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Soil moisture-holding capacity data are required in modelling agrohydrological functions of dry subhumid environments for
sustainable crop yields. However, they are hardly sufficient and costly to measure. Mathematical models called pedotransfer
functions (PTFs) that use soil physicochemical properties as inputs to estimate soil moisture-holding capacity are an attractive
alternative but limited by specificity to pedoenvironments and regression methods. This study explored the support vector
machines method in the development of PTFs (SVR-PTFs) for dry subhumid tropics. Comparison with the multiple linear
regression method (MLR-PTFs) was done using a soil dataset containing 296 samples of measured moisture content and soil
physicochemical properties. Developed SVR-PTFs have a tendency to underestimate moisture content with the root-mean-square
error between 0.037 and 0.042 cm®.cm ™ and coefficients of determination (R*) between 56.2% and 67.9%. The SVR-PTFs were
marginally better than MLR-PTFs and had better accuracy than published SVR-PTFs. It is held that the adoption of the linear

kernel in the calibration process of SVR-PTFs influenced their performance.

1. Introduction

Sustainability of crop yields in dry subhumid zones of
marginal agricultural productivity requires integrated
modelling approaches to provide the necessary feedback for
adapting agrohydrological functions to changing seasonal
soil moisture regimes [1]. Soil moisture-holding capacity is
an important parameter for modelling moisture availability.
It is a measure of the difference between moisture at field
capacity and wilting point [2]. Moisture-holding capacity
facilitates the description of soil hydrological processes such
as drainage, infiltration, and percolation and is vital input
data in models such as Soil Water Assessment Tool (SWAT)
[3], and AQUACROP [4]. However, soil moisture data are
generally in limited supply for tropical soils [5, 6], largely
due to high costs of measurement and lack of associated
equipment [6, 7].

Mathematical equations known as pedotransfer func-
tions (PTFs), linking easily measured soil properties as input
variables to soil moisture data, have been employed to bridge
data gaps. With extensive development for temperate soils

[8], PTFs application is fraught with specificity to calibration
datasets [1] and geographic regions [8, 9]. Tropical soils have
a bimodal particle-size distribution in contrast to the uni-
modal soils of the temperates [5, 10], with maximal weight
percentage for clay- and sand-size fractions and low silt
content [5]. This is suggested to impart contrasting soil
hydraulic characteristics [5, 11-13], limiting transferability
of PTFs for modelling processes across their statistical and
pedoclimatic calibration bounds [9, 14].

Utility of PTFs necessitates validation or development of
new PTFs for improved modelling outputs [9, 12]. Studies to
this end for tropical soils in sub-Saharan Africa include
Wosten et al. [7], Botula et al. [11], Young et al. [15], Mdemu
and Mulengera [16], Mugabe [17], Obalum and Obi [18],
and Mdemu [19]. All these studies have drawbacks including
evaluation on small soil datasets or compiled soil databases
or frequent application of the multiple linear regression
method. Among the many PTF development methods, the
multiple linear regression method has been highlighted to be
inadequate in capturing the nonlinearity associated with
moisture-holding properties [14, 20]. An insufficient data
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size has been reported to be a major weakness for PTF
evaluations [21-23]. Substantial uncertainty also exists with
soil databases used to derive the PTFs [12], probably as-
sociated with data entry or measurement inconsistencies
5, 12].

Machine learning algorithms generally have better flexi-
bility in mimicking the complex nonlinear pattern in the soil
moisture continuum [11]. Enhanced computational efficiency
of computers has spiralled the advancement of sophisticated
machine learning algorithms such as artificial neural networks
(ANNG) [9, 24], k-nearest neighbour [11, 21, 25], and support
vector machines (SVMs) [20, 26-28]. Interest here is skewed
to the SVMs because they are easier to implement than the
popular ANNs [29] and have circumvented typical drawbacks
associated with ANNs [20, 30, 31]. Results from ANNSs are
nonunique, highly dependent on the initialisation parameters,
require a relatively large dataset for effective training, and
often end in overfitting [30].

Support vector machines are a supervised machine
learning algorithm based on statistical learning theory
[32, 33], developed for data classification in [34] and later
extended to solve regression problems [30, 31, 33]. The key
advantage of the SVMs is structural risk minimisation
over the empirical risk minimisation which checks
overfitting during model development [29, 33]. Lamorski
et al. [35] and Twarakavi et al. [20] pioneered the use of
SVMs in the development of parametric and point PTFs,
reporting improvements over ANNs. There is currently
stimulated interest in the use of SVMs for PTF devel-
opment [25, 26, 31], but with no evident work for sub-
Saharan Africa soils. Flexibility of SVMs in incorporating
limited soil data [27] would be of added benefit partic-
ularly for sub-Saharan countries, where soil data are
limited but in high demand for developing sustainable
farming systems. In view of this, the objective of this
research was to apply support vector machines to develop
pedotransfer functions for moisture-holding capacity
using experimentally measured data.

2. Materials and Methods

2.1. Study Area. The study area was the Ilakala village in
Kilosa District, Morogoro Region, Tanzania (Figure 1),
within latitudes 7°5'30”S and 7°9'30”S and longitudes
36°50'30"E and 36°57'30"E. It has a total area of about
44 km?. Agriculture (both cropping and livestock keeping) is
the major livelihood activity in the area. The cropping
system is a maize-sesame-pigeon pea small-holder system,
with maize and pigeon peas as the main food crops. Sesame
is a cash crop. Livestock keeping is typically undertaken by
pastoralist communities of Masai and Sukuma ethnicities.
Major soil types traversing the study area are Hyperdystric
Cambisol (loamic and ochric), Rhodic Acrisol (clayic, cutanic,
epieutric, and profondic), Luvic Stagnic Umbrisol (endoeutric
and loamic), Endogleyic Protovertic Eutric Cambisol (colluvic
and ruptic), and Pellic Vertisol (ferric, humic, and meso-
trophic) [36]. Many seasonal streams drain the area from the
hilly regions in the southwest and western edges, feeding into
River Mhenda that flows along the eastern edge of the village.
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2.2. Soil Sampling and Analysis. A soil dataset of 296 samples
collected between June 2014 and July 2015 was used in this
study. Soil samples were taken from 100 locations at three
depths (0-30 cm, 30-60 cm, and 60-100 cm). The 100 cm soil
depth interval covers the complete root zone essential for
available water for crop growth [37]. However, soil samples at
the 60-100 cm depth interval were not taken at four sampling
locations due to rockiness. Bulk soil samples were air-dried and
crushed and sieved through a 2mm sieve. Sieved soil samples
were then analysed in the laboratory for particle-size distribu-
tion and organic carbon. Particle-size fractions were determined
by the Bouyoucos hydrometer method [38] and separated
according to the United States Department of Agriculture
(USDA) particle-size classification system [39]. Organic carbon
was determined by the wet oxidation method of Walkley and
Black [40]. Duplicate undisturbed soil core samples in 100 cc
Kopecky rings with height and diameter dimensions of 5cm
were used to determine soil moisture at field capacity (FC) and
moisture content at wilting point (WP) using a pressure plate
apparatus. Soil matric suctions of 30kPa and 1500 kPa were
used for FC (05,) and WP (6,50), respectively. The very soil core
samples were used to determine bulk density (BD) after drying
the soil core samples at 105°C for 24 hours [41].

2.3. Descriptive Statistical Analyses. The soil dataset was
randomly split into a ratio of 2:1 for a training dataset
(n=198) and a testing dataset (n = 98), respectively. De-
scriptive statistics, normality tests, and correlation analyses
were performed for constitutive soil variables in the dataset
(BD, OC, sand, clay, and silt contents, FC, and WP) using the
R statistical software [42].

2.4. PTFs Development. The training dataset was used for
SVR model calibration. Input 055 and 6,500 data were log-
transformed prior to model development for both MLR and
SVR methods. This was necessary for the target variables to
conform to a normal distribution. Epsilon support vector
regression (e-SVR) was used for development of SVR-PTFs in
the R software package e1071 [43]. Mathematical formulation
of SVR is elegantly explained in the studies [20, 27, 33, 44].
Success of SVR calibration depends on three key issues: (1)
selection of a suitable kernel function, (2) choice of the
cost/regularisation parameter C, and (3) the “tube” in-
sensitivity variable ¢ [20]. Table 1 shows some common kernel
functions for SVR. The Gaussian radial basis function (RBF)
kernel has been used most frequently [20, 25, 26, 35], but
a linear kernel was chosen for this study because of the
overfitting challenges reported with the RBF kernel [28].
The parameters C and ¢ are known as the hyper-
parameters and their optimisation determines how good the
SVR model is, while “p,” “r,” and “d” are kernel parameters.
The parameter C determines the tolerance of the calibration
prediction error and structural complexity of the SVR
model. With large C values, higher penalties are assigned to
the calibration error, resulting in model complexity and
a computationally inefficient model with a low generalisa-
tion capability. The ¢ parameter controls the loss function
which controls the width of the insensitive zone leading to
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FIGURE 1: Location map of the Ilakala village.

TaBLE 1: Common kernel functions and their hyperparameters in
SVR.

Kernels Functions Parameters
Gaussian radial basis (—ylT=x.P)
K e i Cevy
function
Linear x;-r CX; C, ¢
- T d
Polynomial (yx; X+ r) Coerd

minimisation of the regression risk. Large values of ¢ lead to
smaller numbers of support vectors and poor generalisation.

The SVR calibration procedure was carried out in three
steps: first, the training dataset was used to initially fit the SVR
model with the linear kernel function through epsilon re-
gression in the R software package e1071 [43]. Linear kernel
functions have only two hyperparameter values that require
setting, that is, the C and ¢ parameters. The default package C
parameter value (C= 1) was retained for the initial fit, while
the & parameter was set to the following equation [45]:

=30 (2),

where 7 is the number of records in the training dataset and
o is the standard deviation of the data.

In the second step, tuning of the SVR model hyper-
parameters was performed using a grid-search method
with a 10-fold cross validation in 5 repeats. The grid-search
method facilitates optimisation of hyperparameters by esti-
mating the training prediction error for each set of all possible

In(n)
n

1

combinations of hyperparameters within the feasible feature
space [20]. With insights from earlier studies [31, 35], the
parameter search space was a priori set to 0.001 < C< 1000 at
an incremental ratio of 10 and 0<&e<0.3 at steps of 0.001.
Subsequent fine tuning was performed using a parameter
search space within the neighbourhood of the best optimised
hyperparameters from the second step. This process gener-
ated the best optimal hyperparameters that were ultimately
used for developing the SVR-PTFs in the third step.

Multiple linear regression- (MLR-) PTFs were also de-
veloped for comparison purposes. Stepwise regression was
used to develop the MLR-PTFs using the SPSS software
package version 20 [46]. Both the SVR-PTFs and MLR-PTFs
were then applied to the testing data to assess their validity.
Performance of the developed PTFs was evaluated using the
root-mean-square error (RMSE), mean error (ME), and
coefficient of determination (R?) as indicators. The RMSE,
ME, and R? indices were calculated using (2)-(4), re-
spectively. The RMSE and ME should ideally be close to zero,
while R* should be close to one:

(2)
3)

2 _Z?:l [y_j’]z
K=lSr e @
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FIGURE 2: Percentage distribution of USDA soil texture classes between soil datasets. (a) Training dataset. (b) Testing dataset.

where y is the measured moisture content, ¥ is the predicted
moisture content, ¥ is the mean of the measured moisture
content, and » is the number of datasets.

3. Results and Discussion

3.1. Descriptive Statistics of Soil Datasets. The training and
testing datasets were distributed within seven USDA soil
texture classes (Figure 2). Most samples are coarse textured
with more than 50% of the samples either of a sandy clay
loam or a sandy loam soil textural class.

Table 2 shows the summary statistics of the training
and testing datasets. Across both datasets, bulk density
ranged from 1 to 1.19 g-cm ™. Organic carbon ranged from
0.06% to 3.37%, and clay, sand, and silt contents ranged from
0.1% to 63.6%, 20% to 96.6%, and 1.4% to 35.4%, re-
spectively. Moisture content at FC (650) ranged from 0.08
to 0.48 cm>-cm >, while moisture at WP (6,500) ranged from
0.03 to 0.39 cm™cm . Mean values of training and testing
datasets were similar for all soil variables. Although the
skewness indices were consistent with a Gaussian distri-
bution [47], kurtosis values were nonoptimal for an as-
sumption of normality to be held [48].

Table 3 shows the correlation coefficients for the soil
physicochemical properties on moisture content at FC (65)
and moisture content at WP (0;500). Sand and clay had
a strong correlation (r>0.7) but with opposite polarity for
both FC and WP. Bulk density, OC, clay, and sand had
highly significant correlations with moisture content at 05
and 0;500. Silt was poorly correlated with 05y and 0,599 with
r<0.07. Organic carbon was positively correlated with
moisture content at both suction extremes. Organic carbon
content influences moisture retention properties due to its
role in many other physical and physicochemical soil
properties. Higher OC content improves soil structure and

TaBLE 2: Descriptive statistics of training and testing datasets.

Min  Max Mean SD Skewness  Kurtosis
Training
BD 1.00 1.19 1.06 0.04 1.17 1.40
OC 0.06 3.23 0.80 0.58 1.63 3.30
Clay 0.10 63.60 22.19 16.64 0.64 -0.53
Sand 20.00 96.60 6490 16.41 —-0.52 -0.35
Silt 1.40 3540 1290 4.89 0.87 2.75
030 0.08 0.48 0.23 0.07 0.52 0.23
0,500 0.03 038 018  0.07 0.31 -0.13
Testing
BD 1.00 1.16 1.05 0.03 0.97 0.88
oC 0.10 3.37 0.82 0.64 1.69 3.42
Clay 0.10 61.00 22.26 15.78 0.55 -0.64
Sand 25.60 94.60 64.67 1597 -0.31 —-0.61
Silt 2.80 2440 13.08 5.29 0.10 -0.71
030 0.09 0.41 0.23 0.07 0.02 —-0.46
01500 0.05  0.39 0.19 0.07 0.05 -0.26

TABLE 3: Pearson correlation coefficients for soil variables.

BD (g-cc) ocC Clay Sand Silt
030 —046%* 023" 073" —076"*  0.07
01500  —0.46*** 028  0.77°**  —0.8* 0.7

“**Values are significant at a p value of 0.1%.

porosity, leading to increased moisture-holding capacity [3].
Organic matter also has high cation-exchange capacity and
high specific surface area which enhances its moisture ab-
sorption capacity [49, 50].

3.2. PTFs Development. The initial fit generated SVR models
with support vectors ranging from 188 to 191 at hyper-
parameter settings of C=1 and £=0.034 derived from (1)
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FIGURE 3: Sensitivity of SVR hyperparameter calibration to incremental soil predictor variables: (a) FC1, (b) FC2, (c) FC3, (d) FC4, (e) WP1,

(f) WP2, (g) WP3, and (h) WP4.

(results not shown). This translated to about 95%-96% of the
total support vectors used in model formulation, suggesting
poor generalisation of the models with this initial choice of
hyperparameters. The number of support vectors within the
SVR model signifies its suitability for predictions on a new
dataset. A larger proportion of support vectors lead to
overfitting of the model and poor predictions on a new
dataset, while a smaller proportion lead to underfitting [20].
A 50% threshold has been held as the theoretically optimal
proportion of support vectors for good generalisation on
new datasets [20, 28].

Figures 3(a)-3(h) show model sensitivity with varying
SVR hyperparameters’ combinations and increasing soil
predictor variables during the coarse grid-search tuning
process. The cross-validation error for FC SVR models ranged
between 0.035 and 0.08 (Figures 3(a)-3(d)), respectively,
corresponding to model types FCI to FC4 (Table 4), while for
WP SVR-models, the cross-validation error ranged between
0.04 and 0.14 (Figures 3(e)-3(h)) for model types WP1 to
WP4. Models were most sensitive to values of C parameters,
generally with lower C values (C<107°) leading to higher
errors for both WP and FC SVR models. The WP models were
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TABLE 4: Calibration results of optimal hyperparameters of SVR model types.
. C € SVs CV errors
Predictors
Ist 2nd Ist 2nd Ist 2nd st 2nd

FC1 Sand + clay 100 127 0.197 0.21 151 143 0.043 0.044
FC2 Clay + sand + BD 1 0.1 0 0.25 198 128 0.034 0.034
FC3 Clay +sand + BD + OC 100 96 0.006 0.022 196 189 0.034 0.034
FC4 Sand + BD 1 0.4 0.244 0.24 126 128 0.034 0.034
WP1 Sand + clay 0.1 0.35 0.199 0.217 146 138 0.080 0.081
WP2 Clay + sand + BD 1000 950 0.246 0.24 119 124 0.067 0.067
WP3 Clay + sand + BD + OC 0.1 0.65 0.15 0.15 151 149 0.065 0.065
WP4 Sand + BD + OC 10 28 0.037 0.156 183 150 0.033 0.065
most sensitive to the hyperparameters than the FC models, TasLE 5: f8 coefficients of MLR-PTFs for FC and WP.
with the CV errors of the WP modells almost .twice those of FC Variable 3 Sig. Tolerance VIE*
models for the same predictor variables (Figure 3(a) versus FC
Figure 3.(e), Figure 3(b) versus Figure 3(f), and Figure 3(c) Intercept 2163 0 B .
versus Figure 3(g)). However, that was not the case for the Sand _0.013 0 0.926 1.08
models FC4 and WP4, which showed similar CV errors Bulk density 2712 0 0.926 1.08
because the model WP4 had an extra predictor variable (OC) WP
than model FC4. Intercept 2916 0 — —

The pattern of higher CV errors for the WP SVR models was Sand -0.017 0 0.855 1.17
perhaps related to the input predictor variables in the model. Bulk density -3.493 0 0.911 1.097
Apparently, inclusion of sand as a predictor variable in WP 0oC 0.083 0.011 0.921 1.086

models is counterintuitive as its adsorption of moisture at high
matric suctions (i.e., 1500 kPa) is negligible. At high soil matric
suctions, forces of molecular attraction (specific surface area and
capillary forces) are greatly responsible for moisture retention in
the soil matrix [49, 51]. Specific surface area is highly dependent
on the soil particle-size distribution or texture class [52]—finer
soil particle sizes have the highest specific surface area and sand
the least. However, high correlation of sand with 0,5, (Table 3)
informed its inclusion as a predictor for WP. This observed
correlation could be linked to modification of surface properties
of sand grains via fine-sized coatings (e. g. clay) thereby en-
hancing positive interactions with residual moisture.

Table 4 shows the most optimal hyperparameters from
the coarse grid-search (Ist) and fine grid-search (2nd)
processes, with their corresponding cross-validation errors
(CV errors) and number of support vectors (SVs). A lower
number of SVs were evident for the SVR models after the
2nd tuning except for the FC4 model.

Table 5 shows the coeflicients for the MLR-PTFs. All
input variables were statistically significant. The tolerance
and VIF scores indicate that the soil variables included as
inputs were important predictors for moisture retention at
FC and WP. A tolerance score >0.1 and VIF <10 indicate
absence of multicollinearity and hence model parsimony.
This implies that only the most influential predictor variables
were objectively retained in the regression model. Bulk
density has an inverse influence on the prediction of
moisture retention. Increase in bulk density results in the
destruction of the pedostructure and pore architecture,
leading to a reduction in the available volume for soil
moisture storage. Sand as a predictor variable had an inverse
and the least influence on the moisture predictands in the
MLR model. This trend could be explained by increases in
soil macropores associated with sandy soils, which results in
a decline in moisture retention [53]. Furthermore, sand

*VIF: variance inflation factor; Sig: significance at the 5% probability level.

TaBLE 6: Performance indicators for SVR models with different
predictors.

Model Inputs (leg\{g:n%) (cnIg\-Ac ?’1]1573) R?

EC1 Sand + clay 5.53x107° 0.042  0.562
FC2 Clay + sand + BD 2.61x107° 0.038  0.643
FC3  Clay+sand+BD+OC 5.00x107* 0.037  0.663
FC4 Sand + BD 2.62x107° 0.038  0.645
WP1 Sand + clay 6.96x107° 0.045  0.546
WP2 Clay+sand+BD  3.74x107  0.037  0.668
WP3  Clay +sand + BD + OC 2.99x107> 0.037  0.677
WP4 Sand + BD + OC 2.47x107° 0.037  0.679

particle fractions have a low cation-exchange capacity [54],
which results in limited adsorptive sites for retaining
moisture [49]. The small 8 coefficient for OC could have
been because of the calibration of the model on a dataset
with a low OC content. The average value for OC content in
the training dataset was 0.8% (Table 2), which corresponds
to a rating class of very low [55].

3.3. Evaluation of PTFs. Table 6 shows the performance
indicators for the SVR models with varying predictors. The
RMSE values ranged from 0.037 cm’.cm ™ to 0.042 cm™.cm ™.
These RMSE values suggest good model accuracy, given that
typical RMSE values for PTFs are reported to range within
0.02 and 0.07 cm>-cm™ [23]. The MEs for the developed SVR
models except for the model FC3 were greater than zero,
indicating a tendency to underestimate moisture at FC and
WP. Coeflicients of determination (R?) were between 56.2%
and 67.9% but slightly higher for the SVR models for wilting
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FIGURE 4: Unit plots of SVR- and MLR-predicted moisture content on the testing dataset. (a) SVR-FC3. (b) MLR-FC. (¢) SVR-WP4. (d)

MLR-WP.

point (WP2, WP3, and WP4) than the field capacity models
(FC2, FC3, and FC4). The best SVR model was FC3 for
moisture prediction at field capacity with sand, clay, bulk
density, and organic carbon as predictors. For wilting point,
the model WP4 was the best performing model with sand,
bulk density, and organic carbon as predictors. The developed
models explain a substantial proportion of variance of the
data and provide satisfactory quantitative estimates of
moisture. According to [56], models with R? values of 0.50 to
0.65 show good discrimination between low and high values,
while those within 0.66-0.81 indicate approximate quanti-
tative predictions, 0.82-0.90 indicate good prediction, and
>0.91 indicate excellent prediction.

Unit plots of SVR- and MLR-predicted moisture content
on the testing dataset are shown in Figure 4. The best
performing SVR-PTFs (SVR-FC3 and SVR-WP4) were
compared here. The R*>, ME, and RMSE values were mar-
ginally better for the SVR-PTFs (Figures 4(a) and 4(c)) than
the developed MLR-PTFs (Figures 4(b) and 4(d)). These
results are comparable to those of Nguyen et al. (2017) who
also found marginal differences between MLR-PTFs and
SVR-PTFs. They attributed the observed good performance

of MLR-PTFs fitted by the least-squares approach to model
stability which results in low variance.

Evaluation indices (R%, ME, and RMSE) were also better
at wilting point than at field capacity for both SVR and MLR
models. Mihalikova et al. [57] also found moisture content
predictions to be more reliable at WP than at FC. The
possible reason for this trend could be linked to the fact that
moisture content at higher matric potentials (i.e., FC) is
controlled by numerous soil factors which results in large
variability within measurements. In contrast, moisture at
wilting point is mainly influenced by specific surface area of
the soil constituents which minimises variability in mea-
surement values. The positive ME values indicate that the
PTFs tend to underestimate moisture content. Although the
ME of SVR-FC3 (ME=5.0x10"*) might suggest an un-
biased model, this result was due to the deviations above and
below the line of fit cancelling out.

The RMSE values for both FC and WP were
0.037 cm’.cm ™ for the SVR-PTFs and 0.038 cm®.cm™ for
the MLR-PTFs. The RMSE values of the SVR-PTFs de-
veloped in this study were lower than those reported in
similar studies [20, 25, 26, 28, 35] (Nguyen et al., 2017), for



matric suctions at or near FC or WP. Explanation for this is
not clear-cut and can only be suggested because PTF results
are highly bound by datasets [14, 22, 31]. It is surmised that
the observed RMSE trend is associated with the kernel
function adopted in the SVR model development. This is
plausible as a linear kernel was adopted in this study, while the
radial basis function (RBF) kernel was used in the studies
highlighted. This is corroborated by Lamorski et al. [28] who
compared the linear and RBF kernels and found that the latter
led to overfitting with high RMSE and poor generalisation
capability on independent data when used in development of
SVR-PTFs. Ben-Hur et al. [44] also observed that the use of
nonlinear kernels (Gaussian RBF or polynomials) only pro-
vided marginal improvements in accuracy compared to the
linear kernel. Lamorski et al. [28] attributed this to high
sensitivity of SVR models to the RBF kernel width parameter
(y) (Table 1). The Gaussian RBF kernel width parameter
determines the flexibility of the SVR in fitting the data, with
small gamma (y) values leading to overfitting and reduced
accuracy [44]. On the contrary, it has also been shown that
large y parameters beyond an optimal threshold resulted in
unrealistic R* values (R® = 1), which indicates overfitting [28].
Such results occur when a model starts to describe the random
error in the data rather than the relationships between var-
iables resulting in suboptimal performance outside the
original training dataset [58].

Another possible explanation could be the variations in
dataset characteristics used in the different studies as well as
the predictors adopted for the SVR. Differences in mea-
surement approaches and textural composition of the samples
in datasets induce variability which affects the quality of PTF
outputs [12, 31]. Including additional predictors to the
particle-size fractions improved the accuracy of the SVR-
models [20, 25, 26]. A similar trend was observed in this
study. However, careful consideration is needed to avoid
including difficult-to-measure soil properties as predictors.

4. Conclusions

This study was undertaken to develop SVR pedotransfer
functions for estimating soil moisture-holding capacity for
dry subhumid soils. Performance indices for MLR-PTFs
were comparable to SVR-PTFs. The SVR-PTFs developed
in this study performed slightly better than published SVR-
PTFs. The linear kernel appeals for developing SVR-PTFs.
However, further evaluations in this respect will be needed
to establish the most optimal kernels to utilise for PTF
development in view of popular application of the Gaussian
radial basis function.
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