52  275.24  284.38  293.36 
CV  12.19  12.19  12.19  12.19  12.18  12.19  12.19 
Min  1 667.00  1 729.14  1 791.29  1 853.43  1 915.58  1 977.72  2 039.86 
Max  2 606.56  2 703.73  2 800.90  2 898.07  2 995.24  3 092.41  3 189.58 
Prob(>Mean) 43.4% 44.4% 44.9% 41.5% 44.9% 45.0% 43.0%
Rice price Morogoro  
Mean  1 851.32  1 932.35  2 013.39  2 094.50  2 175.37  2 256.49  2 337.61 
SD  192.79  201.21  209.64  218.18  226.37  234.96  243.43 
CV  10.41  10.41  10.41  10.42  10.41  10.41  10.41 
Min  1 501.11  1 566.82  1 632.54  1 698.25  1 763.96  1 829.68  1 895.39 
Max  2 343.51  2 446.10  2 548.70  2 651.29  2 753.88  2 856.47  2 959.06 
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Prob(>Mean) 40.3% 41.9% 41.4% 41.6% 43.8% 41.2% 40.1%
Note: SD = Standard deviation; CV = Coefficient of variation; mean = deterministic forecastic; Mini&Max 
= stochastic forecasts; Prob(>Mean) = probability of price greater than the deterministic average.

Figure 3.7: Deterministic forecasts (a) vs. stochastic forecasts (b) for maize, 

sorghum and rice prices in Dodoma.

Figure 3.8: Deterministic forecasts (a) vs. stochastic forecasts (b) for maize, sorghum

and rice prices in Morogoro. 

On the other hand, the price for sorghum is generally higher in Morogoro than Dodoma.

The  forecasting  results  show that  the  deterministic  average  price  in  Morogoro  would

increase  up  to  TZS 1.704  million/t  with  a  minimum  of  TZS 1.468  million/t  and  the

maximum of TZS 1.992 million/t by 2025. This increase approximately represents a 36%

increase from the price in 2019. Dodoma would experience  an average of TZS 1.044

million/t with a minimum of TZS 0.722 million/t. The maximum price would go up to

TZS 1.402 million/t by 2025, correspondingly to a 33% increase from the 2019 price. The

relative variability of sorghum price is twice as high in Dodoma (18.05%) than Morogoro
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(9.70%). Sorghum price in Dodoma has a 41.8% to 44.4% probability of being above the

deterministic mean, with a 39.1% to 40.6% probability in Morogoro.

The higher sorghum price in Morogoro could be due to low sorghum production in the

region compared to Dodoma. The high price could also be influenced by rising demand

for sorghum for use in different products. The increasing demand for sorghum can be due

to efforts regarding the nutritional and health benefits campaign conducted my research

agents including the Sokoine University of Agriculture has been one of the organizations

(Nkuba, 2009; Noel, 2015; Kinabo et al., 2016; Mahenge, 2018).

Of all the three crops, the price for rice was the highest, with a slight difference between

the two regions  as  presented  in  Table  3.6.  The deterministic  average price  reflects  an

increasing trend of TZS 1.967 to 2.409 million/t in Dodoma and from TZS 1.854 to 2.337

million/t in Morogoro. The maximum price in the regions is projected to range between

TZS 2.607 to 3.190 million/t and TZS 2.344 to 2.959 million/t for Dodoma and Morogoro,

respectively.  The stochastic  prices are also presented fan graphs in Appendix 3.4,  and

reveal how the relative variability of stochastic crop prices changes from 2019 to 2025.

Except for sorghum price in Morogoro, rice price shows a lower relative variability of the

average price in comparison with other crops. Generally, the findings on price forecasts

are consistent with observations by Von Braun (2008). He reported that important cereals

in most developing countries would experience a price increase of up to 30% by 2020. 

3.4.3 Profitability of cereals

Table 3.7 summarizes the statistics for total annual net returns per crop per region. The

mean represents the deterministic component of the model and the annual stochastic part

is represented by the minimum and maximum values. A probability of negative annual net
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return for maize is high in Morogoro (3.1 – 15.0%) compared to Dodoma (0.4 – 2.2%).

These changes suggest that even with the higher risk particularly for maize in Morogoro,

there will likely be a slight improvement in the net returns for all the crops in the two

regions,  for the next seven years.  Other crops have a zero probability  of negative net

return.

Table 3.8: Deterministic and stochastic annual net return for each crop for each 
region from 2019 to 2025 

2019 2020 2021 2022 2023 2024 2025
Annual net returns for maize in Dodoma (x 1 000 000 000) 

Mean 54.21 68.21 80.22 92.19 104.07 117.00 132.79
STDV 35.22 40.48 45.84 50.25 55.70 60.52 65.58
CV 64.97 59.35 57.15 54.51 53.52 51.73 49.38
Min -28.80 -29.13 -10.54 -13.00 -20.53 -10.24 -2.37
Max 198.16 209.72 257.43 291.51 302.92 349.69 447.88
P(<0) 2.22% 1.36% 0.36% 0.81% 0.81% 0.35% 0.42%
Annual net returns for maize in Morogoro (x 1 000 000 000)
Mean 63.89 78.88 92.11 105.23 116.23 131.07 142.68
STDV 63.30 70.99 75.31 81.67 88.78 91.24 95.53
CV 99.07 90.00 81.76 77.61 76.38 69.61 66.95
Min -122.04 -133.04 -107.40 -116.81 -134.20 -149.32 -50.42
Max 268.58 373.21 378.76 384.49 476.50 482.21 572.15
P(<0) 15.02% 8.70% 7.30% 7.20% 7.58% 4.87% 3.06%
Annual net returns for sorghum in Dodoma (x 1 000 000 000)
Mean 83.82 101.29 110.88 123.04 131.46 144.24 153.47
STDV 41.55 49.86 52.46 55.78 57.31 64.95 65.31
CV 49.57 49.22 47.31 45.34 43.59 45.03 42.55
Min 4.38 13.00 7.05 8.52 22.38 24.40 27.06
Max 228.82 265.56 299.77 355.29 344.76 389.77 373.86
P(<0) - - - - - - -
Annual net returns for sorghum in Morogoro (x 1 000 000 000)
Mean 13.04 15.22 16.49 17.56 18.63 19.80 20.89
STDV 4.10 4.95 5.38 5.63 6.03 6.56 6.80
CV 31.45 32.51 32.64 32.08 32.36 33.12 32.56
Min 5.24 6.68 5.67 6.50 7.22 8.25 7.52
Max 29.29 34.65 37.36 36.45 39.19 43.59 49.97
P(<0) - - - - - - -
Annual net returns for rice in Dodoma (x 1 000 000 000)
Mean 18.59 22.17 24.96 27.43 29.71 33.15 36.15
STDV 7.90 9.09 10.29 11.01 11.36 13.43 14.41
CV 42.46 41.03 41.23 40.13 38.26 40.50 39.86
Min 5.59 4.97 7.57 8.61 9.38 9.93 11.51
Max 58.62 54.18 60.17 78.29 71.65 82.71 110.01
P(<0) - - - - - - -
Annual net returns for rice in Morogoro (x 1 000 000 000)
Mean 342.03 421.68 473.63 529.47 591.26 651.98 713.80
STDV 119.87 145.90 157.14 166.59 192.37 211.87 217.51
CV 35.05 34.60 33.18 31.46 32.54 32.50 30.47
Min 50.19 33.66 66.25 148.73 150.08 156.70 251.82
Max 949.15 1009.11 1086.33 1106.58 1407.74 1455.93 1559.89
P(<0) - - - - - - -

Note: SD = Standard deviation; CV = Coefficient of variation; mean = deterministic forecasts; Min&Max = 
stochastic forecasts; Prob(<0) = probability of Annual Net Return being negative.

Results for the maize crop in Dodoma demonstrate an increase in the mean yearly income

from TZS 54.2 billion  in the  first  year  to  TZS 132.8 in  the 7th year,  meanwhile,  the
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stochastic results show a negative minimum net return oscillating between TZS -2.4 to

-29.1 billion for next seven years. The maximum annual net returns would range between

TZS 447.9 to 198.2 billion for the next seven years. In the Morogoro region, the analysis

forecasts a varying annual average return between TZS 63.9 to 142.7 billion with negative

minimum returns oscillating between TZS – 50.4 and -149.3 billion. The maximum values

vary  between  TZS  268.6  to  572.1  billion  across  the  seven  years.  The  relative  risk

associated with annual income for maize in terms of CV is higher in Morogoro (changing

between 69.6 to 99.1%) than Dodoma (changing between 49.4 to 65.0%). 

Likewise, the rice crop forecasts an increasing annual net return for both regions, although

the crop has a higher  risk associated  with the mean return,  especially  in  the Dodoma

region. The CVs for annual rice net returns are higher in Dodoma, varying between 38.3 –

42.5% with  a  zero  probability  of  negative  returns.  Meanwhile,  in  Morogoro,  the  CV

values range between 30.5% - 35.1%. The two regions have a zero probability of negative

net  returns  throughout  the  forecasting  period.  Furthermore,  sorghum  has  positive

minimum values for net returns throughout the forecasting period for the two regions.

Regardless of the high variability of the mean annual return (31.5 – 32.6%), the mean,

minimum,  and  maximum  yearly  return  values  for  sorghum  expected  to  vary  in  the

Dodoma region between TZS 83.4 to 153.5 billion, TZS 4.4 to 27.1 billion and TZS 228.8

to 389.8 billion respectively. 

In  Morogoro,  the  study  projects  an  increase  for  sorghum  annual  net  return.  The

deterministic average return is expected to increase between TZS 13.0 to 20.9; meanwhile,

the stochastic return shows that minimum and maximum values would fluctuate between

TZS 5.2 to 8.3 billion and TZS 29.3 to 350.0 billion, respectively. The CVs for annual

sorghum returns are lower in Morogoro (31.5%) than Dodoma (42.5 - 49.6%). 
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Table 3.8 presents the NPV distribution results for each crop for each region for seven

years. The relative variability of the mean NPV for maize is higher in Morogoro (55.1%)

than in Dodoma (34.2%). The CV values for sorghum and rice are almost the same for the

two regions.  The three crops have positive means for NPV values,  with the minimum

value being negative only for maize in Morogoro (TZS -547.7 billion). This implies that

maize has a higher relative variability (risk) for NPV among the three crops in Morogoro

than the Dodoma region. The high variability in NPV for maize may be influenced by the

relatively low prices offered to maize, especially when production is higher. 

Table 3.9: Summary statistics for deterministic and stochastic NPV (billions TZS) 
Dodoma region Morogoro region

Maize Sorghum Rice Maize Sorghum Rice 
(x 1 000 000 000) (x 1 000 000 000)

Mean 648.70 848.20 192.16 730.10 121.63 3,723.86
STDV 221.67 218.08 42.95 402.54 30.62 862.15
CV 34.17 25.71 22.35 55.14 25.17 23.15
Minimum 49.23 320.88 98.76 -547.66 58.56 1,484.51
Maximum 1,409.36 1583.53 367.90 2,049.46 211.85 6,133.68
P(<0) – – – 2.93% – –
Note: SD = Standard deviation; CV = Coefficient of variation; mean = deterministic forecasts; Min&Max = 
stochastic forecasts; p(<0) = probability of NPV being negative.

Figure 3.9 presents the CDF charts for NPV of all three crops for the two regions in which

Figure 3.9-a and Figure 3.9-b represents the distribution of NPV for crops in the Dodoma

region and the Morogoro region, respectively. Sorghum is the highest income generator in

Dodoma region, followed closely by maize with rice being the least  (Figure 3.9-a). In

contrast, rice in Morogoro is the highest income generator of the main cereals in the region

(Figure 3.9-b). Morogoro has a 2.93% probability of negative NPV for maize with a zero

probability  for  other  crops  in  the  two  regions.  In  general,  the  distribution  functions

indicate that there is a considerable risk or variability for the three crops, and the risk is

higher for maize in the Morogoro region. The study reveals that the three crops have a
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high chance of contributing to the farmers’ economic success. However, there is need for

the researchers and experts to identify appropriate technologies that will help to reduce the

risks and variability associated with productivity and profitability of the sub-sectors.

Figure 3.9: CDF  of  NPV  for  all  three  crops  in  the  Dodoma  region  (a)  and

Morogoro region (b) for the seven years from 2019 to 2025.

3.5 Conclusions  

The  purpose  of  this  paper  was  to  apply  a  stochastic  model  to  simulate  and  forecast

stochastic yields, prices, and net returns of three food staples in Tanzania from 2019 to

2025.  The  paper  describes  the  practical  steps  in  using  a  MASORISIM  stochastic

simulation approach deliver forecasts that include risks and uncertainties for main food
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crops Tanzania.  The study was conducted  using  11-years  of  historical  data  for  maize,

sorghum, and rice crops in Dodoma and Morogoro regions of Tanzania.  The variables

were simulated for seven years using stochastic variables to estimate the distribution of the

future yields, prices, and net returns per crop by region. The MASORISIM model was run

for  500  iterations  using  the  Latin  Hypercube  sampling  procedure,  and  the  simulated

statistics  and  correlation  matrix  were  compared  to  the  historical  input  values.  The

comparison was made for validation  purposes to  ensure that  the random variables  are

simulated  correctly  and  to  demonstrate  the  appropriate  properties  of  the  parent

distribution. The validation statistics showed that the stochastic procedure to simulate the

means and historical correlations were met.

This study enabled the prediction of the major cereal crops over the next seven years, in

terms of grain yield and economic success. The results on yields for all three crops show a

slight increasing trend, and the prices are likely to increase for both regions. Moreover, the

results showed a high probability of success for all three crops regardless of the small

probability of negative net returns for maize and rice. Despite the probability of success

for crops, there is a need to increase investment in relation to farm management practices.

If no alternative risk management strategies are available, the productivity of the main

cereal crops in Tanzania will continue to experience a high degree of risk and variability. 

The data used in this study is based on aggregates at regional levels, focusing on semi-arid

and sub-humid agro-ecological zones. This may generally lead to a downward bias in the

estimation  of  yields  and  incomes  regarding  districts  and  villages  specialized  in  crop

production. With the availability of farm-level panel data sets, further analyses should also

be directed at community, village, or site-specific levels to estimate risks faced by farmers.
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The methodology used in this study can be modified to simultaneously simulate an array

of random variables using a multivariate empirical distribution. Further studies should also

consider non-cereal and cash crops like pulses, cassava, banana, potatoes, coffee, cotton,

sisal, and sugarcane, which are essential crops in generating domestic and foreign income

in  the  country.  One  of  the  most  hindering  factors  in  achieving  different  agricultural

development  strategies  in  Tanzania  is  the  lack  of  an  appropriate  model  to  provide  a

roadmap of what would happen in the year ahead and beyond. Therefore, this study paves

a way to a complete stochastic simulation model that comprises the country's essential

crops.  It  provides  accurate  information  to  policymakers,  particularly  the  national  food

security division, which is responsible for ensuring food availability in the country. 

Furthermore, this study utilized historical yields and prices for cereal crops in the regions

analysed. It was assumed that the relative variability of yield would be the same in the

future as it has been in the past and that the differences in yields within 11years represent

the effects  of weather variability.  Further integrated assessments that integrate  climatic

conditions  like  precipitation,  maximum and minimum temperatures  are  still  needed to

provide accurate  forecasts beyond a seven-year period. Finally,  this  study adds a good

theoretical  reference  on  the  stochastic  risk  analysis  particularly  on  the  application  of

Monte Carlo simulation. 
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APPENDICES

Appendix 3.1:  Production cost distribution per crop per region

Since the three crops are usually cultivated at the local level, typically, low technology is

used. Of all crops, rice is the costliest in production occupying 48 to 50% of the total

costs, followed by maize (28 - 30%); the remaining proportion is for sorghum. Farmers do

not  have  the same costs  of  production  for  each crop per  unit  area,  some farmers  use

minimal costs, and some use higher costs depending on their income and wiliness to apply

the  needed  inputs.  Because  the  expenses  are  expressed  in  terms  of  minimum  and

maximum,  Uniform  Distribution  Function  U(Min,  Max)  was  used  to  simulate  the

distribution of each cost category used. Simetar provides a platform to simulate a uniform

distribution using the command=UNIFORM(min, max). For example, land preparation for

maize per ha in Dodoma has a range of TZS 50 000 to 80 000. In Simetar this range was

simulated as=UNIFORM(50 000, 80 000) to get random costs between the two costs and

avoid using an average of the two costs. Likewise, fertilizer cost between 0 and 100 was

simulated as=UNIFORM(0,100). Table 3.1.1 presents a range of expenses used for inputs

and labour, the simulated total costs and the proportion of each input and labour cost used

in the model. Production costs were generally high in Morogoro than Dodoma for maize

and rice. The production cost for sorghum almost the same for all the two regions (Figure

3.1.1).
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Table 3.10 Production costs used for inputs and labour for each crop 

Input and labour cost
Dodoma Morogoro

Maize Sorghum Rice Maize Sorghum Rice
TZS/ha (x 1 000) TZS/ha (x 1 000)

Land preparation 50 – 80 50 – 80 80 – 200 60 – 100 45 – 90 80 – 250
Seeds 45 – 100 30 – 60 130 – 285 80 – 110 45 – 60 150 – 300
Planting 30 – 60 15 – 40 150 – 400 30 – 60 20 – 30 200 – 400
Weeding 80 – 120 110 – 140 300 – 540 60 – 190 80 – 120 350 – 600
Bird scaring 0 0 120 – 200 0 0 120 – 200
Fertilizers 0 – 100 0 0 50 – 100 0 – 50 0
Pesticides 0 – 60 0 0 12 – 60 0 – 24 0
Harvesting 30 – 80 50 – 90 100 – 380 20 – 60 60 – 90 120 – 350
Postharvest handling 40 – 70 30 – 60 50 – 200 50 – 80 50 – 60 80 – 250

Simulated total cost using =UNIFORM() Command
TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha

Mean 472.50 377.50 1567.48 561.00 375.00 1,725.01
SD 44.15 22.53 145.93 47.11 19.65 140.09
CV 9.34 5.97 9.31 8.40 5.24 8.12
Minimum 355.16 327.56 1,212.13 429.66 323.97 1,310.34
Maximum 596.53 439.49 2,017.61 676.49 427.64 2,123.92
Percentage of input and labour cost per ha per crop

Percent Percent Percent Percent Percent Percent
Land preparation 12.5 17.6 7.0 14.3 22.5 5.8
Seeds 16.1 14.5 13.0 16.9 14.1 15.8
Planting 8.0 9.9 21.7 8.0 7.7 19.0
Weeding 21.3 30.4 27.7 22.3 24.5 23.3
Bird scaring 0.0 0.0 8.8 0.0 0.0 10.7
Fertilizers 13.1 0.0 0.0 13.4 0.0 0.0
Pesticides 6.3 0.0 0.0 6.4 0.0 0.0
Harvesting 10.3 16.7 13.3 7.1 16.1 17.3
Postharvest handling 9.1 10.9 8.6 11.6 15.2 8.0
Total 100.0 100.0 100.0 100.0 100.0 100.0
Notes: SD = standard deviation; CV = coefficient of variation; Cost in Tanzanian Shilling (TZS). 
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Figure 3.10: CDF of per ha production costs: a = cost for maize; b = cost of for 

sorghum; and c = cost for rice
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Appendix 3.2: Steps for estimating the parameters for an MVE distribution

The steps expressed in Section 2.3 are presented in Table 3.2.1. The residuals/deviates of

prices and yields from cubic regression were used in the model to develop the stochastic

component of the MVE.

Table 3.11: Steps for estimating the parameters for an MVE distribution 

Obs.
Yields for Dodoma (t/ha) Price for Dodoma Yields for Morogoro (t/ha) Prices Morogoro

MzY1 SoY1 RcY1 MzP1 SoP1 RcP1 MzY2 SoY2 RcY2 MzP2 SoP2 RcP2

Unsorted deviations from polynomial function (from Eqs. (4) and Eqs. (8))
1 0.133 -0.172 0.029 -32717 -34375 -140835 0.227 0.248 0.200 -16403 -24388 -38196
2 -0.228 -0.274 -0.065 -1184 5260 -66733 -0.191 -0.143 -0.220 19610 -1425 51962
3 0.046 0.324 0.268 -52643 -37892 -113588 0.222 0.108 0.405 -49079 38120 -102231
4 0.250 0.022 0.046 -54335 -26898 28272 0.473 0.074 -0.060 -40730 -45311 -65742
5 -0.210 0.120 -0.548 70054 7753 470858 -0.346 -0.217 -0.280 43916 -21649 340878
6 -0.171 0.218 -0.543 161385 177600 166709 -0.364 -0.009 -0.500 100831 108625 -35002
7 0.168 0.016 0.663 -53872 -69550 -245994 -0.338 -0.201 0.322 -

104358
-47392 -274043

8 -0.042 0.052 0.470 -41203 -72751 49524 -0.208 -0.224 0.084 -21121 -133224 79688
9 0.146 -0.088 0.174 52912 65318 -72043 -0.018 0.116 0.041 113331 171002 87413

10 -0.115 -0.390 -0.580 145348 219133 40546 0.264 0.006 -0.294 151773 102923 4368
11 0.024 0.176 0.086 -

193744
-233598 -116716 0.279 0.240 0.301 -

197769
-147282 -49095

Unsorted deviations from polynomial function as a percent of predicted (Eqs. (5) and Eqs. (9)
1 0.285 -0.198 0.038 -0.086 -0.109 -0.121 0.212 0.236 0.182 -0.044 -0.058 -0.040
2 -0.432 -0.314 -0.076 -0.003 0.015 -0.054 -0.175 -0.137 -0.180 0.049 -0.003 0.050
3 0.077 0.369 0.280 -0.119 -0.094 -0.087 0.201 0.105 0.303 -0.116 0.067 -0.091
4 0.386 0.024 0.044 -0.115 -0.060 0.020 0.419 0.072 -0.041 -0.090 -0.070 -0.055
5 -0.296 0.136 -0.478 0.139 0.016 0.324 -0.302 -0.214 -0.177 0.092 -0.030 0.265
6 -0.222 0.246 -0.437 0.301 0.334 0.109 -0.313 -0.009 -0.294 0.201 0.136 -0.026
7 0.202 0.018 0.496 -0.095 -0.121 -0.154 -0.286 -0.200 0.177 -0.197 -0.054 -0.189
8 -0.047 0.059 0.328 -0.069 -0.118 0.030 -0.173 -0.226 0.043 -0.038 -0.140 0.052
9 0.153 -0.100 0.114 0.084 0.099 -0.041 -0.015 0.118 0.020 0.195 0.167 0.054

10 -0.113 -0.438 -0.358 0.221 0.311 0.022 0.213 0.007 -0.135 0.250 0.094 0.003
11 0.022 0.197 0.050 -0.281 -0.312 -0.062 0.222 0.248 0.131 -0.312 -0.125 -0.028

Sorted deviations from polynomial function as a percent of predicted step 2 [Eqs. (6) and Eqs. (10) and Step 3 (Pminê, Pmaxê)]
F(x) MzY1 SoY1 RcY1 MzP1 SoP1 RcP1 MzY2 SoY2 RcY2 MzP2 SoP2 RcP2

0 -0.432 -0.439 -0.478 -0.281 -0.312 -0.154 -0.313 -0.226 -0.294 -0.312 -0.140 -0.189
0.045 -0.432 -0.438 -0.478 -0.281 -0.312 -0.154 -0.313 -0.226 -0.294 -0.312 -0.140 -0.189
0.136 -0.296 -0.314 -0.437 -0.119 -0.121 -0.121 -0.302 -0.214 -0.180 -0.197 -0.125 -0.091
0.227 -0.222 -0.198 -0.358 -0.115 -0.118 -0.087 -0.286 -0.200 -0.177 -0.116 -0.070 -0.055
0.318 -0.113 -0.100 -0.076 -0.095 -0.109 -0.062 -0.175 -0.137 -0.135 -0.090 -0.058 -0.040
0.409 -0.047 0.018 0.038 -0.086 -0.094 -0.054 -0.173 -0.009 -0.041 -0.044 -0.054 -0.028
0.500 0.022 0.024 0.044 -0.069 -0.060 -0.041 -0.015 0.007 0.020 -0.038 -0.030 -0.026
0.591 0.077 0.059 0.050 -0.003 0.015 0.020 0.201 0.072 0.043 0.049 -0.003 0.003
0.682 0.153 0.136 0.114 0.084 0.016 0.022 0.212 0.105 0.131 0.092 0.067 0.050
0.773 0.202 0.197 0.280 0.139 0.099 0.030 0.213 0.118 0.177 0.195 0.094 0.052
0.864 0.285 0.246 0.328 0.221 0.311 0.109 0.222 0.236 0.182 0.201 0.136 0.054
0.955 0.386 0.369 0.496 0.301 0.334 0.324 0.419 0.248 0.303 0.250 0.167 0.265

1 0.386 0.369 0.496 0.301 0.334 0.324 0.419 0.248 0.303 0.250 0.167 0.265
Correlation matrix estimated using the residuals from polynomial function (Step 4)

MzY1 SoY1 RcY1 MzP1 SoP1 RcP1 MzY2 SoY2 RcY2 MzP2 SoP2 RcP2

1 0.09 0.64 -0.50 -0.37 -0.60 0.53 0.46 0.66 -0.40 -0.12 -0.57
MzY1  1 0.20 -0.31 -0.40 0.16 -0.14 0.05 0.29 -0.45 -0.24 -0.08
SoY1   1 -0.69 -0.65 -0.71 0.03 -0.04 0.82 -0.62 -0.43 -0.54
MzP1    1 0.96 0.53 -0.38 -0.30 -0.81 0.94 0.77 0.36
SoP1     1 0.36 -0.18 -0.16 -0.75 0.94 0.83 0.19
RcP1      1 -0.35 -0.41 -0.70 0.45 0.10 0.82
MzY2 1 0.76 0.34 -0.22 -0.08 -0.25
SoY2  1 0.34 -0.19 0.13 -0.27
RcY2   1 -0.74 -0.44 -0.51
MzP2    1 0.82 0.44
SoP2     1 0.09
RcP2      1

Deterministic forecasts ijtijt TbaY ,,
ˆˆˆ  and 

ijtijt TbaP ,,
ˆˆˆ  forecasts without risk (error term)

MzY1 SoY1 RcY1 MzP1 SoP1 RcP1 MzY2 SoY2 RcY2 MzP2 SoP2 RcP2

12 1.137 0.894 1.809 720,520  790,919 1,969,380  1.273  0.958  2.419 659,637 1,252,099 1,851,977
13 1.198 0.896 1.903 751,348  834,209 2,042,797  1.291  0.950  2.539 685,828 1,327,989 1,933,051
14 1.259 0.898 1.997 782,176  877,499 2,116,214  1.309  0.941  2.659 712,019 1,403,879 2,014,124
15 1.319 0.900 2.092 813,003  920,789 2,189,631  1.327  0.933  2.779 738,210 1,479,770 2,095,197
16 1.380 0.902 2.186 843,831  964,079 2,263,048  1.345  0.924  2.899 764,401 1,555,660 2,176,271
17 1.441 0.904 2.281 874,659 1,007,369 2,336,464  1.364  0.916  3.019 790,593 1,631,550 2,257,344
18 1.502 0.906 2.375 905,487 1,050,660 2,409,881  1.382  0.907  3.139 816,784 1,707,441 2,338,417
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Appendix 3.3: Model simulation and evaluation

This appendix provides the evaluation tests used to check for completeness, accuracy and

forecasting ability for the MASORISIM model. The evaluation of the model indicates that

the MVE procedures appropriately correlated the random variables as none of the Student-

t statistics in Table 3.3.1 are greater than the critical  value of 2.94. The  t-Tests  of the

means for the random variables in the year 2019 indicated that the simulated means are

statistically equal to their deterministic means at the 95% level.  The test statistics (test

values) are less than the critical value of 2.25 for the random variables, and the p-values

are >0.1 at the alpha equal to 5% (p>.05) then failed to reject the null hypothesis that the

means are  equal.  The remaining seven years  have similar  results,  hence  based on the

evaluation tests, the simulated yields and prices can reliably be used for future decision-

making, particularly national and household food production trends over time.  The null

and alternative hypotheses for the Student’s-t test are as follows:

 Ho: ijij YY ˆ

HA: ijij YY ˆ

Ho: ijij PP ˆ

HA: ijij PP ˆ

Ho: ijYPijPY ,,ˆˆ  

HA: ijYPijPY ,,ˆˆ  

where: ijŶ and ijP̂ is the simulated mean yield and price for crop i, for region j,
respectively; ijY ijP is the mean from historical  yield and price for crop  i;  for
region j, respectively; ijPY ,ˆˆ̂ is the individual correlation coefficient between the
simulated variables for  i  and j  and ijYP, is the historical correlation coefficient
between variables i and j used to simulate the multivariate distribution.

Table 3.12:  Statistical evaluation test to determine the MVE procedures
a) Test Correlation Coefficient 
Confidence Level 99.6586%
Critical Value 2.94
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Dodoma region Morogoro region
SoY1 RcY1 MzP1 SoP1 RcP1 SoY2 RcY2 MzP2 SoP2 RcP2

MzY1 1.07 0.81 0.53 0.12 1.00 MzY2 1.78 0.63 0.38 2.34 2.06
SoY1 1.94 0.37 1.00 1.08 SoY2 0.90 0.07 1.44 1.29
RcY1 0.13 0.67 1.73 RcY2 0.59 1.30 1.08
MzP1 1.44 0.29 MzP2 1.26 0.08
SoP1 0.08 SoP2 0.63
b) Test Parameters (Test for simulated vs deterministic means)

Confidence Level 95.0000% Critical Value 2.25

Simulated vs. deterministic maize mean yield for 2019 in Dodoma  

Given Value Test Value P-Value
t-Test 1.137 0.17 0.86 Fail to Reject the Ho that the Mean is Equal to 1.137

Simulated vs. deterministic sorghum mean yield for 2019 in Dodoma 
Given Value Test Value P-Value

t-Test 0.894 0.24 0.81 Fail to Reject the Ho that the Mean is Equal to 0.894
Simulated vs. deterministic rice mean yield for 2019 in Dodoma 

Given Value Test Value P-Value
t-Test 1.809 0.16 0.87 Fail to Reject the Ho that the Mean is Equal to 1.809

Simulated vs. deterministic maize mean price for 2019 in Dodoma 
Given Value Test Value P-Value

t-Test 720,520 -0.44 0.66 Fail to Reject the Ho that the Mean is Equal to 720,520
Simulated vs. deterministic sorghum mean price 2019 in Dodoma 

Given Value Test Value P-Value
t-Test  790,919 -0.93 0.35 Fail to Reject the Ho that the Mean is Equal to 790,919

Simulated vs. deterministic rice mean price for 2019 in Dodoma 
Given Value Test Value P-Value

t-Test    1,969,380 -0.40 0.69 Fail to Reject the Ho that the Mean is Equal to 1,969,380

Simulated vs. deterministic maize mean yield for 2019 in Morogoro

Given Value Test Value P-Value
t-Test 1.273 0.40 0.69 Fail to Reject the Ho that the Mean is Equal to 1.273
Simulated vs. deterministic sorghum mean yield for 2019 in Morogoro

Given Value Test Value P-Value
t-Test 0.958 -0.24 0.81 Fail to Reject the Ho that the Mean is Equal to 0.958
Simulated vs. deterministic rice mean yield for 2019 in Morogoro

Given Value Test Value P-Value
t-Test 2.419 0.18 0.86 Fail to Reject the Ho that the Mean is Equal to 2.419
Simulated vs. deterministic maize mean price for 2019 in Morogoro 

Given Value Test Value P-Value
t-Test 659,637 -0.41 0.68 Fail to Reject the Ho that the Mean is Equal to 659,637
Simulated vs. deterministic sorghum mean price for 2019 in Morogoro

Given Value Test Value P-Value
t-Test 1,252,099 -0.59 0.56 Fail to Reject the Ho that the Mean is Equal to 1,252,099
Simulated vs. deterministic rice mean price for 2019 in Morogoro

Given Value Test Value P-Value
t-Test 1,851,977 -0.42 0.68 Fail to Reject the Ho that the Mean is Equal to 1,851,977
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Appendix 3.4: Fan graphs showing the relative variability of stochastic prices (in 

TZS) over the seven years from 2019 to 2025 

Fan graph showing how the relative variability of stochastic prices (in TZS) change 
over the seven years from 2019 to 2025 in Dodoma. A = maize, B = sorghum, and        
C = rice. 
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Fan graph showing how the relative variability of stochastic prices (in TZS) change
over the seven years from 2019 to 2025 in Morogoro. A = maize, B = sorghum, and
C = rice. 
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CHAPTER FOUR

4.0 MANUSCRIPT TWO

The manuscript has been published to the journal of Agricultural Systems with reference
number AGSY_102948. The published version is available at: 
https://doi.org/10.1016/j.agsy.2020.102948 

4.1 Abstract 

Maize (Zea mays L.) is the essential staple in sub-Saharan Africa (SSA) and Tanzania in

particular; the crop accounts for over 30% of the food production, 20% of the agricultural

gross domestic product (GDP) and over 75% of the cereal consumption. Maize is grown

under a higher risk of failure due to the over-dependence rain-fed farming system resulting

in low income and food insecurity among maize-based farmers. However, many practices,

including conservation agriculture,  soil  and water conservation,  resilient crop varieties,

and soil fertility management, are suggested to increase cereal productivity in Tanzania.

Improving  planting  density  and  the  use  of  fertilizers  are  the  immediate  options

recommended  by  Tanzania's  government.  In  this  paper,  we  evaluate  the  economic

https://doi.org/10.1016/j.agsy.2020.102948
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feasibility of the improved planting density (optimized plant population) and N-fertilizer

crop  management  practices  on  maize  net  returns  in  semi-arid  and  sub-humid  agro-

ecological zones in the Wami River sub-Basin, Tanzania. We introduce a bio-economic

simulation  model  using  Monte  Carlo  simulation  procedures  to  evaluate  the  economic

viability of risky crop management practices so that the decision-maker can make better

management  decisions.  The study utilizes  maize  yield  data  sets  from two biophysical

cropping system models, namely the APSIM and DSSAT. A total of 83 plots for the semi-

arid and 85 plots for the sub-humid agro-ecological zones consisted of this analysis. The

crop management practices under study comprise the application of 40 kg N-fertilizer/ha

and plant population of 3.3 plants/m2.  The study finds that  the use of improved plant

population had the lowest annual net return with fertilizer application fetching the highest

return. The two crop models demonstrated a zero probability of negative net returns for

farms using fertilizer  rates of 40 kg N/ha except  for DSSAT, which observed a small

probability (0.4%) in the sub-humid area. The optimized plant population presented 16.4%

to 26.6% probability of negatives net returns for semi-arid and 14.6% to 30.2% probability

of negative net returns for sub-humid zones. The results suggest that the application of

fertilizer practices reduces the risks associated with the mean returns, but increasing the

plant population has a high probability of economic failure, particularly in the sub-humid

zone. Maize sub-sector in Tanzania  is  projected to  continue experiencing a significant

decrease in yields and net returns. Still, there is a high chance that it will be better-off if

proper alternatives are employed. Similar studies are needed to explore the potential of

interventions highlighted in the ACRP for better decision-making.

Keywords:  Bio-economic Simulation,  APSIM, DSSAT, N-fertilizer;  33 000 plants/ha,

Risk, Maize
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4.2 Introduction

Maize (Zea mays L.) is a major staple food crop in sub-Saharan Africa (SSA) grown in

diverse agro-ecological zones and farming systems. The crop is predominantly consumed

by people with varying food preferences and socioeconomic backgrounds. Maize accounts

for  almost  half  of  the  calories  and  protein  consumed  in  eastern  and  southern  Africa

(Macauley and Ramadjita, 2015). In Tanzania, maize accounts for around 30% of overall

food production, over 75% of cereal consumption and between 20 and 30% of the total

agricultural gross domestic product (GDP) with 70% of the population eat maize as their

staple food (URT, 2014; Wilson and Lewis, 2015). Tanzania is the dominant producer for

maize in eastern and central Africa (Waithaka et al., 2013).

 

However, like many other cereal sub-sectors in Tanzania, the maize sub-sector is grown

under a higher risk of failure due to high dependence on a rain-fed farming system and

low ability to adapt to climatic variability (URT, 2014). Mostly, the maize sub-sector is

sensitive to even a small change in temperature and precipitation in Tanzania and SSA in

general  (Waithaka  et  al., 2013;  URT,  2014;  Kahimba  et  al., 2015).  Hence,  given  the

importance  of  maize  in  SSA where  the  vast  majority  of  the  world's  poor  people  are

located, exploring agronomic and management practices that will help the sector progress

has recently attracted attention from several governments (Waithaka et al., 2013; Kahimba

et al., 2015; Msongaleli et al., 2015; Richardson and Bizimana, 2017).

To address the challenges hindering agricultural production in Tanzania, the government

has introduced policies, strategies, and guidelines to stimulate the sector. These include the

Tanzania  National  Adaptation  Program  of  Action  (NAPA)  formulated  in  2007  (URT,

2007),  Climate-Smart  Agricultural  Guideline  (URT,  2017),  and  Agriculture  Climate

Resilience Plan (ACRP) 2014–2019 (URT, 2014). Others are National Agricultural Policy
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(URT, 2013) and the Agricultural Sector Development Programme phase two (ASDP-II),

to  mention  a  few  (URT,  2016).  These  policies  and  strategies  listed  several  potential

agronomic and technology practices that would help integrate resilience in agricultural

policy decisions, influence the planning process, and implement investment on the ground.

The  ACRP  pinpointed  several  intervention  practices  that  sustainably  increases

productivity,  resilience,  and  enhances  the  achievement  of  national  food  security  and

reduces  poverty.  These  practices  include  conservation  agriculture  (e.g.,  crop  rotation,

contour  cropping),  soil  and  water  conservation  (mulching,  terracing),  resilient  crop

varieties  (drought/heat-tolerant  varieties,  pest  &  disease-resistant  varieties),  cropland

management (cover crop, reduced tillage), soil fertility management (fertilizers, mulching)

and agro-forestry (crop tree planting, tree nurseries).

Of all the practices identified by the ACRP 2014–2019, improving planting density and

the use of fertilizers were the immediate options recommended because of their expected

ease in realizing yield benefits, particularly in high rainfall areas or seasons (URT, 2007;

URT, 2014; Msongaleli  et al., 2015). The interventions are proposed to be implemented

either at the country level or in the selected agro-ecological zones like the alluvial plains,

northern highlands, plateau, semi-arid lands, south-western highlands, southern highlands,

and  western  highlands.  Although  the  government  suggested  several  options  to  be

implemented  in  different  agro-ecological  zones,  their  economic  feasibility  should  be

known to the majority so they can make better decisions. Lack of enough information on

the  proposed  alternative  management  practices'  economic  viability  may  hinder  the

adoption and proper use of the technologies. Feder et al. (1985) argued that adoption at the

individual farmers' level is defined as the degree of use of new technology in the long-run

equilibrium  when  the  farmer  has  full  information  about  the  new  technology  and  it’s
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potential.  Based on Feder's  argument,  the  most  critical  problem on the  adoption  of  a

technology/intervention is the one related to the information asymmetric. 

On  the  other  hand,  detailed  assessment  studies  that  link  data  from  biophysical  and

economic models are required to provide relevant information on the possible benefits of

the  proposed agronomic  practices  for  better  decision-making  (Thompson  et  al., 2010;

White  et al., 2011; Kahimba et al., 2015; Rosenzweig  et al., 2015). The use of multiple

models in assessment studies has shown to enhance the quantification of uncertainties and

reliabilities as different models differ in structure and parameterization (Rötter et al., 2011;

Msongaleli  et al., 2015). With this regard, the Agricultural Model Inter-comparison and

Improvement  Project  (AgMIP)  highlights  procedures  to  utilize  multiple  models

(Rosenzweig et al., 2015). The AgMIP realizes the importance of integrating biophysical

and  socioeconomic  models  to  improve  decision  making  in  agricultural  production

systems. 

The objective of the present work is to demonstrate the benefits of using Monte Carlo

simulation techniques to examine the economic viability of two risky alternatives, namely

N-fertilizer application and plant population adjustment. The study develops a practical

framework that links data from biophysical process-based models to build a Monte Carlo

bio-economic simulation model, used to estimate the distribution of economic returns for

alternative management strategies. 

Two biophysical models, namely the Agricultural Production Systems sIMulator (APSIM)

and Decision Support System for Agro-technology Transfer (DSSAT) cropping systems

models,  were  used to  develop a  bio-economic  simulation  model.  The two biophysical

models are recommended for integrated assessment in SSA to improve decision-making
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for  farm  managers  and  policy-makers  (Rosenzweig  et  al., 2015).  A  bio-economic

simulation model using a Monte Carlo simulation procedure was developed to link the

baseline and alternative data from the two biophysical models. A Monte Carlo simulation

approach to assess the economic feasibility of management practices in the agricultural

sector  has  been  used  by Richardson  et  al. (2008),  Palma  et  al. (2011),  Rezende  and

Richardson (2015), Richardson and Bizimana (2017) and more recently by Bizimana and

Richardson (2019).

4.3 Theoretical Background of the Bio-economic Modelling 

Bio-economic  theory  in  agriculture  combines  the  biological  and  economic  aspects  of

agricultural  systems to explain  yields  as  a  function  of  soil-plant-atmosphere  dynamics

under described management  over  time (Antle  and Capalbo, 2001; Jones  et al., 2001;

2003; Basso et al., 2013). The bio-economic theory was pioneered in the 1950s by Gordon

(1954) and Schaefer’s (1954) to assess risk and uncertainties in fishing industries, and it

gained momentum to be included in other agricultural research late in 1990s to 2000s (Just

and Antle 1990; Kaiser et al., 1993; Antle et al., 1994; 1998; 1999; 2001; Kruseman et al.,

1995; Prato  et al., 1996; Segerson and Dixon, 1998; Antle and Stoorvogel, 2000; Antle

and Capalbo, 2001). For example, Prato  et al. (1996) used a bio-economic approach to

link economic models with environmental-process models; Adams et al. (1999) employed

an aggregate model with representative farms for U.S. regions to study the impacts of

climate  change  on  the  U.S.  agriculture.  Kruseman  et  al. (1995)  developed  and

demonstrated a bio-economic modelling approach that integrated biophysical information

with linear programming models.

Bi-economic  models  allow  discrete  choices  among  technologies,  and  they  represent

production technology explicitly, so they can be linked to biophysical-process models of
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agricultural  production  (crop  or  livestock)  to  enhance  decision  making  (Antle  and

Capalbo,  2001).  Segerson and Dixon (1998) utilized  econometric  methods to  estimate

neoclassical production,  cost and profit functions.  Bio-economic models can, therefore,

used  to  estimate  and  simulate  site-specific  data  and can  be  used  to  represent  notable

variability in both biophysical conditions (soil-yield-atmosphere) and economic behaviour

(prices, costs, inflation rates) (Antle and Capalbo, 2001). On the other hand, bio-economic

models can explicitly represent the impacts of biophysical conditions on the productivity

and profitability of an agricultural system within the study area. 

Most  empirical  economic  production  models  do  not  incorporate  biophysical  data  and

information  about  growth  processes  (Kaufmann  and  Snell,  1997;  Antle  and  Capalbo,

2001). Leaving site-specific soil and climate variables out of a production function may

lead to biased and inconsistent parameter estimates. Bio-economic modelling has, for a

long time, been advocated as an essential tool in risk assessments for determining suitable

management options that produce high returns. This is because the models combine the

unobservable dynamics or characteristics that influence final output or net returns like soil

and climatic conditions (Clark, 1985, 1990; Hannesson, 1993; Seijo et al., 1998; Antle and

Capalbo, 2001; Anderson and Seijo, 2009). Since bioeconomic modelling can incorporate

some elements of human decision making, it is a tool that is most effective form modelling

risk in agricultural production (Larkin et al., 2011).

The integrated risk assessment paradigm for agricultural production systems is a stepwise

process. For example, the economic data are inputs into economic models, and soil and

climatic  conditions  data  are  input  into  the  crop-processed  models  that  calculate  site-

specific productivity (Antle and Capalbo, 2001). The outputs of crop models (crop yield)

are inputs into economic models. If the biophysical and economic data are statistically
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representative of the population analysed, and economic decision-makers outcomes can be

statistically  used to assess the economic viability  of the farming system or alternative

management analysed. 

Even with these ready-made conceptual frameworks on bio-economic modelling, there are

limited studies in Tanzania that applied the model. The contribution of this study to the

board of knowledge is to demonstrate how the biophysical models can be integrated with

econometric models to improve decision making. The study illustrates the procedure for

integrating data from biophysical models into stochastic economic models to examine the

economic viability of N-fertilizer application and plant population adjustment. The study

develops  a  practical  framework that  links  maize  yield  (with  and without)  alternatives

management practices to estimate the distribution of economic returns in a probabilistic

method. The producers used in this analysis to estimate the net returns for agricultural

management options in probability distributions have been used by Palma  et al. (2011),

Rezende and Richardson, (2015), Richardson and Bizimana (2017) and more recently by

Bizimana and Richardson (2019).

 

4.4 Materials and Methods

This study is part of modelling activities under AgMIP protocols (Rosenzweig et al., 2015)

conducted  from 2015  to  2017  with  improved  computing  tools  for  enhanced  regional

integrated assessment studies in developing countries, including SSA (see Version 6 of the

AgMIP handbook of methods and procedures at www.agmip.org). The AgMIP protocols

recommend  implementing  two  crop  models  (DSSAT  and  ASPIM)  and  at  least  one

socioeconomic model.
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4.4.1 Study area  

The maize plots used in the present study are located in the Wami River sub-Basin of

Tanzania. The Wami River sub-Basin lies between 5°–7°S and 36°–39°E, where it extends

from the semi-arid in Dodoma region to the humid inland swamps in Morogoro region, to

the  Saadani  village  at  the  coast  of  Indian  Ocean  (Figure  4.1).  It  covers  an  area  of

approximately  43  000  km2,  with  altitude  ranging  from 0m at  the  coast  to  2260m in

Ukaguru Mountains. 

Wami  River  sub-Basin  is  characterized  by  crop  production,  livestock  keeping  with

numerous off-farm activities. The study area is dominated by smallholder farms, growing

an array of crops including maize, sorghum, rice, legumes, cassava, groundnuts, millet,

and beans. Maize is the staple food crop in the study area. The area's onset of rainfall

usually occurs in mid-September. The rainy season extends until April in the sub-humid

part and early-mid December to April in a semi-arid region. The availability of weather

stations in the study area (Kongwa, Dodoma airport, Malali, Wami prison, and Morogoro)

provide useful weather data needed by the two crop models (Figure 4.1). 
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Figure 4.1: Wami-sub basin, Tanzania

4.4.2 Source of the data and modelling framework 

This study followed is  a Monte Carlo simulation approach to develop a bio-economic

simulation model. The developed model was used to simulate the key output variables

(KOVs), including revenues (yield x price) and net cash returns, using yield and price risk

associated with different management practices. The model uses maize yield data (with

and without management practices) obtained from work done by Tumbo et al. (2020) in

which two biophysical (process-based) crop models were used. The two models were the

Agricultural Production Systems sIMulator(APSIM) and the Decision Support System for

Agrotechnology Transfer (DSSAT). These models employed maize production data from

the second wave of the Tanzania National Panel Survey (TNPS) (NBS, 2012). 

A total of 168 maize plots within the Wami River sub-Basin were sorted (83 plots for the

semi-arid part  and 85 plots for the sub-humid part).  The TNPS also provided data  on

production costs, the area planted, and all inputs used for maize production. The average
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area  for  maize  plots  size  was  1.26  ha  and  1.76  ha  for  semi-arid  and  sub-humid,

respectively. Table 4.1 displays the distribution of the area planted to maize used in this

study. However, the information on maize prices was obtained from regional agricultural

offices (marketing unit) within the basin to have all the information required to model the

key output  variables  (KOVs).  The bio-economic  model incorporated  the risk of maize

production in the Wami River sub- Basin by using probability distributions to simulate

random values for yields, prices, and costs.

Table 4.1: Distribution of maize plots (ha) per agro-ecological zone in Wami River sub-Basin   

Zone Average Minimum Maximum Total area
Semi-arid 1.26 0.5 2.8 97.4
Sub-humid 1.76 0.8 3.80 158.3
Source: TNPS

Figure 4.2 presents a diagram of the bio-economic model. The diagram shows that the

simulated yield from the two biophysical  models  was first  validated  (Validation  1) by

comparing the simulated yield probability distribution functions (PDFs) to the biophysical

baseline observed yield distributions (Appendix 4.1). With the similarities in the PDFs, the

yield data from the two process-based models were used to develop a Monte Carlo bio-

economic model, as explained in the sub-sections 2.4 to 2.7. Before applying a Monte

Carlo bio-economic  simulation  model,  the data  were validated  again  (Validation  2)  to

ensure that the random variables are simulated correctly and demonstrate the appropriate

properties of the two crop models (see section 2.5). After the second validation, the last

activity in the model was to estimate the KOVs, discuss them, and conclude. The bio-

economic simulation model was developed using the Simetar add-in [www.simetar.com]

in Microsoft Excel following the protocols developed by Richardson et al. (2000; 2008).

Crop models
(APSIM and 

DSSAT)

Economic modeling 
(Monte Carlo simulation)

 

Data 

Daily weather data; 
farm survey; soil; 
management; area, 
weather, observation, 
and expert opinions

Stochastic Key Output 
Variables (KOVs)

e.g., revenues, net cash returns

Random prices 
and production 
cost

Results 

Validation 1

Validation 2
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Figure 4.2:  Bio-economic simulation model

4.4.3 Overview of APSIM and DSSAT cropping system models 

APSIM is a modelling environment software tool that enables sub-models to be linked to

simulate  agricultural  systems.  APSIM  uses  various  tools  and  component  modules  to

dynamically simulate cropping systems in the semi-arid tropics (McCown  et al., 1996;

Wolday  and  Hruy,  2015).  The model  simulates  the  mechanistic  growth  of  crops,  soil

processes, and a range of options considering the cropping system perspective (McCown

et al., 1996). APSIM was designed as a farming systems simulator to combine accurate

yield  estimation  in  response  to  management  with  the  prediction  of  the  long-term

consequences for alternative farming practices (Keating et al., 2003). Required inputs for

APSIM include weather, soil, crop data, and management options (Ahmed and Hassan,

20211). 

DSSAT is a software application program that comprises crop simulation models for over

42 crops as well as tools to facilitate effective use of the models (Hoogenboom  et al.,

2019a; 2019b). The crop simulation models simulate growth, development, and yield as a

function  of  the  soil-plant-atmosphere  dynamics  under  specified  management  practices
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over time (Jones et al., 2003). DSSAT includes database management programs for soil,

weather,  crop management,  and experimental  data,  utilities,  and application  programs.

DSSAT and APSIM crop  models  allow users  to  simulate  options  for  alternative  crop

management scenarios to assess yield risks (Ahmed and Hassan, 2011).

In this study, APSIM and DSSAT provided the processed maize yield with-and without the

recommended  management  practices.  Different  biophysical  parameters  like  soil  type,

management  practices  (cultivars,  planting  dates,  fertilizer  application,  and  plant

population) and climate/weather available within the basin were included in the model

(Tumbo  et al., 2020). Increasing soil fertility and planting density adjustment were two

alternative practices considered. For each farm, a 40 Kg N/ha was applied for soil fertility

and  33  000  plants/ha  (3.3  plants/m2)  and  simulated  by  APSIM and  DSSAT cropping

systems, as detailed by Tumbo et al. (2020).  

4.4.4 Overview of the proposed interventions  

Increasing soil fertility through fertilizer application and improving planting density were

two interventions considered in this study. The two options are highlighted in the ACRP

2014  –  2019  as  the  immediate  interventions  for  improving  maize  and  other  cereals

productivity. Historically, Tanzania has had a low level of fertilizer application, among the

lowest in the world. In 2010, this averaged only about 9 kg/ha/year, and it reached 12.6

kg/ha/year in 2016 as a result of the input subsidy (Wilson and Lewis 2015; World Bank

2020). Although the current data shows an increasing trend for fertilizer consumption per

unit area, there is a possibility of dropping because of the COVID-19 impacts on fertilizer

prices, as many of the fertilizers are imported. Maize production consumes over 56% of all

the fertilizers used. According to IFDC (2012), the Wami-Ruvu basin is within regions

where the proportion of farmers using fertilizers is below 5%. A current study by Tumbo
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et al. (2020), highlighted that the percentage of farms using inorganic fertilizers in Wami

Sub-basin is very low, ranging between 3% to 13%. The small  fertilizer application is

because over 80% of the maize producers are  dominated  by smallholder  farmers who

sometimes  minimize  their  production  cost  by  choosing  not  to  use  the  recommended

fertilizers (Wilson and Lewis 2015).

Most of the farms in the study did not use fertilizers. Therefore, DSSAT and APSIM crop

models were used to identify the optimum fertilizer rate and the planting density suitable

for  the  Wami  River  sub-Basin  under  current  climate  and  current  farm  management

practices. The procedures for the selection of fertilizer rates and plant populations are well

documented by Rao et al. (2015) and Tumbo et al. (2015; 2020). The fertilizer rate of 40

kg N/ha was therefore selected for use within the Wami River sub-Basin. The increased

plant  population  to  33 000 plant/ha  (3.3 plants/m2)  was chosen which is  a  significant

increase from the current rates of 18 000 – 22 000 plants/ha (20 000 plants/ha on average).

4.4.5 Bio-economic simulation framework  

The development of the bio-economic simulation model involved five stages. The first

stage was to validate the original or observed data from the survey and baseline data from

the two biophysical, process-based crop models. The details of the baseline data have been

reported by Tumbo et al. (2020). The output from the two models was used to develop a

bio-economic simulation model. Four scenarios under study are summarized below: 

 BASELINE: current agricultural farming system;
 ALT.1: baseline plus fertilizer application of 40 kg N/ha for all the plots.
 ALT.2: baseline plus plant population of 33 000 plants/ha (3.3 plants/m2).
 ALT.3: baseline plus (ALT.1 + ALT.2).

The above-described scenarios make a total of 16 simulations for the bio-economic model.

That is 1 scenario for two models for two agro-ecological zones (BASELINE = 2x2; ALT.1
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= 2x2; ALT.2 = 2x2 and ALT.3 = 2x2). Since we have multiple scenarios, the multivariate

empirical (MVE) distribution described by Richardson et al. (2000) was used to account

for all 16 scenarios. MVE distributions are defined by the fractional deviations from the

mean (Sijω) and cumulative probabilities (F(Sijω)) where  i indicates maize yield for each

scenario,  for  crop  model  j per  zone  ω to  estimate  the  probability  distributions.  We

programmed the economic model in Microsoft Excel using the Simetar add-in, following a

detailed  Monte  Carlo  simulation  modelling  procedure  described  by  Richardson  et  al.

(2000).

4.4.6 Stochastic yields  

To simulate  the  stochastic  component  of  the  model  for  analysing  risky alternatives,  a

vector  of uniform standard deviates  (USDs) was computed first.  USD is a  probability

distribution included in Simetar to produce a uniform standard deviate on the 0-1 scale and

is simulated with a function =UNIFORM(). It simulates several random variables for all

probability  distributions  via  the  inverse  transformation  method  of  generating  random

variables (Richardson et al., 2008). The resulting vector is used to simulate random yields

for each scenario analysed for all cropping system models.

(4.1)

Where  ijY
~

= random mean yield/ha, 

i = scenarios (BASELINE, ALT.1, ALT.2 AND ALT.3), 

j = crop model (APSIM and DSSAT), 

ω = agro-ecological zones (semi-arid and sub-humid)

Sijω = sorted deviations from mean (percentage deviations from the mean)

F(Sijω) = the frequency distribution for the fractional deviates from the mean

MVEMP = Simetar function used to simulate an MVE defined by Sijω and 

F(Sijω) and the correlation matrix for the random deviates indicated as 

CUSDs
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Each scenario in Equation (4.1) was simulated for 500 iterations to provide an adequate

sample of the yields to simulate economic KOVs to estimate their probability distributions

and  relative  variability.  The  simulated  yields  were  validated  to  check  for  model

completeness, accuracy, and simulation ability. PDF charts for bio-economic simulated vs.

process-based data for all the agro-ecological zones data were developed for this purpose.

A detailed procedure for how the results of bio-economic simulation results were validated

is provided in Appendix 4.2. Due to limited space, only the validation PDFs for semi-arid

areas are presented in the Appendix, but the procedures of the bio-economic simulation

model to simulate the process-based data sets were met for all the agro-ecological zones. 

4.4.7 Stochastic price and revenue  

Maize  price  within  the  basin  was  simulated  using  a  GRKS  distribution.  The  GRKS

distribution  was  developed  by  Gray,  Richardson,  Klose,  and  Schumann  to  simulate

subjective probability  distributions based on minimum, mid-point,  and maximum input

data (Richardson et al., 2008). Simetar simulates it with the =GRKS(min, mid-point, max)

function. The output from GRKS is a stochastic price denoted in this study by ( P
~

). The

stochastic  prices  were combined with the yield for each scenario  in  Equation  (4.1) to

simulate the stochastic receipts ( ijR
~

). Table 4.2 provides the distribution of maize prices

used  to  parameterize  the  GRKS  distribution  in  Equation  (4.2).  The  equation  for  the

stochastic revenue for each scenario was given by Equation (4.3).

),,(
~

 ppp MaximumAverageMinimumGRKSP 

(4.2)
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 PYR ijij

~
*

~~


(4.3)

Where:

 Minimumpω = minimum price (TZS/t) for agro-ecological zone ω,

Maximum = maximum price (TZS/t) for agro-ecological zone ω,

Average = average price (TZS/t) for agro-ecological zone ω,

ijR
~

= stochastic revenue for scenario i, crop model j, for agro-

ecological zone ω 

Table 4.2: Annual prices distribution for maize grains in the Wami Basin

Semi-arid (TZS/t) Sub-humid (TZS/t)

Minimum 445 556 356 725

Average 555 830 542 100

Maximum 666 811 694 082

 Source: Focus group discussions, and Regional Agricultural Office in Dodoma and Morogoro

4.4.8 Production cost and net returns 

The  production  cost  for  the  baseline  scenario  is  composed  of  field  preparation  costs,

planting  costs,  farm  management  costs,  harvesting,  and  transportation.  Appendix  4.3

summarizes the production cost incurred. The cost of the proposed interventions was also

included in the model.  This involved addition of fertilizer and increased seeding rates,

both  of  which  imply  increases  in  production  cost.  Thus,  the  total  variable  cost  of

production is expected to increase (Rao et al., 2015). We calculated the additional cost for

the farmer to purchase the 40 kg of nitrogen fertilizer and the additional cost of buying

extra  kilograms  of  maize  seeds  to  make  a  required  of  ≥  33  000  plants/ha.  With

consideration of expert opinions, it was argued that the current average plant population in

the Wami River sub-Basin is between 18 000 and 22 000 plants/ha (20 000 plants/ha on

average), which is equivalent to 18 – 22 kg/ha. Therefore, 7 – 10 kg is needed to make the

plant population per ha ≥ 33 000.
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With this regard, it was agreed that the cost of 40 kg N ranges from TZS 55 000 to TZS 65

000 (TZS 60 000 on average), including transport and labour charges. One kilogram of

maize seeds ranges from TZS 4 000 to TZS 6 000, hence farmers are likely to incur an

additional cost of between TZS 28 000 to TZS 60 000 to purchase extra seeds. Again, the

GRKS distribution  was  used  to  simulate  the  stochastic  production  cost  ( ijC
~

)  for  the

baseline and alternatives. It was also observed that the distribution of production cost per

ha for the baseline scenario was the same for sub-humid and semi-arid areas in the basin

with  the  same  distribution  for  the  risky  alternatives  (Table  4.3).  The  costs  for  each

scenario in Table 3 were, therefore, simulated in Simetar using the function in Equation

(4.4). Net returns for each scenario in Equation (4.5) were calculated as the total receipt

minus total cost.

 ),,(
~

 ijijijij MaxAverageMinGRKSC  (4.4)

 ijijij CR
~~~  (4.5)

Where:

 Min = minimum production cost (TZS/ha) value for the distribution,
Max = maximum production costs (TZS/ha) value for the distribution
Average = average production cost (TZS/ha) value for the distribution

ijC
~

= stochastic production cost for scenario i, crop model j, for 

agro-ecological zone ω 

ijR
~

= stochastic revenue for scenario i, crop model j, for agro-

ecological zone ω 

 ij
~ = stochastic net revenue for scenario i, crop model j, for agro-

ecological zone ω
  

Table 4.3: Distribution of costs for the baseline and the alternative scenario within 
the Wami sub-basin (TZS/ha)

Baseline Alt.1 Alt.2 Alt.3
Minimum 155 000 215 000 200 000 260 000
Average 210 000 270 000 254 000 314 000
Maximum 360 000 420 000 404 000 464 000
Source: TNPS   

The bio-economic simulation model results were presented using tables as well  as the

Cumulative  Distribution  Functions  (CDF)  and  the  Probability  Distribution  Functions
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(PDF). The PDF and the CDF were drawn to estimate the distribution of economic returns

for scenarios so decision-makers can make better decisions. The results of the model were

also presented using the Stoplight Chart. The Stoplight Chart is a function in Simetar used

to develop ranking probabilities.  It  summarizes the probabilities that the KOV(i.e.,  net

returns) for scenarios/alternatives will be less than the lower target and the probability the

KOV will exceed a maximum target (Richardson  et al. 2008; Bizimana and Richardson

2019; Kadigi  et al. 2020). We set the minimum net returns target to be TZS 0 and the

maximum target to be the average maize returns per ha, which is around TZS 500 000.

The Stoplight  chart  estimated the probabilities  of net  profits  falling below zero (being

negative), exceeding TZS 500 000, and the probabilities of falling between the two targets.

4.5 Results and Discussion 

4.5.1 Relative risks for baseline and alternative scenarios on maize yield in the Wami 

River sub-basin 

The first thing performed by this study is the evaluation of the relative variability about

the mean yield for each risk alternative analysed. Yield data from the two process-based

crop  models  (APSIM  and  DSSAT)  were  simulated  using  a  Monte  Carlo  simulation

procedure for 500 iterations to capture the relative risks associated with maize yield for

each  scenario  (Table  4.4).  The  table  provides  the  mean,  standard  deviation  (SD),

coefficient  of  variation  (CV),  minimum  and  maximum  statistics  for  each  alternative.

The CV measures the relative risk associated with the mean yield per scenario for each

agro-ecological zone in the basin. Both APSIM and DSSAT reported the highest CVs for

the BASELINE scenario and ALT.2 with relatively small CVs for ALT.1 and ALT.3 in both

agro-ecological zones.  BASELINE in semi-arid has a CV equal to 63.9% and 74.2% for

APSIM and DSSAT; and in the  sub-humid region,  the  BASELINE has a  CV equal  to

65.9% and 57.9% for the two models, respectively. Of all the scenarios,  ALT.2 had CV
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values closer to  the BASELINE  for both APSIM and DSSAT models.  ALT.1 and  ALT.3

have the smallest CVs of between 18.4% and 29.1% for APSIM and 20.5% and 33.7% for

DSSAT. The simulation results indicate that the  BASELINE  and  ALT.2 have the highest

relative risk.  

Table 4.4: Summary statistics for the stochastic distribution of maize yield of the bio-economic 
simulation model 

APSIM DSSAT
Baseline Alt.1 Alt.2 Alt.3 Baseline Alt.1 Alt.2 Alt.3
t/ha t/ha t/ha t/ha t/ha t/ha t/ha t/ha
Semi-arid agro-ecological zone of the basin 

Mean 0.823 2.161 0.898 2.263 0.813 2.540 0.837 2.668
SD 0.526 0.435 0.529 0.416 0.603 0.532 0.639 0.548
CV 63.89 20.13 58.86 18.39 74.15 20.95 76.34 20.53
Min 0.122 1.384 0.100 1.611 0.197 1.566 0.221 1.607
Max 3.357 3.915 3.357 3.738 2.917 3.964 3.016 3.817

Sub-humid agro-ecological zone of the basin 
Mean 0.841 2.380 0.889 2.439 0.698 2.302 0.689 2.292
SD 0.554 0.693 0.524 0.519 0.404 0.761 0.387 0.771
CV 65.93 29.14 59.00 21.29 57.88 33.05 56.10 33.66
Min 0.286 1.584 0.451 1.667 0.346 0.634 0.361 0.580
Max 3.568 5.612 3.595 5.086 3.719 4.638 3.612 4.182

The  BASELINE and  ALT.2 scenarios  had the smallest  mean,  minimum, and maximum

maize yields with ALT.1 and ALT.3, having the highest values for each crop model for all

the zones. The bio-economic simulation model for the two zones suggests that 40 kg N/ha

would lead to an average increase of 2.16 – 2.54 t/ha in the semi-arid and 2.30 – 2.38 in

the sub-humid. The minimum yield would lie between 1.38 – 1.57 t/ha and 0.63 – 1.58

t/ha  for  semi-arid  and  sum-humid.  The  results  also  suggest  that  the  addition  of  3.3

plants/square meter would have no significant impact on maize yield.  

The yield distributions for all scenarios in the semi-arid and sub-humid agro-ecological

zones of the Wami River sub-Basin are also presented in Figure 4.3. The two models for

both zones suggest that maize yield PDFs for ALT.1 and ALT.3 lie to the right of the PDFs

for the  BASELINE and  ALT.2 scenarios. The  ALT.2 yield PDF is not different from the
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BASELINE for the two models. Likewise,  ALT.1 and ALT.3 yield PDFs are only slightly

different, except for DSSAT in the sub-humid area. 

Figure 4.3: PDF of annual maize yields for baseline and alternative scenarios in

semi-arid (A1 & B1) and sub-humid (A2 & B2) part of the Wami basin 

4.5.2 Effect of alternative scenarios on maize net return 

The effect of alternatives in semi-arid agro-ecological zone 

Table 4.5 shows the summary statistics of the effect of alternative scenarios on maize net

returns per ha in the semi-arid area of the Wami River sub-Basin. The results on annual net

income per ha for  BASELINE in the semi-arid agro-ecological zone under both APSIM

and DSSAT have a mean net return of TZS 226 000 and TZS 221 000 with a negative

minimum value of TZS –316 000 and TZS –209 000 respectively. 

Table 4.5: Summary statistics of annual maize net return (TZS hundred thousand) in semi-arid 

APSIM DSSAT
BASELIN ALT.1 ALT.2 ALT.3 BASELIN ALT.1 ALT.2 ALT.3
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E E 
TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha

Mean 226 912 226 925 221 1,125 195 1,148
SD 288 274 301 273 337 336 373 338
CV 127.2 30.1 133.2 29.5 152.1 29.9 191.1 29.4
Min -316 327 -336 296 -209 355 -243 278
Max 1,632 1,960 2,010 1,954 1,499 2,044 1,657 2,170

Prob( <0) 13.9% - 16.4% - 16.6% - 26.6% -

The probability of negative net returns (Prob( <0)) is higher for  ALT.2 and  BASELINE

scenarios because net returns were not enough to pay for the added seed. The maximum

value is TZS 1 632 000 for APSIM and TZS 1 499 000 for DSSAT.  ALT.2 has slightly

different  from the  BASELINE in  terms  of  mean,  minimum,  and maximum annual  net

returns (Table 4.6). ALT.1 and ALT1.3 have greater net returns than the BASELINE with a

mean  of  more  than  TZS 900  000  and  TZS 1  000  000  for  APSIM and  DSSAT.  The

minimum net return for  ALT.1 and  ALT.3 is TZS 327 000 and TZS 296 000, with the

maximum values of TZS 1 960 000 and TZS 1 954 000 for APSIM respectively. DSSAT

has a minimum of about TZS 355 000 and TZS 278 000, with the maximum amount of

over TZS 2 000 000 for  ALT.1 and  ALT.3. The relative risk associated with the annual

average  net  return  is  higher  for  the  BASELINE (127.2% for  APSIM and  152.1% for

DSSAT) and ALT.2 (133.2% for APSIM and 191.1% for DSSAT). The relative variability

about the mean is less than 31% for ALT.1 and ALT.3 for both DSSAT and APSIM. 

Figure 4.4 represents the CDF for annual net returns in the semi-arid part of the basin for

all the scenarios and models. The solid lines of the CDF are for APSIM, and the square

dotted lines are for DSSAT. BASELINE and ALT.2 scenarios display negative values with

non-negative values for ALT.1 and ALT.3.  ALT.1 and ALT.3 scenarios lie to the right of the

BASELINE and ALT.2 with a minor difference for the two scenarios, which indicates that

the increased fertilizer scenarios produce higher net returns with less risk at each net return

level. DSSAT is slightly more to the right for  ALT.1 and  ALT.3, but the maximum and
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minimum values fall in the same range as APSIM. The baseline scenarios for both APSIM

and DSSAT show a 13.9% and 16.6% probability of negative returns. The two models also

suggest that  ALT.2 has 16.4% and 26.6% probability of negative net returns and a zero

probability for ALT.1 and ALT.3. 

Figure 4.4: CDF of annual net return in semi-arid as for APSIM and DSSAT 

cropping models

Table 4.6: Summary statistics of annual maize net return (in TZS/ha) of the bio-economic 

simulation model 

APSIM DSSAT
Baseline Alt.1 Alt.2 Alt.3 Baseline Alt.1 Alt.2 Alt.3

TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha
Semi-arid (values are in thousands)

Mean  226  912  226  925  221  1,125  195  1,148 
SD  288  274  301  273  337  336  373  338 
CV 127.2 30.1 133.2 29.5 152.1 29.9 191.1 29.4
Min -316 327 -336 296 -209 355 -243 278
Max  1 632  1 960  2,010  1 954  1 499  2 044  1,657  2,170 

Sub-humid (values are in thousands)
Mean 225 984 201 972 144 938 95 894
SD 330 429 284 344 239 449 218 469
CV 147.0 43.6 141.1 35.4 165.7 47.8 229.9 52.4
Min -234 124 -243 288 -183 -58 -233 -85
Max  2 173  3 098  2 071  2 723  2 706  3 013  1 794  2 432 

Figure 4.5 is the Stoplight chart presenting the probabilities of the net return falling below

zero and probabilities of being more significant than the maximum target (TZS 500 000)
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for the farms in the semi-arid.  The BASELINE scenarios  for the APSIM and DSSAT

models show a 14% and a 17% probability of negative annual net returns, respectively.

The likelihood of BASELINE net return exceeding the maximum target of TZS 500 000

were 11% and 14%, with the probability of falling between the two targets being 75% and

70% for the two models. Both ALT.1 and ALT.3 have zero probability of net returns being

negative  and over  96% probability  of  exceeding  the upper  target  for  the  two models.

APSIM and DSSAT show that  ALT.2 has 16% and 27% probability of net return being

negative  with  the  probability  of  exceeding  the  upper  target  net  returns  equalling  the

BASELINE. 

Figure 4.5: Stoplight chart for probabilities of the annual net return being less the

0 and greater than TZS 500 000 thousand in the semi-arid part of the

Wami River sub-Basin   

The effect of alternatives in sub-humid agro-ecological zone 
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Table 4.7 presents the summary statistics for the effects of alternative scenarios on maize

net  returns  in  the  sub-humid  area.  Likewise,  APSIM  results  in  a  sub-humid  agro-

ecological zone of the basin report negative minimum net profits for the BASELINE and

ALT.2 scenarios (Table 4.7). DSSAT also reports  negative minimum returns for all  the

scenarios, with the risk being high for the  BASELINE and  ALT.2. The  ALT.1 and  ALT.3

scenarios have mean annual net returns of more than TZS 900 000 per ha for both APSIM

and DSSAT. The CVs for  ALT.1 and  ALT.3 are relatively small compared to  BASELINE

and ALT.2. Although DSSAT demonstrated a negative return for all scenarios in the sub-

humid area, the probability is less than 1.0% for ALT.1 and ALT.3 compared to BASELINE

and ALT.2 with 20.2% and 30.2% respectively.  

Table 4.7: Summary statistics of annual maize net return (TZS hundred thousand) in semi-arid 

APSIM DSSAT
BASELIN
E 

ALT.1 ALT.2 ALT.3 BASELIN
E 

ALT.1 ALT.2 ALT.3

TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha TZS/ha
Mean 225 984 201 972 144 938 95 894
SD 330 429 284 344 239 449 218 469
CV 147.0 43.6 141.1 35.4 165.7 47.8 229.9 52.4
Min -234 124 -243 288 -183 -58 -233 -85
Max 2,173 3,098 2,071 2,723 2,706 3,013 1,794 2,432

Prob( <0) 18.6% - 14.6% - 20.2% 0.4% 30.2% 0.7%

Figure 4.6 shows the CDF for annual net returns in the sub-humid area of the basin for all

the scenarios  both models.  The  BASELINE and  ALT.2 CDFs lie  entirely  to the left  of

ALT.1 and  ALT.3,  implying  that  the  two  scenarios  have  a  high  probability  of  failure

compared to ALT.1 and ALT.3 and that at each level of income the later scenarios have less

risk. DSSAT demonstrated a 30% likelihood of negative returns for investing in  ALT.2

with about 15% probability for APSIM. Also, the result shows that ALT.1 and ALT.3 have

a zero chance of negative returns for APSIM with 0.4% and 0.7% probability of negative

returns for DSSAT. 
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Figure 4.6: CDF of annual net return in sub-humid as for APSIM and DSSAT 

cropping models

Figure 4.7 is a Stoplight chart presenting the probability of annual net returns being below,

above or between TZS 0 and TZS 500 000 in the sub-humid area. The BASELINE under

the  bio-economic  simulation  model  for  both  APSIM  and  DSSAT has  18% and  20%

probability of negative net returns. The ALT.1 and ALT.3 have zero probability of negative

annual net returns for the two crop models. APSIM and DSSAT results indicate a 14% and

30%  probability  of  negative  returns  for  ALT.2.   ALT.1 and  ALT.3 have  the  highest

probability of net return, exceeding the upper target of TZS 500 000. For example, results

from APSIM show 95% and 96% probabilities that the net returns would exceed the upper

target, while DSSAT presents 83% and 76% probabilities for ALT.1 and ALT.3. Of all the

scenarios in the sub-humid basin, ALT.2 has the smallest probability of net revenue being

above the upper target for the two models.
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Figure 4.7: Stoplight  chart  for probabilities  of  the annual  net  return  being less

than 0 and greater than TZS 500 000 thousand in sub-humid part of

the Wami River sub-Basin.  

The net income distributions of the alternatives in the semi-arid and sub-humid areas are

also presented as PDFs in Figure 4.8. The PDFs suggest that the net income distributions

for ALT.1 and ALT.3 are more favourable than the BASELINE and ALT.2 because they are

further to the right. The PDFs for APSIM and DSSAT show that BASELINE and  ALT.2

have negative net returns lies to the left of the other PDFs. This difference implies that the

relative variability of average net return is more likely to be lower for  ALT.1 and  ALT.3

than BASELINE and ALT.2 as demonstrated by the APSIM and DSSAT crop models. 
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Figure 4.8: PDF of annul maize net return per ha for baseline and alternative

scenarios in semi-arid (A1 & B1) sub-humid (A2 & B2) part of the

Wami basin: A1 & A2 =APSIM cropping system model and B1 & B2 =

DSSAT cropping system model

The economic feasibility of the selected options across agro-ecological zones 

The simulation results in the baseline scenario (BASELINE) for both APSIM and DSSAT

confirmed that the sub-humid area has higher probabilities of negative net returns than the

semi-arid region. APSIM estimated 18.6% probability of negative net returns for the sub-

humid  and  13.9%  for  the  semi-arid,  with  DSSAT  estimating  20.2%  and  16.6%

probabilities  for  the  two  zones.  When  farms  are  supplemented  with  ALT.1,  the  two

biophysical models suggest a zero probability of negative net returns for both zones except

DSSAT in the sub-humid area. DSSAT estimated a small chance (0.4%) of negative net

returns. Under ALT.2, both models suggest a negative net return for all the agro-ecological

zones  with  sub-humid  having  the  most  risk.  When  the  two  interventions  are  applied

together (ALT.3),  both yield models suggest a zero probability  of negative net returns.
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Still,  DSSAT displayed a small probability of 0.7% that the net returns will fall below

zero. Although the sub-humid area has the highest maximum net returns, the relative risk

measured by the CVs is higher than the semi-arid. For example, the relative variability of

the average net return for  BASELINE and  ALT.2 were above 100% for compared to the

ALT.1 and ALT.3 which were all less than 53% in all agro-ecological zones. The relative

variability of the average net return for  BASELINE and  ALT.2 was 166% and 230% for

DSSAT, and 152% and 191% for APSIM in semi-arid area (Figure 4.9).

Figure 4.9: Coefficient of variation (CV) of net returns for the semi-arid and sub-

humid area in Wami River sub-Basin 

Overall  results  of  the economic  feasibility  assessment  of  40 kg N/ha (ALT.1)  and 3.3

plants/m2 (ALT.2) for maize yield in Wami River sub-Basin, Tanzania indicate that it is

worth investing in ALT.1. The farms that adopt ALT.2 as a standalone intervention do not

work better for the semi-arid and sub-humid agro-ecological zones within the Wami River

sub-Basin. Also, ALT.3, which combines ALT.1 and ALT.2, does not result in a significant

difference from the application of  ALT.1  alone. Hence, a rational farmer may use  ALT.1

only because  ALT.3 would lead to a higher production cost without an increase in net

returns. 
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Our results are in line with many studies to assess the influence of agronomic practices on

the maize sub-sector. Some of these studies include Msongaleli et al. (2015), Beletse et al.

(2015), Masikati et al. (2015), Rao et al. (2015); Mwinuka et al. (2016; 2017). Although

these studies did not elaborate on the economic contribution of fertilizer application, they

argued that N-fertilizer’s  use could be one of the fundamental  alternatives  to reducing

risks and uncertainties, especially given climate variability. The studies also claimed that

besides the fertilizers’ application, adjustments in planting densities should not be ignored.

Additionally,  our  study  agrees  with  Walker  and  Schulze  (2006),  who  reported  that

agronomic practices, especially fertilizer applications, have a more considerable influence,

on  reducing  uncertainty  in  agricultural  production  systems.  Wilson  and  Lewis  (2015)

highlighted that the low production of maize in Tanzania is influenced by limited use of

modern  inputs  like  nitrogen  fertilizers,  which  is  currently  ranging  between  9  –  16

kg/ha/year. The low utilization of the N-fertilizer has led to higher uncertainties and lower

performance  of  the  sub-sector.  Mourice  et  al. (2014) concluded  that  small  nitrogen

fertilizer doses would still  be beneficial for resource-poor farmers through higher grain

yields. However, the Agriculture Climate Resilience Plan (ACRP) 2014-2019 of Tanzania

warned that interventions such as improving planting density and the use of fertilizer to

increase productivity could show positive outcomes if properly implemented (URT, 2014).

4.6 Conclusions 

The purpose of this paper was to contribute to the existing literature a new framework for

integrating different biophysical models into economic perspectives in SSA, particularly

Tanzania.  A bio-economic  simulation  model  was demonstrated  under the Monte Carlo

simulation protocol for evaluating the economic viability of risk reducing interventions

proposed for maize production. Thus, a stochastic bio-economic simulation model of 168
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maize plots in the Wami River sub-Basin was developed based on data from two crop

models  (APSIM and DSSAT).  Stochastic  values  for  production  costs  and prices  were

incorporated into the model to assess the probable annual net return of maize sub-sector

under two crop management alternatives. 

First,  the Monte Carlo simulation techniques were used to convert  the yields from the

biophysical models into a stochastic state to capture the risk and uncertainties associated

with the yields. Second, the Monte Carlo simulated yields for the baseline and alternatives

were validated to ensure that the random variables are simulated correctly. Thirdly, the

stochastic  annual  price  of  maize  was  combined with  the  stochastic  yields  to  simulate

stochastic annual revenue. Lastly,  the total  costs for the baseline and alternatives were

used to simulate the empirical distribution of net returns for each scenario. PDFs, CDFs,

Tables, and Stoplight charts were developed to rank the targeted options.

Our  results  suggest  that  an  increase  in  plant  population  of  33  000  plants/ha  alone,

particularly in the Wami River sub-Basin, would have no significant difference in annual

net returns from the current maize productivity compared to the application of 40 kg N-

fertilizers per ha. In terms of profitability, our bio-economic simulation results suggest an

increase in net farm return of up to fivefold when farms are supplemented with the N-

fertilizer. Increasing the plant population within the Wami River sub-Basin will likely not

increase  annual  net  returns  from  the  baseline  unless  the  two  practices  are  applied

concurrently. 

The results suggest the importance of emphasizing the application of crop management

strategies, especially using at least 40 kg N/ha rate of fertilizers. The economic returns

were higher for increased fertilizer application than from increasing plant population. The
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application  of  fertilizers  may  accelerate  to  achieving  improved  food  availability  and

reduced  poverty  to  maize-based  producers  in  Tanzania  who  are  mainly  small-scale

farmers.  Moreover,  the  study  contributes  to  the  National  Agricultural  Policy  and  the

Agriculture Climate Resilience Plan (ACRP) 2014-2019 of Tanzania.  For example,  the

ACRP plan  has  one  of  its  key  messages:  “alternative  technologies  should  focus  on

boosting cereal crops’ productivity to increase yields, enhance food security, and reduce

poverty to smallholder farmers.”

This study analysed only two management practices, namely N-fertilizer application and

plant  population  adjustment.  There  is  a  need  for  similar  studies  on  risk-reducing

alternatives that could potentially boost productivity and profitability in Tanzania and the

rest  of  SSA.  The  methodology  used  in  this  study  was  used  to  assess  the  economic

feasibility of only two technology packages by employing data from two crop models to

develop a bio-economic simulation model in a stochastic environment. We argue that the

procedures  expressed  in  this  study  form a  basis  for  more  research  and  include  more

agricultural practices/technologies that claim to boost productivity, enhance food security,

and reduce poverty among the majority of the poor. Similar studies are needed given the

absence of integrated assessments that capture agricultural  risks by linking appropriate

biophysical  and  economics  models.  The  integrated  evaluation  can  improve  decision-

making for policy-makers and farmers in Tanzania and the rest of SSA.  
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APPENDICES

Appendix 4.1:  Comparison of observed data vs. biophysical simulated   

This appendix shows how the first step used to develop a bio-economic simulation model

(an integrated decision support system). Since the aim of the analysis is to find out the

impact of fertilizer application and plant population adjustment were examined using the

two models APSIM and DSSAT. The first step in developing an appropriate bio-economic

simulation model was to verifying if the baseline data generated by the two models have

similar characteristics with the original or site-specific data. Therefore:

a) Yield data from household farm surveys were entered in the two crop models for each

field that  was surveyed. The models are  then calibrated to  fit  the household farm

survey data (matched case). Other variables like climate, soil, and management for

each field are added into the models for each field to simulate the productivity that is

matched with the observed yield. Other agronomic assumptions based on the advice

from agronomists in the regions were also included in the model to obtain the best

distribution that fits the observed data. The process continued for including different

parameters and opinions until the best baseline that has similar characteristics with the

observed data was obtained. 

b) After the simulation results from the two crop models are matched with the observed

data  to  be sure  that  they were correctly  produced,  the  means,  standard  deviation,

variances,  and characteristics  of bias between observed and simulated yields were

computed. 

c) The probability distribution functions (PDFs) were drawn to show if the baseline data

and observed data has similar shape (Figure 4.1.1). The similarities on the PDFs were

enough for the analyst to accept the results of the two models for economic analysis.  
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Figure 4.1.110: Relationship between observed and baseline simulated yield for 

168 maize plots 

d) After  the  evaluation  of  the  observed and simulated  baseline  yield,  the  proposed

options were therefore added into the two models to simulate their impact on yield

before confirming that they are ready for use in the economic analyses.

This process ends at an agronomic component, and the next step was to use the yield from

the two biophysical models along with other variables prices, cost of production, and area

planted to analyse the feasibility of the proposed options. All of these variables were made

stochastic  using  the  bio-economic  simulation.  However,  assumptions  to  include  the

additional  costs of the proposed options were made based on the advice from experts,

including agronomists.
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Appendix 4.2: Validation for process-based data vs. bio-economic simulation model 

in the semi-arid area of the Wami sub-basin

This  appendix  shows the  validation  process  to  ensure  that  the  data  from APSIM and

DSSAT process-based models were simulated correctly and demonstrate the appropriate

properties of the two models. The probability distribution functions (PDF) in Figure. 4.2.1

and 4.2.2 show that the 500 iterations of the bio-economic simulation model were enough

to generate similar shapes like that of parent distribution (process-based). Therefore, the

500  simulated  sample  for  each  alternative  management  was  used  to  capture  the  risk

associated with the proposed options on maize yield. 

Figure 4.2.1: Data validation of 83 maize plots for APSIM process-based data vs 500

iterations bio-economic simulated data in the semi-arid zone
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Figure 4.2.2: Data validation of 83 maize plots for DSSAT process-based data vs 

500 iterations bio-economic simulated data in semi-arid zone

Appendix 4.3:  Distribution of costs for the baseline and the alternative scenarios  

This  appendix  displays  per  ha  costs  incurred  by  small-holder  farmers  for  different

operations  in  maize  production in  the Wami sub-basin.  Table  4.3.1 shows the type  of

inputs used and the cost incurred and Figure 4.3.1 displays the stochastic total production

cost  per  each  alternative.  A uniform  probability  distribution was  used  to  simulated

stochastic/random  production  costs  using  the  =UNIFORM()  function  in  Simetar.  The

function of production cost for the baseline scenario was programmed using Equation (1)

as follows:

),((
~

kkbaseline MaxMinUNIFORMC   (1)
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where: k represents  all  cost  items  including  land preparation,  seeds,  planting,

weeding, harvesting, and postharvest handling,

Min is the minimum value for the distribution,

Max is the maximum value for the distribution,

The stochastic cost for the baseline scenario was therefore combined with additional costs

of 40 kg N/ha (Alt.1) and 7 – 10 kilograms of maize seeds (Alt.2). The total cost for Alt.3

was calculated by adding the baseline costs to cost for Alt.1 and Alt.2. 

Table 4.3.1:  Budgets for maize production per ha in Wami sub-basin for the year 2015/16

Average
(TZS/ha) 

Minimum cost
(TZS/ha)

Maximum cost
(TZS/ha)

Land preparation 40 000 25 000 50 000
Seeds 65 000 60 000 70 000
Planting 25 000 20 000 30 000
Weeding 40 000 30 000 50 000
Fertilizers 50 000 0 50 000
Fertilizer application 20 000 0 20 000
Pesticides 14 000 0 14 000
Pesticides application 6 000 0 6 000
Harvesting 10 000 5 000 20 000
Postharvest  handling  (transportation
and storage)

30 000 15 000 50 000

Total cost 300 000 150 000 360 000
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Table 4.3.1: PDF of total production cost per ha per scenario used in the bio-

economic model 

CHAPTER FIVE

5.0 MANUSCRIPT THREE

The manuscript has been published to the journal of  Sustainability and it belongs to the

Special  Issue  (SI)  of  Suitable  Agronomic  Techniques  for  Sustainable  Agriculture.  The

manuscript is available at: https://doi.org/10.3390/su12166528  . 

5.1 Abstract 

Tanzania is the second-largest  producer of rice (Oryza sativa) in Eastern,  Central,  and

Southern Africa after Madagascar. Unfortunately, the sector has been performing poorly

due to many constraints, including poor agricultural  practices and climate variability. In

https://doi.org/10.3390/su12166528
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addressing the challenge, the government is making substantial investments to speed the

agriculture transformation into a more modernized,  commercial,  and highly productive

and profitable sector. Our objective was to apply a Monte Carlo simulation approach to

assess the economic feasibility of alternative rice farming systems operating in Tanzania

while considering risk analysis for decision-makers with different risk preferences to make

better management decisions. The rice farming systems in this study comprise rice farms

using traditional practices and those using some or all of the recommended system of rice

intensification (SRI) practices. The overall results show 2% and zero probability of net

cash  income  (NCI)  being  negative  for  partial  and  full  SRI  adopters,  respectively.

Meanwhile, farmers using local and improved seeds have 66% and 60% probability of

NCI being negative, correspondingly. Rice farms which applied fertilizers in addition to

improved seeds have a 21% probability of negative returns. Additionally, net income for

rice farms using local seeds was slightly worthwhile when the transaction made during the

harvesting period compared to farms applied improved varieties due to a relatively high

price for local seeds. These results help to inform policymakers and agencies promoting

food security and eradication of poverty on the benefits  of encouraging improved rice

farming practices in the country. Despite climate variability, in Tanzania, it is still possible

for  rice  farmers  to  increase  food  production  and  income  through  the  application  of

improved  technologies,  particularly  SRI  management  practices,  which  have  shown  a

promising future.

Keywords: Rice, Management practices, Risk, stochastic simulation, Tanzania  

 

5.2 Introduction

The population of developing countries is increasing rapidly. Many of these countries rely

on rice (Oryza sativa) as a staple food, and it is estimated that the demand for rice will

increase by up to 70% over the next three decades (Patra and Haque, 2011; Katambara et
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al., 2013).  However,  the  area  of  land  suitable  for  agriculture,  the  length  of  growing

seasons and yield potential for cereals including rice are expected to shrink, particularly

along  semi-arid  margins,  affecting  food  availability  and  exacerbating  malnutrition

(Maliondo  et al., 2012). It is also estimated that 15–20 Mha of the world’s 79 Mha of

irrigated rice lowlands, which provide three-quarters of the world’s rice supply, will suffer

some  degree  of  water  scarcity  (Bouman  et  al., 2007).  These  concerns  can  only  be

encountered  through  the  application  of  improved  agricultural  practices,  including  rice

irrigation schemes and hybrid rice varieties (Ali, 2015). Other scholars (Stoop et al., 2002;

Uphoff, 1999; 2003; 2005; 2006; 2007; 2008; Randriamiharisoa et al., 2006; Mishra et al.,

2006) have argued that low rice productivity could be addressed through judicious use of

agronomic inputs like transplanting young single seedlings with wider spacing, alternating

wetting, and drying of fields, and use of fertilizers. 

In Tanzania,  rice is  the second most  important  staple  food and commercial  crop after

maize (Zea mays) and a significant source of employment, income and food security for

farming households (Furahisha, 2013; Ram, 2003; Bell,  2016). Tanzania is the second-

largest producer of rice in Eastern, Central, and Southern Africa after Madagascar (URT,

2015); about 71% is produced under rain-fed conditions and 29% under irrigation (Ronald

et al., 2014). The demand for rice in Tanzania is projected to triple by 2025 and while the

yield is still  relatively low, (1.6 t/ha) due to increases in temperature and decreases in

annual rainfall (URT, 2007; Paavola, 2008). Even with the low performance of the sector,

inconsistently Tanzania exports to neighbouring countries like Burundi, Kenya, Rwanda,

and Uganda. Additionally, the lower performance of the sector is linked to predominantly

rain-fed  production,  the  limited  adoption  and  availability  of  improved  cultivars,  low

application of fertilizers and intensive use of traditional planting techniques with limited

areas  for  (Wilson  and  Lewis,  2015).  Kahimba  et  al. (2013)  argued  that,  if  limited
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agricultural interventions are to be applied, yields of major cereals, including rice, may

halve by 2025 because of climate variability. 

Due to  these  challenges,  the  Tanzanian  government  has  been struggling  to  take  some

measures to stimulate the sector like the imposition of an import tariff of 75 per cent in

early  2005  followed  by  the  formulation  of  policies  and  programs.  These  include  the

National Rice Development Strategy in 2009, National Agricultural Policy (NAP) in 2013,

Agricultural  Sector  Development  Strategy  –  II  (2015/16  –  2024/16)  and  Agricultural

Sector Development Programme – II (2015/16 – 2024/25). Among others, these policies

emphasize  on  application  of  fertilizers,  improved  seed,  development  of  irrigation

infrastructures,  and  removal  of  the  export  ban.  Moreover,  early  in  the  2010s,  the

government  through  the  Ministry  of  Agriculture  Food  Security  and  Cooperatives

(MAFSC) involved in the training of extension officers and farmers the System of Rice

Intensification  (SRI)  management  practices  for enhancing rice production  in  Tanzania.

The SRI practices elaborated by Stoop et al. (2009), Kahimba et al. (2013), Tusekelege et

al. (2014) and URT (2015) are the primary campaign by the MAFSC aiming to increase

rice yield per ha and in conjunction with the reduction of hunger and poverty by 2025.

Even with readily made policies and programs, there has been a slow improvement of the

sector  mainly  due  to  low  adoption  of  improved  farming  practices,  poor  institutional

development,  limited  human,  financial  and physical  resources  (Maliondo  et  al., 2012;

Wilson and Lewis, 2015). 

Moreover, the low adoption of improved agricultural practices for farmers is due to many

factors,  including  the  risks  and  uncertainties  linked  to  the  process  of  agricultural

production and unreliable markets. Diagne et al. (2012) argued that the adoption of new

agricultural technology depends on farmer’s knowledge of their existence, that is, a farmer

adopts  a  technology if  he/she has  a  complete  understanding of  new technology.  From
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economic perspectives, farmers decide to choose to adopt a new technology basing on the

benefits  of  the  technology  (Doss,  2006).  Although  rice  farming  systems’ agronomic

benefits  of  may  be  easy  to  recognize,  the  economic  benefits  are  not.  The  unrealized

potential  of  new farming  technologies  may  offset  the  adoption  rate  of  the  respective

technologies, especially when the farmer has limited full information about the technology

and it’s potential. 

In  this  study,  we  compare  the  economics  of  traditional  and  improved  rice  farming

management practices by considering the risk associated with price, yields, and production

costs that affect the net returns of the practices under study. The analysis helps determine

the farming system with the highest distribution of profits under different price seasons,

such as during harvesting and low supply, when the price is relatively high. We considered

price  volatility  because  rice  is  one  of  the  cash  crops  to  most  smallholder  farmers  in

Tanzania. The study also considered that since rice is an essential crop, farmers may sell

their produce during harvesting or later when the price is higher. This study employs a

Monte  Carlo  simulation  model,  which  was  also  applied  by  Ribera  et  al. (2004),

Richardson et al. (2007), Rezende and Richardson (2015), and Mwinuka et al. (2017) to

evaluate the economic performance for each rice farming system. 

The  contribution  of  the  present  study  to  the  body  of  knowledge  in  Tanzania  is  the

application of a Monte Carlo simulation approach, which incorporates stochastic/random

variables  like  prices  and  yields  that  farmers  cannot  control  with  certainty.  Data  from

household surveys, focus group discussions, and secondary sources were used to quantify

and parameterize the model. This study informs the rice farming communities and policies

that focus on food security and poverty eradication and the suitable agronomic techniques

for sustainable agriculture.
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5.3 Theoretical and Conceptual Background 

In  this  study,  the  strong  assumption  was  made  that  the  adoption  of  viable  farm

management  practices  like  SRI,  improved  varieties  and  application  of  fertilizers  is

essential, and will benefit the farmer if the technology is adopted. However, adopting and

using new agricultural technologies has never been an easy task because of many factors

that are involved in the adoption process like fear of risk and uncertainties (Doss, 2006;

Diagne et al., 2012; Bizimana and Richardson, 2019). Mostly, farmers look at some or all

of the factors and choose the best alternative based on their utility and profit maximization

behaviours  (Doss,  2006).  The concept  is  that  farmers  engage  in  the  adoption  of  new

technology  only  if  the  benefits  or  perceived  utility  of  using  the  proposed  technology

outweigh  the  benefits  of  the  current  practices  (Mwinuka  et  al., 2017;  Bizimana  and

Richardson, 2019). This study applies this theoretical background as a guide to building a

stochastic  simulation  model  to  simulate  the  economic  viability  of  farming  systems so

farmers  or  decision-makers  can  make  better  decisions.  This  background  considered

relevant and underpinned the theoretical foundation of the study.

5.4 Materials and Methods

5.4.1 Location of the study area 

The study was conducted in six villages of the Morogoro region, Tanzania (Figure 5.1)

which  is  in  the  mid-eastern  part  of  the  Tanzania  mainland  and  lies  between  latitude

7°53′34.80″ south and longitude 36°54′21.60″ East. The region is the largest rice producer

in the country, producing between 300 000 to 350 000 tons per year. Rice is the second

most dominant crop in the region after maize and is grown on approximately 180 000–250

000 hectares annually. The more substantial part of the study area receives average annual

rainfall between 800 and 1100 mm; higher rainfall between 1200–1300 mm is collected
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around  the  Nguru  mountains.  The  top  of  the  Nguru  mountains  receives  >1300  mm.

The mean annual temperature in the study area ranges between 16 °C and 25 °C (Ndomba,

2014; Gulacha, 2017). The rainfall is bimodal, falling between October and December and

March  and  May  (Wambura et  al., 2015;  Sikay,  2017).  The  study  sites/farms  are

surrounded by rivers with flowing water throughout the year, making irrigation easier. 

Figure 5.1: Study sites Kigugu, Hembeti, and Mkindo villages (Mvomero district) 

and Msowero, Rudewa and Dakawa (Kilosa district)

5.4.2 Data type and characteristics 

The villages  for this  study were purposefully selected based on the presence of either

traditional  or  improved  rice  farming  practices.  Data  were  collected  using  a  snowball

sampling  strategy  described  in  detail  by  Atkinson  and  Flint  (2001),  Browne  (2005),

Sedgwick (2013), Naderifar  et al. (2017). A total of six villages: three from Mvomero

district (Kigugu, Hembeti, and Mkindo) and three from Kilosa district (Dakawa, Rudewa,

and Msowero) were included in the analysis. Although rivers surround the rice farms in

the study area, most of the farmers depend on rain-fed farming systems. The data represent
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farms under different management practices, some of which are better adapted to climate

variability, and some grow their rice in both rainy and dry seasons. Rice production in the

selected villages is a crucial economic activity generating income and the primary food

source.  Although there were varying levels of productivity,  the households used in the

study claimed to be dependent on rice farming for over 80% of their livelihoods

The differences in levels of productivity were linked to the different use of rice-farming

technologies,  including the  application  of  inorganic  fertilizers,  the predominant  use of

local seed varieties, the emerging demand for improved varieties, mainly SARO 5 or TXD

306;  and  adoption  of  the  System  of  Rice  Intensification  (SRI)  practices.  The  SRI  is

considered  a  water-saving  technology,  which  has  led  to  a  notable  increase  in  crop

productivity  (Katambara  et al., 2013; Kahimba  et al., 2013; Ronald  et al., 2014). The

technology is not only found to be the best farming approach for sustainable agriculture

but also used as a coping strategy for climate  change and variability,  and it  has been

proved to save up to 50% of water (Diagne et al., 2012). The SRI is a package of practices

developed to improve the productivity of rice farming with less water. The technology was

introduced in Tanzania in the 2010s and has started to spread throughout the country. 

The SRI practice has proved yield levels range from 7.0 to 11.0 tons per ha (Katambara et

al., 2013; Diagne  et al., 2012; Tusekelege  et al., 2014) in Tanzania.  Some of the SRI

practices include the use of young seedlings of 8–12 days old, wider spacing, transplanting

of  single  seedling,  fertilizer  alternative  wetting  and  drying,  and  weed  management

(Ronald  et  al., 2014).  The  SRI  does  not  require  more  water  than  traditional  farming

systems  (Tusekelege  et  al., 2014).  Since  the  study  included  non-homogeneous  rice

farmers,  the  snowball  technique  was  convenience  sampling  to  obtain  households  with

similar characteristics. Five alternative rice farming systems were identified and used to
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stratify the sampling design within the study area.  The five farming systems based on

management practices are described as follows: 

i) Baseline – farms using traditional methods comprising application of saved local

seed  varieties  (supa  shinyanga,  mbawa  mbili,  supa  pamba,  Kabangala,  tule  na

bwana; kisegese; mwarabu, rangi mbili; ngome, zambia), no fertilizer and higher

seed rate between 75–100 kg/ha is used as farmers prefer broadcast planting method.

Weeding is done manually and typically done twice before harvest, and no specific

spacing is applied. Continuous flooding is dominant with neither irrigation nor water

control.
ii) Alt.1 –  applying  the  traditional  practices  (Baseline),  but  farmers  use  improved

varieties (mainly SARO5 and IR64) instead of local varieties. Farmers in this group

prefer transplanting of seedlings instead of broadcasting, which is done between 21–

35 days with limited fertilizer application, and no specific spacing is applied.
iii) Alt.2 – farms supplemented with improved varieties, transplanting of seedlings (no

specific spacing is applied), and application of fertilizer at the rate of 50 kg bags per

ha. The main types of fertilizers used are Urea and NPK, and occasionally farmers

apply organic fertilizers.
iv) Alt.3 and Alt.4 – this dedicated group of farmers apply some but not all the SRI

practices, i.e., SRI partial adopters (Alt.3) and those claiming to use all the specified

SRI  practices  (Alt.4).  The  specific  practices  under  SRI  in  Tanzania  involve  (1)

stepwise  selection  and  preparation  of  quality  viable  seeds;  (2)  nursery  plot

development and careful management; (3) land/field levelling for easy infield water

management;  (4) transplanting one young seedling (at  two leaves) per hill  while

using 25 cm x 25 cm or 25 cm x 30 cm spacing; (5) quickly transplanting within 30

min of gently removing seedlings from their nursery and not inverting the seedlings;

(6)  wetting  and drying of  the  field  (water  control)  to  improve soil  aeration  and

promote  root  elongation; (7)  timely  weeding  done  every  10–12  days  after
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transplanting  and  repeated  in  the  same  interval  until  harvest;  and  (8)  intensive

application of fertilizer, especially one which is rich in nitrogen and phosphorus. A

pictorial  demonstration  of  some  necessary  steps  involved  in  SRI  practices  in

Tanzania is shown in Appendix 5.1. Also, it should be noted that rice production

under  SRI  is  done  twice  a  year.  Therefore,  yield  under  SRI  scenarios  included

harvests for both rain and dry seasons as the farmers under SRI have gone a step

further to use the water from rivers for irrigation during the dry season.

5.4.3 Yield data  

Yields for each scenario were collected through a structured questionnaire along with the

area harvested for easier  calculation of the amount  of rice produced per scenario.  For

example, production (µi) for scenario  i was calculated as  µi = hai * yi, where ha is the

hectare harvested, and y is the yield in tons. Each scenario has 45 yield data. Yield for

Scenario.0 and  Scenario.1 was low regardless of almost equal land distribution because

either of the lower application of improved seeds or fertilizers resulted in lower yields.

Table 5.1 displays the distribution of tons harvested per ha and the distribution of the area

under rice used in this study.

Yields for three seasons starting from 2015/16, 2016/17, and 2017/18 for each scenario

were used for this analysis collected. Each scenario has a total of 45 rice farms per season.

The  yield  data  for  each  scenario,  therefore,  makes  a  total  of  135  observations

(45 x 3 = 135). The main reason for using three seasons’ data is to capture the stochastic

nature of yield (y), which is a random variable. Yield is a vital variable in this analysis.

Table 5.1 displays the distribution of yield (t/ha) for different rice farming systems under

study.

Table 5.1: Yields distribution (t/ha/year) under different farming systems

Scenarios
2015/16 2016/17 2017/18

 Mean Min Max Mean Min Max Mean Min Max
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Baseline  1.66 0.71 3.42 0.88 0.45 1.57 1.64 0.60 3.77
Alt.1 2.32 0.78 3.81 1.02 0.39 1.60 1.99 0.47 3.07
Alt.2 4.34 2.15 5.42 0.93 0.50 2.10 3.03 2.31 5.00
Alt.3 6.58 5.22 8.34 0.79 0.56 2.5 6.72 4.00 8.43
Alt.4 13.47 6.78 19.86 1.14 0.45 2.03 13.47 6.10 19.10
Source: field survey 

5.4.4 Price data  

The price for rice is also a random variable as it fluctuates with time for each variety (local

or  improved).  For  example,  during data  collection,  it  was  argued  by farmers  and key

informants that the price for local varieties under Baseline is, to some extent, higher than

the  price  for  improved  varieties  (under  Alt.1 to  Alt.4).  During  the  harvesting  season

(April–September), the price for rice is low. However, the price rises when the supply is

low, particularly during October through March for all the scenarios presented in Table

5.2. The table shows the summary statistics in terms of average, minimum, and maximum

price per season per variety. For each variety, we collected a total sample of 45 price data.

Rice  prices  for  local  varieties  during  low  supply  (non-harvesting)  and  high  supply

(harvesting)  seasons are  denoted by Local_P1 and Local_P2,  respectively.  Meanwhile,

rice prices for improved varieties are indicated by Improved_P1 and Improved_P2 for low

and high supply seasons, correspondingly.

Table 5.2:  Summary statistics of rice prices (in US$/ton) in the study area for the 

year 2018

Statistics
Low Supply High Supply 

Local_P1 Improved_P1 Local_P2 Improved_P2
Average (US$/t) 339.3 531.4 232.0 448.9
Minimum (US$/t) 311.1 488.9 217.8 400.0
Maximum (US$/t) 400.0 577.8 244.4 511.1

Source: Field survey; Exchange rate: US$ 1.00/TZS2,340

5.4.5 Cost of production per scenario  

Data on production cost and input prices for each scenario were also corrected.  These

costs  include  seed,  nursery  preparation  (for  SRI  farms),  land  preparation,

transplanting/seedling,  weeding,  post-emergence  pesticides,  bird  scaring,  wetting  and
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drying,  fertilizers,  harvesting/cutting/threshing,  postharvest  handling,  and storage  costs

(Appendix 5.2). Alt.1 to Alt.3 use transplanting means of planting; hence it needs 20 to 50

kg/ha  of  seeds  costing  between  US$8.9  to  17.8.  Baseline usually  applies  traditional

(broadcasting) planting and needs 50 to 70 kg/ha of seeds, which cost between US$13.3 to

US$21.3 thousand. Of all the farming systems,  Alt.4 needs between 7 and 10 kg/ha of

seeds. The seeds are obtained through careful seed selection to get pure and quality seeds

for high germination probability. The process costs between US$17.8 to US$35.6, as more

than 70 kg is needed to obtain the quality seeds. 

Land preparation involves ploughing and harrowing for  Baseline to  Alt.2, but  Alt.3 and

Alt.4 go beyond to levelling, puddling, and marking transplanting grids. Baseline and Alt.1

did  not  use  fertilizers,  but  Alt.4 used  more  fertilizers,  causing  the  highest  cost  of  all

scenarios. Alt.4 also involved wetting and drying of the field to improve soil aeration and

promote roots elongation that claimed to allow plant root growth and subsequent plant

vigor and health.  The minimum and maximum cost  for all  scenarios  were US$235.6–

416.9, US$262.2–473.3, US$417.8–717.8, US$564.4–962.2, and US$817.8–1213.3 for all

scenarios, correspondingly.

5.4.6 Stochastic simulation for economic comparison between rice farming systems 

The Monte Carlo simulation procedures outlined by Richardson  et al. (2007; 2018) was

used to evaluate the net cash income (NCI) distributions for each scenario. Since we have

a total of 135 production data per scenario, the  first step  was defining, parameterizing,

simulating, and validating the stochastic variables. Yields and prices are the key variables

in calculating stochastic production and receipts. Typically, yields and prices are correlated

with  each  other.  Therefore,  a  multivariate  empirical  (MVE)  distribution  described  by

Richardson et al. (2000) was estimated and employed to simulate the two variables using
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the observed values. The residuals (deviations from the observed mean) from surveyed

yield and price for each scenario were used to estimate the parameters for the MVE yield

and price distribution. An MVE distribution is an appropriate tool to account for many

variables at once and can eliminate the possibility of values exceeding reasonable values

like negatives in surveyed data (Ribera et al., 2004). 

An MVE yield and price distribution is presented in Equation (5.1) and Equation (5.2),

respectively,  and  is  defined  by  the  fractional  deviations  from  mean  and  cumulative

probabilities. It also accounts for the correlated uniform standard deviates (CUSDyp) with

yp representing the row of the correlation matrix of price and yield. The MVE distribution

is simulated in Simetar, an acronym for Simulation and Econometrics To Analyse Risk (or

Simulation  for  Excel  to  Analyse  Risk  in  an  Excel  add-in  and  is  available  at

www.simetar.com).  In  other  words,  Simetar  is  a  simulation  language  written  for  risk

analyses that provides a transparent method for simulating the effects of risk and presents

the results as probability distributions (Richardson et al., 2000; 2008). 

The second step was to simulate the MVE distribution in Equations (5.1) and (5.2) for at

least  500 iterations  using the Latin Hypercube (LHC) sampling procedures defined by

Richardson et al. (2008). The LHC procedure ensures that a sample of only 500 iterations

is  necessary  to  reproduce  the  parent  distributions.  A simulation  of  500 iterations  was

needed to have an adequate sample to capture the inherent risk in the yield and price

datasets. The third step was to validate the simulated distribution to ensure that the random

variables  were  simulated  correctly  and  demonstrate  the  appropriate  properties  of  the

parent  distributions.  The  probability  distribution  functions  (PDFs)  of  observed  and

simulated yields and prices were drawn for comparison; as shown in Appendix 5.3, the
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PDFs for  LHC 500 simulated  values  and the observed yields  and prices  have similar

shapes confirming that the LHC simulated the observed distribution accurately.

The  fourth step involved simulating the stochastic production and receipts in Equations

(5.3 and 5.4) for each scenario.  Therefore,  the stochastic production and revenue were

combined with the stochastic cost of production to simulate the probability distribution for

net income, our targeted key output variable (KOV) for this study. Likewise, production

costs were made stochastic using the GRKS probability distribution as the costs differ

from one farmer  to  another  for  each  scenario analysed.  Gray,  Richardson,  Klose,  and

Schumann developed  GRKS probability  distribution  to  simulate  subjective  probability

distributions based on minimum, average/model, and maximum values (Richardson et al.,

2008).  The  GRKS  in  this  study  was  used  to  include  all  the  cost  options  used  by

smallholder farmers who are pessimistic, average, or optimistic. The GRKS is simulated

in Simetar using the command = GRKS (min, midpoint, max) and generates random costs.

Equation (5.5) was therefore used to simulate the stochastic production cost for each rice

farming scenario. Appendix 5.4 shows the probability distribution functions (PDFs) and

the cumulative distribution functions (CDFs) for each scenario with  Alt.4 presenting the

highest production cost of all scenarios followed by Alt.3 and Alt.2. Table 5.3 defines the

symbols used in the equations.

))),(,(1(*~
ypyyii CUSDSPSEMPyy  (5.1)

))),(,(1(*~
yppp CUSDSPSEMPpp   (5.2)

iii ay *~~  (5.3)

ii pR 
~*~~

 (5.4)
)),,((

~
ViviVii MaxAverageMinGRKSC  (5.5)

iii CRICN
~~~

 (5.6)

The final step was to simulate the probability distributions of net income for each of the

rice  farming  systems in  Equation  (5.6)  for  over  500 iterations  using  LHC simulation
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criteria expressed in the second step above. The results of the 500 simulated samples were

used to estimate the empirical probability distributions of success (NCI) for each scenario

and to compare the scenario with the best distribution per hectare. A comparison of the

scenarios is well elaborated in section 5.4.7.

Table 5.3: Definition of symbols used in the model
Symbols Definitions

~ A tilde represents a stochastic variable
i Rice farming alternatives (Baseline, Alt.1, Alt.2, Alt.3, Alt.4)
ai Hectares (ha) allocated for each alternative i

iy~ Stochastic rice yield per ha for alternative i 

iICN
~

Stochastic production for alternative i which is the product of hectares and yield [ ii ay *~ ]  

ω Rice variety (local and improved)

p~ Stochastic rice price influenced by seasonal volatility for variety ω (Local_P1, Local_P2, 

Improved_P1, Improved_P2)

iR
~

Stochastic receipt/revenue which is a product of stochastic production and price [ ip 
~*~ ]

Vi Variable cost (US$/ha) given by the summation of all costs included in rice production per each 

scenario in a range of Min and Max. [including seed, plow, harrow, planting, weeding, bird scaring, 

fertilizer, post-emergence herbicides, harvesting/threshing, postharvest handling, and storage] 
Fi The fixed cost which was equated to zero for this analysis [F=0]  

iC
~ Stochastic  Total  production  cost  for  each  rice  farming  system  and  was  computed  as

)]~(*[ ii Fva 

i~ Net income which is calculated as the receipt minus total cost ]
~~

[ ii CR 

Sy Fraction deviations from a mean or sorted array of random yields for scenario i  
Sp Fraction deviations from a mean or sorted array of random prices for variety ω

P(Sy) Cumulative probability function for the Sy values
P(Sp) Cumulative probability function for the Sp values

CUSDyp Simetar function to simulate correlated uniform standard deviates of random variables 
EMP() Simetar function used to simulate an MVE distribution

5.4.7 Scenario Ranking  

In ranking the scenarios, we used two ranking approaches – the Stoplight function and the

stochastic  efficiency  with  respect  to  a  function  (SERF).  The  Stoplight  function  is  a

Simetar function that produces charts to summarize the probability that the scenarios will

be  less  than  the  specified  lower  target  or  that  the  scenarios  will  exceed  the  targeted

maximum value. It also provides the likelihood of each scenario falling between specified

targets (Richardson  et al., 2008). The probability of falling below the minimum target

(possibility of unfavourable) is presented in red colour, the probability of exceeding the

maximum target  (probability  of  favourable)  is  shown in green,  and the  probability  of
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falling between the two targets (probability of cautionary) is coloured amber. However,

through a participatory discussion with rice farmers, the minimum and maximum targets

were set at $500 and $1000 to reflect the historical annual rice net returns per ha.

SERF uses certainty equivalents (CEs) and a range of absolute risk aversion coefficients

(ARACs)  to  rank  many  risky  alternatives  simultaneously.  Each  alternative  can  be

compared and ranked at  each ARAC (Hardaker  et  al., 2004;  Richardson  et  al., 2008;

Bizimana  and  Richardson,  2019).  The  of  SERF’s  advantage  over  the  conventional

stochastic dominance analysis with respect to a function (SDFR) is that SERF involves

comparing each alternative with all the other alternatives simultaneously, not pairwise. On

the other hand, the SERF approach compares the CE of all risky alternative scenarios for

all  risk ARACs over  the range and chooses  the  scenario with the highest  CE at  each

ARAC value; hence assist decision-makers with different risk attitudes. The ARCs range

from zero (risk-neutral), normal, moderate, and extremely risk-averse person. Following

the formula proposed by Hardaker et al. (2004), the extreme or upper ARAC value for this

study was calculated using Equation (7) as follows:

w

wr
ARAC U

U

)(
 (5.7)

where )(wrU  is the risk aversion coefficient with respect to wealth (w).

The risk aversion coefficient with respect to wealth was proposed by Anderson and Dillon

(1992) to be set equal to 4 (very risk-averse). Also, the emphasize was done by Hardaker

et al. (2004), where they suggested that the average wealth for alternatives can be used to

calculate the upper ARAC in Equation (5.7). In this study, scenarios were analysed based

on price seasonality (April – September, and October – March). On a yearly basis, the

average wealth for each case was therefore used to compute the upper ARAC.     
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5.5 Results  

Simulation results on economic viability for each scenario are presented seasonally (low

or high supply) and on an annual basis. Table 5.4 presents the summary statistics for and

the probability of generating negative NCI for each scenario. All the five scenarios show

positive mean values of NCI for both low and high supply seasons. However, during the

low supply, the average NCI is high. The high supply season shows negative minimum

values of NCI for the first three scenarios congruently (US$-140.9, US$-289.4, and US$-

203.1). In comparison, the low supply season shows negative minimum values for the first

two scenarios (US$-14.9 and US$-77.3). Consequently,  the first three scenarios for the

aggregated/annual price also show negative minimum values of NCI for the first three

scenarios (US$-126.2, US$-213.9, and US$-75.3). 

Generally,  the  low  supply  season  has  the  highest  NCI  distribution  for  all  scenarios

compared to the counterpart  with  Alt.4 dominating in terms of average, minimum, and

maximum values, followed by Alt.3 and Alt.2 (Table 5.4). The high NCI for scenarios 4

and 3 is not only influenced by the highest price offered during low supply but also due to

high yield per unit area. On the other hand, during the harvesting season, the results show

that Baseline,  Alt.1, and Alt.2 have 17.9%, 21.6%, and 6.9% likelihood of negative NCI,

respectively. Alt.3 and Alt.4 have zero probability of negative returns. Meanwhile, the non-

harvesting season has 0.43% and 1.14% chances of negative NCI for  Baseline and Alt.1

with a zero chance for the last three. For the aggregated/annual results, the table shows

3.59%, 9.62%, and a 0.57% likelihood of negative NCI values for  Baseline,  Alt.1, and

Alt.2, respectively, with Alt.3 and Alt.4 both having a zero probability.
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Table 5.4: Summary statistics and the probability of negative annual net income

from  the  stochastic  simulation  for  control  and  alternative  scenarios

(US$ ha-1).

Scenarios Mean SD CV Min Max Probability(NCI<0)
Income during harvesting season (April – September)
Alt.0 240.2 259.8 108.1 -140.9 1 073.7 17.9
Alt.1 168.6 188.1 111.6 -289.4 645.0 21.6
Alt.2 432.8 266.4 61.5 -203.1 904.6 6.9
Alt.3 765.9 245.3 32.0 227.8 1 401.0 0.0

Alt.4 2 094.5 1 166.3 55.7 283.4 4 016.3 0.0
Income during shortage season (October – March)
Alt.0 558.0 386.8 69.3 -14.9 1 705.4 0.43
Alt.1 677.8 376.3 55.5 -77.3 1 600.4 1.41

Alt.2 1 370.2 513.6 37.5 221.8 2 274.3 0.00
Alt.3 2 197.2 463.9 21.1 1 178.1 3 496.1 0.00
Alt.4 4 979.7 2 199.7 44.2 1 665.6 8 851.5 0.00

Annual net income 
Alt.0 399.2 338.4 84.8 -126.2 1 516.6 3.59
Alt.1 424.9 318.5 75.0 -213.9 1 348.6 9.62

Alt.2 899.7 470.0 52.2 -75.3 2 227.9 0.57
Alt.3 1 485.7 545.2 36.7 308.6 3 147.2 0.00
Alt.4 3 537.2 1 885.9 53.3 527.7 8 312.9 0.00

Notes: SD = standard deviation, CV = coefficient of variation, NCI = net cash income, Exchange rate: US$
1.00/TZS2 340.

Likewise, the Stoplight charts in Figures 5.2–5.4 show the probability of NCI to be less

than the lower target of US$500, the likelihood of exceeding the upper target of US$1000,

and the probability of falling between the two targets. In Figure 5.2, when farmers decide

to sell  their  rice  during  harvesting  season,  the  probability  of  NCI being less  than  the

minimum target is 83%, 96%, 46%, 16%, and 3% for  Baseline,  Alt.1, Alt.2,  Alt.3, and

Alt.4, respectively. The probability of exceeding the maximum target is higher for  Alt.4

(71%), followed by Alt.3 (19%), and 1% for Baseline. Meanwhile, Alt.1 and Alt.2 have a

zero probability.  The probability  of falling  between two targets  is  lower for  Alt.1 and

Baseline and higher for the rest of the scenarios. 
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Figure 5.2: Stoplight  chart for probabilities  of NCI being less than US$500 and

greater than US$1000 for rice farming systems when transactions are

made between April – September.

When  farmers  sell  their  rice  during  low  supply  season,  the  results  show  that  the

probability of NCI being less than the minimum target decreased to 54%, 34%, and 3% for

Baseline,  Alt.1,  and  Alt.2,  correspondingly,  with  a  zero  probability  for  the  last  two

scenarios  (Figure  5.3).  In  the  meantime,  Alt.3 and  Alt.4 have  a  100% probability  of

exceeding the maximum threshold,  followed by  Alt.2 (68%),  Alt.1 (18%),  and a  13%

probability for Baseline. The possibility of falling between the two targets was 32%, 45%,

and 29% for Baseline, Alt.1, and Alt.2, respectively.
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Figure 5.3: Stoplight  chart for probabilities  of NCI being less than US$500 and

greater  than  US$1000  for  alternative  rice  farming  systems  when

transactions are made between October–March.

Figure 5.4 was developed to show the distribution of NCI of all scenarios annually. The

results show that the first four scenarios have a 66%, 60%, 21%, and 2% probability that

annual NCI will be less than $500, respectively, with Alt.4 having a zero probability. The

probability of exceeding the maximum target is higher for Alt.4 (94%), followed by Alt.3

(80%), and Alt.2 (41%), while the first two have less than 10% probability of being above

the maximum target. It is worth mentioning that the higher NCI for Alt.4, Alt.3, and Alt.2

are  associated  with  increased  production  due  to  applying  SRI  technologies,  improved

seeds, or fertilizers. 
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Figure 5.4: Stoplight chart for probabilities of annual NCI being less than US$500

and greater than US$1000 for alternative rice farming systems.

The scenarios were also ranked using a stochastic efficiency with respect to a function

(SERF) where the scenarios are ranked based on the decision-maker utility for income and

risk. Figures 5.5 and 5.6 present the results for low and high supply seasons, respectively.

Regardless of the time of the transaction, Alt.4 provides the most top certainty equivalents

for all realistic risk aversion coefficients, followed by Alt.3 and Alt.2. This indicates that

Alt.4 is highly preferred by all classes (risk-neutral to risk-averse) of decision-makers over

all other scenarios analysed, followed by Alt.3 and Alt.2. The certainty equivalents (CEs)

for Alt.4 were the highest, followed by  Alt.3 and  Alt.2.  In the meantime,  Alt.1 has the

lowest CEs at all levels of ARAC values when the transaction is to be made between April

and September (Figure 5.5). In contrast, when the purchase is to be done between October

and March, the CEs for Alt.1 are slightly higher than for Baseline due to the relatively high

production for Alt.1 (Figure 5.6).
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Figure 5.5: Stochastic  efficiency  with  respect  to  a  function  (SERF)  under  a

negative exponential  utility  function of  NCI when the transaction is

made between April – September.

Figure 5.6: SERF under a negative exponential utility function of NCI when the

transaction is made between October–March.

Figure 5.7 represents the SERF of annual NCI for all scenarios. Likewise, Alt.4 shows the

highest certainty equivalents, followed by  Alt.3  and  Alt.2  correspondingly. This implies

that all risk-neutral and risk-averse decision-makers consistently prefer the three scenarios

over all other scenarios. The CEs for Alt.1 are, to some extent, higher than for Baseline at
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all values of ARAC. The differences indicate that all classes of decision-makers prefer less

the latter (neutral and risk-averse decisionmakers) because the equivalent certainty line for

Alt.1 is above the certainty equivalent for Baseline for ARAC levels of 0 to 0.0030. 

Figure 5.7: SERF under a negative exponential utility function of annual NCI.

5.6 Discussion

By considering the annual net income distribution, rice farms under Alt.4 (SRI adopters)

had the highest income distribution regardless of seasonal variability in price followed by

Alt.3 (partially SRI adopters) and it was relatively low for the non-SRI adopter. The high

variation  in  income depends  upon the  degree  of  adoption  of  the  technology  (Uphoff,

2007). The income gap between the traditional and improved practices,  especially SRI

adopters and non-adopters, was consistent with case studies in Asia, Latin America, and

Africa (Uphoff, 2007). For example, in the Philippines, Llanto et al. (2005) and Cruz et al.

(2005) assessed the impact of SRI practices under the Australian RiceCheck program. The

two studies reported that farmers who adopted at  least  three key SRI practices  earned

gross  profit  margins  nearly  twice  as  large  compared  to  farmers  under  the  traditional

system. Similar observations were also reported in Sri Lanka (Namara et al., 2003). 
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In Viet Nam, the same assessment was conducted and revealed that farmers who adopted

some of the SRI technologies have seen their income increase between 11% to 40% (Pham

et  al., 2005).  In  China,  farmers  who  took  the  improved  farm  management  practices

enjoyed an increase in net income by 48% (Satyanarayana et al, 2007).

In  India,  a  study to  assess  the  impact  of  integrated  crop management  on  rice  farms’

profitability  was  conducted  and  found  a  massive  increase  in  net  income.  The  study

reported a more than threefold profit increase (from US$105/ha to US$369/ha) to farmers

who adopted improved management practices like early transplanting, one seedling per

hill,  square  transplanting;  early  and  frequent  mechanical  weeding;  and  intermittent

irrigation (Balasubramanian et al., 2005; Abdulrachman et al., 2005; Satyanarayana et al.,

2007). Although the studies did not report on the economic contribution in Indonesia and

Cambodia, the improved rice practices recorded an increase of between 10 - 50% and 50 -

100% on yield/ha to farmers who adopted the program (Anthofer, 2004; Satyanarayana et

al., 2007; Glover, 2011). The positive impact of improved rice production practices was

also reported in Brazil,  Venezuela,  Costa Rica,  and Nicaragua (Uphoff,  2007). In sub-

Saharan Africa, eastern Africa, in particular, studies conducted by Tusekelege et al. (2014)

and Bell (2016) show that rice farms under SRI practices yielded ≥ 5.5 tons/ha, but the

studies did not elaborate on the economic viability of the technologies. 

Our results show that rice farms using all the recommended SRI practices generated the

highest  net  cash  income,  followed  by  rice  farms  which  partially  implemented  the

principles.  Farms under  SRI practices  have  80% and 94% probabilities  of  NCI being

greater than US$1000 for partial and full adopters. The chances of negative net revenue

were low even when transactions were to be made during high supply. The high yield per

unit  area resulted from the application of a tailor-made improved technology package.
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The next-best performing scenario was the farms supplemented with both improved seeds

(SARO 5) and fertilizers. The scenario utilizing traditional farming system technologies

was  the  least  preferred  of  the  five  scenarios  analysed.  Those  using  a  combination  of

conventional practices plus improved seed were the second least preferred. 

For  all  scenarios,  especially  under  SRI  practices  (partially  or  fully),  farmers  earn

reasonable profits if they store their produce until the peak price season. Although local

varieties gained higher prices than the improved varieties, SRI users were economically

better off than their counterparts due to higher yields. Women play a significant role in

SRI practices as they were observed to be the most critical participants in training and

supply of labor. In addition, some of the women are now shifting from traditional methods

to applying the new farming system. A successful story in Appendix 5.4 by Mwanaidi H.

Hamza was observed in Mkindo village. Mwanaidi received the SRI training in 2011, and

she started using the technology with great success, which led her to be the focal person in

all issues related to SRI in the country.

Many rice producers (mainly smallholder farmers) in Tanzania continue to use traditional

management practices, which has led to the sector’s continuous low performance (URT,

2015; Wilson and Lewis, 2015). The results of this study provide useful information to

compare the risks and benefits of producing under traditional management practices and

the  benefits  of  producing  under  improved  alternative  management  practices  so  that

farmers would be able to make better management decisions. These results suggest that

even if the rice farmers in Morogoro do not adapt to SRI practices, the technology would

still be the preferred technology for risk-neutral and risk-averse decision-makers.
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5.7 Conclusions 

The purpose of this paper was to compare rice farming systems’ economic viability under

alternative management practices in the Morogoro region, Tanzania, using a Monte Carlo

simulation model. We categorized our sample into five alternative scenarios: (1) farms

using traditional management practices; (2) farms using improved seed varieties; (3) farms

using improved varieties plus fertilizers; (4) farms applying some of the SRI practices; and

(5) farms using all the recommended SRI practices. A Monte Carlo simulation model was

developed based on stochastic variables, including yields, prices, input, and labor costs, to

estimate distributions of economic returns for alternative strategies for better management

decisions. A complete Monte Carlo simulation model was used to simulate the net cash

revenue per season and per year. Thus, a Monte Carlo simulation model was considered in

this paper to incorporate risk faced by farmers by incorporating probability  factors for

random variables that farmers cannot control with certainty. The simulation results of the

model  for  all  the  alternative  management  practices  were  presented  in  charts  and

probabilities to provide a wide distribution of the key output variables. 

The findings of this study have vital policy implications for Tanzania’s government as it

aims to end hunger and reduce poverty by 50% in 2025 through doubling agricultural

production.  Considering that rice is one of the crops targeted to drive Tanzania out of

hunger and poverty, the results of this study suggest the benefits of investing in improved

rice farming technologies, particularly SRI principles. The application of SRI practices has

demonstrated  the  potential  to  increase  rice  yields  and  income  of  farmers.  Given  the

availability  of potential  areas  (including rivers  and nine basins)  for  rice production in

Tanzania, they can be utilized to produce more rice in the country.
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APPENDICES

Appendix 5.1:  Important steps in SRI farming system 

Plate 5.1: selection and preparation of quality viable seeds (by egg and salt solution); 2:
sprouted seed for sowing in the nursery; 3: nursery plots; 4: land/farm preparation for easy
water management; 5: marking 25cm x 25 cm transplanting grids in the field; 6: a two-leaf
seedling  appropriate  for  transplanting;  7:  seedling  transplanting  and  8:  fertilizer
application. 

Source: Modified  from  the  Tanzania  SRI  Training  Manual  for  Extension  Staff  and
Farmers (URT, 2015)
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3
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Appendix 5.2: Production cost per ha for rice farming systems in Tanzania 

This appendix presents the type of input and their respective costs used in rice production

for each scenario (Table 5.2.1) and Figure 5.2.1. Displays the distribution of total  cost

(US$/ha) used per scenario.

Appendix 5.2.1: Estimated  costs  of  production  (US$/ha)  per  hectare  for  rice  under different

farming systems in Tanzania.

Variable cost
Scenario.0 Scenario.1 Scenario.2 Scenario.3 Scenario.4

Min Max Min Max Min Max Min Max Min Max
Seed: Traditional 13.3 21.3
Seed: Improved*** 8.9 17.8 8.9 17.8 8.9 17.8 17.8 35.6
Nursery preparation 35.6 44.4
Plowing 17.8 22.2 17.8 22.2 17.8 22.2 17.8 22.2 17.8 22.2
Harrowing 17.8 22.2 17.8 22.2 17.8 22.2 17.8 22.2 17.8 22.2
Leveling and puddling 31.1 44.4 31.1 44.4
Marking transplanting grids 22.2 35.6 22.2 35.6
Planting: Broadcasting 17.8 22.2
Seedling: Transplanting 31.1 44.4 31.1 44.4 44.4 71.1 80.0 111.1
Weeding: 1st round 44.4 111.1 44.4 111.1 44.4 111.1 66.7 133.3 66.7 133.3
Weeding: 2nd round 35.6 44.4 35.6 44.4 35.6 44.4 44.4 66.7 44.4 66.7
Weeding: 3rd round 35.6 44.4 44.4 66.7 44.4 66.7
Bird scaring 22.2 35.6 22.2 35.6 22.2 35.6 22.2 35.6 22.2 35.6
Post-emergence pesticides 4.4 6.7 4.4 6.7 4.4 6.7 13.3 22.2
Field wetting and drying 
(water control) 35.6 53.3
Fertilizer: 1st round DAP 26.7 48.9 26.7 48.9 44.4 57.8
Fertilizer: 2nd round UREA 26.7 48.9 26.7 48.9 44.4 57.8
Fertilizer: 3rd round UREA 26.7 48.9 26.7 48.9 44.4 57.8
Harvesting/threshing 44.4 88.9 48.9 111.1 66.7 133.3 88.9 155.6 133.3 177.8
Postharvest handling 13.3 26.7 13.3 31.1 26.7 44.4 35.6 80.0 57.8 88.9
Storage 8.9 22.2 17.8 26.7 26.7 44.4 35.6 57.8 44.4 80.0
Total 235.6 416.9 262.2 473.3 417.8 717.8 564.4 962.2 817.8 1213.3

*** for SRI farming system seed farmers considered a carefully seed selection and preparation to 
obtain quality seed for high germination probability.
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Figure 5.2.1: (a) PDFs of production costs per ha and (b) CDFs of production costs 
per ha used in the model for each scenario.
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Appendix 5.3: Probability Distribution Functions (PDF) Charts for the Simulated Sample (in Red) vs. Observed Yields and Prices 

Sampled (in Black)

Figure A2. 1. Probability distribution functions for observed vs. 500 simulated stochastic yields and prices: black charts represent the
observed sample yields (Baseline_Ob45 to Alt.4_Ob45) and price (LocalP1_Ob45, LocalP2_Ob45, ImproP1_Ob45,ImproP2_Ob45);
red  charts  represent  the  500  simulated  sample  yields  (Baseline_LHC500  to  Alt.4_LHC500)  and  price  (LocalP1__LHC500,
LocalP2__LHC500, ImproP1__LHC500, ImproP2__LHC500). Prices are in TZS. US$1= TZS 2250.
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Appendix 5.4. SRI Success Story of Mwanaidi H. Hussen One of the First Farmers to

Adopt the Technology

Mwanaidi is one of the first farmers to start using SRI technology soon after she attended

the training conducted by the Sokoine University of Agriculture. She is now a focal person

in Mkindo village in Mvomero district. The Ministry of Agriculture (MoA) has awarded

her  prizes  for  being  an  example  in  harvesting  more  rice  per  unit  area  following  SRI

practices. She is now used by the MoA and other stakeholders to conduct SRI training and

demo plots for other farmers. SRI technology has significantly changed her life. Her own

success story is as shown in Box 1 below.

“I’m Mwanaidi H. Hussen (Mama Shadidi) joined SRI in 2011 after receiving training from Sokoine University of
Agriculture under the supervision of Profs. Mahoo and Kahimba. Since rice farming is my main economic activity, the
following year (2012), I applied the knowledge to my own 1 acre. Fortunately, the harvest was four times higher (47
bags) compared to previous yields. In 2013 and 2014, the harvest ranged between 45 to 48 bags and reached 50 bags in
2015. Through SRI, I have achieved the following: 

• In the year 2015, I was awarded a prize of 5,500,000 TZS by Morogoro agricultural Authority as the best farmer of

the year.

• In terms of food security my family has never suffered from food shortage anymore.

• I always keep ten (10) bags (1 ton) of rice for my family and sell the rest. 

• I am now capable of sending my kids to English medium schools and afford the costs.

• I have renovated my house and installed with electricity plus tap water. 

• I also conduct SRI pieces of training to my fellow farmers. Taking care of one young orphan boy. 

• I built a small fish pond and a vegetable garden around my house, which gives me a small amount of money for my

family ….”
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CHAPTER SIX

6.0 GENERAL CONCLUSIONS AND RECOMMENDATIONS

The  current  nature  of  the  agricultural  sector  and  the  increased  interest  in  stochastic

simulation calls for a review of the techniques available for risk analysis and the viability

of  agricultural  production  systems.  Likewise,  farmers,  agribusiness  managers,  and

policymakers are increasingly interested in risk-management tools and policies. One of the

main  challenges  available  in  the  agricultural  and  agribusiness  industry  is  how  to

incorporate risk and uncertainties in forecasting and feasibility analyses using time-series

or historical data.

The second challenge is how data from biophysical like DSSAT and APSIM can be linked

with  economic  models  to  can  capture  risk  and  uncertainty  more  comprehensively  for

better policy decision making. DSSAT and APSIM can be integrated with econometric

models and report results beyond the agronomic perspective to socio-economic outlook.

The  third  challenge  is  how  household  cross-sectional  or  panel  survey  data  can  be

manipulated stochastically to capture the inherent risk and uncertainty. Also, the procedure

to incorporate heteroscedasticity of the random variables like prices and yields over time

is still a problem.

With  the  current  widespread  availability  of  microcomputers  and  the  increasing

computational  power  of  spreadsheets  has  allowed  agricultural  analysts  to  develop

stochastic simulation models  using Microsoft  Excel  to meet the growing demand. The

current production and price volatilities in the agricultural sector due to climate change

and variability, particularly in developing countries, will undoubtedly continue to increase

the demand for simulation-based analysis in the future. The main objective of this study
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was, therefore, to create and demonstrate applied stochastic simulation techniques to be

used  in  addressing  the  above  challenges.  Specific  objectives  of  this  study  were  to

developed and present user-friendly stochastic models to address these challenges.

The first objective was to develop a stochastic simulation model to evaluate the economic

feasibility of three main cereal crops, namely: maize, sorghum and rice for the seven years

through 2025. In this regard, a MASORISIM which stands for maize, sorghum and rice

simulation  model  was  developed.  The  MSORISIM  designed  to  incorporate  risk  and

uncertainty associated with productivity and profitability of the selected crops. The model

started by converting random variables like prices, yields, production costs, and inflation

rates into stochastic form. The stochastic variables were finally used in forecasting and

economic analysis. Since the model was simulating random variables (prices and yields)

for  three  crops,  it  incorporated  the  correlation  among  variables  and  controlled  the

heteroscedasticity of these variables.  Out of this objective,  a paper was developed and

published to  Agricultural  Systems,  a  peer-reviewed international  journal  in  the  special

issue  (SI)  of  Risk  Management  in  Agriculture:  what  challenges  and  prospects?  The

electronic version of the paper is available at [https://doi.org/10.1016/j.agsy.2019.102693]

The second objective was to develop and illustrate a bio-economic simulation model to

evaluate the benefits of recommended management practices on maize production. The

bio-economic simulation is an integrated decision support system (IDSS) which links data

from biophysical  and  econometric  models  for  comprehensive  decision-making.  Maize

yield data from APSIM and DSSAT crop models were made stochastic using a Monte

Carlo  simulation  procedure.  The  stochastic  yield  was  combined  with  other  random

variables like prices and production costs to develop a complete IDSS for evaluating the

economic feasibility of maize with and without farm management practices. A manuscript

https://doi.org/10.1016/j.agsy.2019.102693
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was  produced  and  published  to  Agricultural  Systems,  an  international  peer-reviewed

journal  and  the  electronic  copy  of  the  paper  is  available  at

[https://doi.org/10.1016/j.agsy.2020.102948].

The third objective was to conduct scenario analysis on rice farming systems in Tanzania

to identify the system which has the highest potential to farmers. Traditional and improved

rice farming systems were analysed and compared to one another using a Monte Carlo

simulation protocol. The risk associated with each rice farming system was included in the

analysis.  A manuscript  was  developed  and  published  to  Sustainability a  peer-review

journal of MDPI. The manuscript belongs to the SI of Suitable Agronomic Techniques for

Sustainable Agriculture and can be accessed at [https://doi.org/10.3390/su12166528].   

6.1 Contribution of the Study to Knowledge

The  vital  contribution  of  this  study  is  the  application  of  a  Monte  Carlo  simulation

approach to develop and demonstrate user-friendly stochastic risk simulation tools over

deterministic models. Scholarly, the work has increased the number of references on the

application  of  stochastic  risk  in  agricultural  production,  which  were  relatively  low in

Tanzania.  Unlike conventional, forecasting methodologies, the MASORISIM helps in the

inclusion of risk and uncertainties in the forecasting of stochastic variables that have a

critical impact on farm net cash returns. 

Moreover, this study’s contribution is the development of IDSS model where data from

biophysical  models  like  APSIM  and  DSST are  linked  with  econometric  models  for

enhanced decision making. There are a limited number of studies (if any) in Tanzania and

SSA  which  are  linking  data  from  process-based  models  in  simulating  risks  and

uncertainties on crop yields. With the current increase in global concern on integrated risk

https://doi.org/10.3390/su12166528
https://doi.org/10.1016/j.agsy.2020.102948
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assessment studies [www.agmip.org], this study, therefore, addresses the existing gap by

demonstrating how biophysical models can be linked with economic models to develop a

bio-economic IDSS model. The IDSS was then used to assess the economic feasibility of

application of 40 kg N-fertilizers per ha and adjustment in plant population of 33 000 plant

population per ha on maize sub-sector. The study also performed a scenario analysis which

is a state-of-the-art approach to identify rice farming systems with the highest potential in

Tanzania.

6.2 Areas for Further Research

The analysis of this study was based only on two agro-ecological zones (semi-arid and

sub-humid). Drawing conclusions for policies at the national level could be inappropriate.

With  the  availability  of  time  series  and  national  panel  data,  it  would  be  essential  to

conduct similar studies at the national level to include other agro-ecological zones. The

developed approach is operationally feasible because the algorithms used in this study are

applicable at any scale, including the national. The MASORISIM model can be fabricated

to include more crops than only maize, sorghum and rice. The model can also made-up to

include all regions of Tanzania than only Dodoma and Morogoro. However, accurate and

timely yield and price forecasts for main crops at a national level will provide a reliable

roadmap  of  the  whole  Tanzania,  particularly  the  Ministry  of  Agriculture  and  other

agriculture sector development initiatives. 

The procedures used in developing the IDSS bio-economic simulation model was based

only  on  two  management  practices  (N-fertilizer  and  plant  population)  on  maize

production. The model can be modified to analyse an array of technologies for different

crops  and  site-specific.  Likewise,  similar  studies  on  other  important  crops  that  are

essential in maintain food security in Tanzania can be conducted. The study also did not
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include  cash  crops  such as  cotton,  coffee,  sisal,  and sugarcane,  which  are  critical  for

generating  foreign  income.  Also,  the  model  applied  to  this  study  can  be  modified  to

analyse the entire country or all agro-ecological zones. 

Since the government aims to end hunger and reduce poverty of the majority by at least

50%  in  2025  through  doubling  agricultural  production  for  sustainable  national  food

security  and  nutrition,  farmer  income  and  economic  growth.  This  calls  for  different

scenario  analyses  to  identify  farming systems which  are  potential  for  increasing  farm

productivity and profitability. For example, application of SRI was found to be the best

alternative  in  rice  production  in  Tanzania  which  needs  to  be  emphasized  by  the

government. This approach can be applied to an array of management practices, including

crop rotation, mulching, improved irrigation, agroforestry, terraces, contours, beekeeping,

rainwater harvesting, fishing, and tower garden.

With evidence from crop models like APSIM and DSSAT, bio-economic integrated studies

are,  however,  needed to explore the potential  of more crop management  practices  and

technologies for better decision-making. This study forms a basis for more risk analysis

studies to improved decision marking for farmers, government, and stakeholders in the

agricultural sector. 

Nevertheless, this study has a vital implication on the policy environment. For instance,

the  Tanzania  Development  Vision  2025,  emphasizes  that  by  "2025  the  agricultural

economy will have been transformed from low productivity to a semi-industrialized sector,

led  by  modernized  and  highly  productive  agricultural  activities  which  are  effectively

integrated and buttressed by supportive industrial and service activities in the rural and

urban  areas".  Likewise,  the  ASDP-2,  the  Tanzania  Agriculture  and  Food  Security
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Investment Plan (TAFSIP) and the CAADP were formulated to assist the achievement of

TDV 2025. However, this study has revealed that there is still uncertainty in productivity

and profitability of key crops in Tanzania unless farmers apply are encouraged to use the

recommended farm management practices. There is, therefore, a need to conduct similar

studies to assess the outlook of agricultural production by 2025 and further and highlight

the benefits of different farm options that can be utilized for increased productivity and

profitability of the selected sectors.
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