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Abstract—The majority of Internet video traffic today is 
delivered via HTTP Adaptive Streaming (HAS). Recent studies 
concluded that pure client-driven HAS adaptation is likely to be 
sub-optimal, given clients adjust quality based on local feedback. 
In [1], we introduced a network-assisted streaming architecture 
(BBGDASH) that provides bounded bitrate guidance for a video 
client while preserving quality control and adaptation at the 
client. Although BBGDASH is an efficient approach for video 
delivery, deploying it in a wireless network environment could 
result in sub-optimal decisions due to the high fluctuations. To 
this end, we propose in this paper an intelligent streaming archi­
tecture (denoted BBGDASH+), which leverages the power of time 
series forecasting to allow for an accurate and scalable network- 
based guidance. Further, we conduct an initial investigation of 
parameter settings for the forecasting algorithms in a wireless 
testbed. Overall, the experimental results indicate the potential 
of the proposed approach to improve video delivery in wireless 
network conditions.

Index Terms—SDN, QoE; DASH; OpenFlow; Stability; Adap­
tive Video Streaming; Streaming architecture; Bounded Bitrate 
Guidance; Network-Assistance

I. INTRODUCTION

Multimedia data currently represents the majority of Internet 
traffic. The last report of Cisco [2] indicates that video traffic 
w ill represent 82% of all consumer Internet traffic by 2022. To 
cope with this increase, most service providers have adopted 
the HTTP adaptive streaming (HAS) technology [3], which 
provides a flexible, client-based adjustment of video quality 
and streaming bitrate. HAS covers different implementations 
that have similar adaptation principles, with Dynamic Adaptive 
Streaming over HTTP (DASH) [4] being one of the most 
popular ones. In principle, video content in HAS is encoded 
by the streaming source with multiple bitrate representations 
and chunked into small segments of video duration (i.e. 2 to 
15 seconds). The client includes an adaptation algorithm that 
employs different approaches dynamically adapt the requested 
quality level to the network conditions. Despite the great 
benefits they bring, purely client-based HAS solutions also 
face challenges relating to quality fluctuations when competing 
for a shared link [5].

The defining metric for benchmarking the success of video 
applications is Quality of Experience (QoE). In an adaptive 
context, QoE is optimised by estimated throughput or the 
occupancy of the player's playback buffer and selecting an 
appropriate bitrate. This aligns video delivery to the fluctuating

in network conditions, but may also lead to incorrect or out-of­
sync adaptation when network conditions fluctuate too rapidly 
and, subsequently, to a high number of bitrate changes and 
buffer starvation, particularly in a wireless environment.

Research studies [6], [7] demonstrated that reliable band­
width prediction could boost the performance of the adap­
tation algorithms, especially when it is combined with rate 
stabilization functions at the client side. In addition software- 
defined networking (SDN) provides a centralised network 
control which can be used for enhancing the network-based 
video delivery.

This paper presents two time-series-based forecasting ap­
proaches for identifying clients bitrate levels and therefore 
providing enhanced client assistance for delivering optimal 
QoE. Second, it extends our previous architecture [1] to an 
intelligent streaming architecture (denoted BBGDASH+), also 
investigated in this paper in terms of performance and potential 
benefits.

The rest of this paper is organised as follows. In section II 
we present the related work. Section III presents the descrip­
tion of the proposed QoE-driven network-assisted architecture 
for HTTP adaptive video streaming BBGDASH+. Section IV 
provides the system model and the algorithm description. 
Section V presents an experimental setup while section VI 
provides the performance analysis and results. Finally, we 
conclude this paper in Section VII.

II. RELATED WORK

The use of HAS for video delivery led to new approaches 
that optimise the perceived QoE by adapting the requested 
video quality according to network conditions. Most of the 
studies either locally optimise the adaptation decision or del­
egate the decision logic to an additional central entity (e.g. as 
part of SDN). Jiang et.al [8] propose a client-based approach, 
named FESTIVE, which consists of three modules (band­
width estimation, bitrate selection, and randomised chunk 
scheduling) to avoid video segments overlapping among the 
different players. Further, Spiteri et.al introduce in [9] a Buffer 
Occupancy based Lyapunov Algorithm (BOLA), in which the 
ABR decision is formulated at the client side as a utility 
maximisation problem. On the other hand, the centralised 
alternatives aim to optimise the received QoE and provide a 
fair allocation among users. Bentaleb et.al presents in [10] an
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SDN-enabled DASH architecture (SDNDASH) to maximise 
per-client QoE by dynamically allocating network resources 
and guide each client for the optimal bitrate level for the 
next chunks to be downloaded. Authors in [11] design a QoE- 
based SDN architecture that considers the cooperation between 
network operators and content providers. Further, Cofano 
et al., [12] investigated several network-assisted streaming 
strategies that allow active cooperation between the video 
streaming applications and the network.

We note that, with purely client-based HAS adaptations, 
the distributed per-client based optimization might lead to 
an unfair QoE allocation among the involved clients. On the 
other hand, moving the adaptation logic to an external element 
affects the endpoint-based adaptation principle at the core of 
HAS and may lead to scalability issues.

Motivated by the above challenges of HAS and the scalabil­
ity issues of moving the whole decision logic to an additional 
entity, we presented our previous architecture [1] as a proof- 
of-concept implementation for the hybrid bitrate guidance. In 
our previous work, the network component guides clients with 
a set of bitrate levels to let them adapt the quality locally. 
However, identifying the number of bitrate levels for each 
client in a wireless network condition is not a trivial issue, and 
it could result in a significant QoE degradation when the client 
be bounded with a wrong set of bitrate levels. Therefore, in 
order to cope with this issue, we present two time-series-based 
forecasting approaches that identify the optimal set of bitrate 
levels for each client base on the network conditions. Addition­
ally, we extend the implementation of our previous architecture 
to an intelligent streaming architecture (denoted BBGDASH+). 
Further, we conduct a set of experimental evaluations with 
different configuration parameters to investigate the behaviour 
of the proposed approaches in real network conditions.

III. Sy s t e m  A r c h it e c t u r e

In this section, we present the proposed system architecture 
for bounded bitrate guidance that consists of three planes, as 
shown in Fig1. We describe each plane as follows:

A. Data Plane

The data plane consists of a set of SDN-based forwarding 
devices. These devices (i.e. Open vSwitch(OVS)) are respon­
sible for forwarding network flows and allocating the available 
resources based on the received policies from the control plane 
via the southbound interface.

B. QoE Management Plane

The QoE management plane consists of six modules, 
namely BBGDASH+ manager, Bandwidth Estimator, QoE 
Monitor, Database Archive, Policy Enforcer, and Bandwidth 
Forecasting . We provide the details of each component in the 
proposed architecture as follows:

1) BBGDASH+ Manager: The BBGDASH+ manager is 
responsible for computing the optimal set of bitrate levels per 
DASH player. It communicates with the other components 
of the QoE management plane in order to get the required

information (i.e. number of active DASH player, available 
resources, etc.) for allocating network resources and guiding 
DASH player.

2) Bandwidth Estimator: The bandwidth estimator requires 
previous knowledge of the link capacity of the network path to 
measure the available bandwidth. In the proposed architecture, 
the control plane frequently queries the forwarding devices to 
get the network statistics. These collected network statistics 
are then smoothed and archived to be used as an input for an 
ARIMA-based time-series forecasting.

3) QoE Monitor: The QoE monitor module performs real­
time measurement for the perceived QoE. This module con­
siders the devices, video, and other QoE related metrics for 
calculating the end-user QoE. Furthermore, this module is 
sufficiently flexible to allow the deployment of any other QoE- 
metrics based model for measuring the perceived QoE at the 
end-user.

4) Database Archive: The database module stores infor­
mation related to the number of DASH clients, configuration 
parameters, estimated bandwidth and the QoE metrics of video 
streaming sessions, which is used as input by the BBGDASH+ 
manager module and the forecasting module to compute the 
suitable set of bitrate levels. As shown in Fig. 1, the database 
is used to store network stats and DASH flow rules that are 
currently active in the streaming sessions.

5) DASH Server and Client Entities: The DASH server 
hosts DASH content, encoded into multiple versions and 
segmented into small chunks, accompanied by manifest files 
describing the content. At the client-side, a modified dash.js 
player embeds the proposed guidance schema. In addition, 
the MPEG Server and Network Assisted DASH (SAND) 
architecture [13] sends the QoE-related metrics and receives 
the optimal guidance to/from the proposed b b g d a s h + agent.

6) Policy Enforcer: This module applies the BBGDASH+ 
recommendation at application and the network levels. The 
application's levels action is implemented by sending the 
bitrate levels range for each DASH player while the network 
level action is applied through allocating the network resource 
dynamically. This module also informs the video server about 
each DASH client levels which, in turn, prevents the greedy 
clients from requesting higher bitrate levels than the ones 
allocated by b b g d a s h + manager.

C. SDN Control Plane

The control plane aims to support the delivery of video 
services and to provide the QoE-based resource allocation per 
DASH client; in order to provide this functionality, it interfaces 
between the data plane and the QoE management plane. In 
the proposed architecture, we implemented the network agent 
that carries instructions or defined policies from the QoE 
management plane and translate those policies into a set of 
rules or actions on the data forwarding plane.

IV. Sy s t e m  M o d e l  a n d  Pr o b l e m  Fo r m u l a t io n  

A. System Model

We model the system as an undirected graph G =  (X , Y ), 
where X =  { P , F, A, S} represents the set of nodes and Y  is
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Fig. 1: Proposed QoE-Driven Network-Assisted Architecture for HTTP Adaptive Video Streaming

the set of links between the nodes. The set of nodes in the pro­
posed architecture includes a number of subsets encompassing 
a number of DASH players p, G P, one DASH server S, 
forwarding devices F, and the SDN controller A. Each player 
P i  has at least one link y G Y  connecting it to the access node 
/  G F. We consider that the only network bottleneck is in the 
access network with total estimated capacity of HU’ .We note 
that each player p .;. g  P, i =  [1 , . . . ,  N],  has a specific set of 
requirements for screen resolution rpi and plan subscription 
STPi, and may request a video vPi G V  that has a distinct set 
of bitrate representations .

Given the context, enforcing the same bitrate allocation for 
all players may result in an unfair distribution and inefficient 
of both QoE and network resources allocation. In order to 
meet the end-user QoE requirements and achieve a high level 
of fairness among the players that request video with different 
characteristics, then we an intelligent a network-assisted that 
base on the concept of max-min fairness for allocating the 
available resources. The main objective is to maximise the 
minimum quality across the p *  players. The objective function 
/  is described as follows:

/

max (mm,*

, s.t Z Z i  BWPi < BWe,
BWpi > 0, If. G LvPi
V p .;, e P ,i N] , j  =  MPi],

where BWPi is the bandwidth allocated for p ;, If. is the 
selected bitrate by p ; , and MPi is the total number of bitrate 
levels for the video vPi.

B. ARIMA-based Bandwidth Forecasting

Future bandwidth prediction is a time series forecasting 
problem [14] where, for a given timeslot, the objective of

the prediction model (p) is to accurately find the predicted 
bandwidth given a set of previous bandwidth measurement 
samples. Formally, given a set of n time series observations 
at time elapsed t, denoted yt, a future predicted value of time 
series for next h steps (horizon), denoted //, /,, is defined as:

yt+h =  p(yt, yt—i j y t—2,   ,yt-n)- (2)

In this context, the main challenge is choosing the model 
that provides the highest forecasting accuracy. Several studies 
[6], [7] acknowledged that statistical approaches tend to have 
a higher forecasting accuracy than machine learning mod­
els [15]. Following from this conclusion, this study applied 
the autoregressive integrated moving average (ARIMA), a 
classical and universal statistical modelling tool, for predicting 
yt+h, given its ability to handle non-stationary time series data 
through applying the differencing method. In order to model 
ARIMA processes, we consider the variable yt as a set of the 
network bandwidth measurement samples. Therefore, the first 
part of the ARIMA model is an autoregressive (AR) process 
of order p for the number of time lags yt , as follow:

(1 -  </>iB ---------4>PBP) yt+h = c  +  et . (3)

where c is a constant, o:l are coefficients or the parameters of 
the moving average part and et is the error tenn.

Another process of the ARIMA model is the moving 
average (MA) of order q, which is a linear combination of 
the current white noise tenn and the q of the most recent past 
white noise tenns, and can be defined as follow:

yt+h =  c +  ( 1  — Q\B —    — 0qB q) et , (4)

where c is constant and - , are the enor tenns.
The AR and MA models can be integrated along with 

differencing the time series to give a wide variety of effects.
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This combination leads to an ARIMA(p,d,q) model, which can 

be written in backshift notation as:

(1 -  ------------$pB P) (1 -  B )d yt+h =

c + (1  -  0i B ------------0i B q) £ t, ( )

where fa , Oi are parameters to be determined.

The first 95%  confidence interval for the predicted data can 

be given as:

a =  yt+h ±  1.96<t , (6)

where a is the standard deviation o f o f the residual errors. 

W e apply root-mean-square-error (R M S E ) to evaluate the 

accuracy o f the forecasting model and the goodness o f its 

parameters, as it indicates the squared error between the pre­

dicted y t+ h and the observed value(s) for the same throughput 

levels.

C. Throughput prediction

The main two elements in the proposed forecasting method­

ology are to depict the best fit o f the A R IM A  model that 

achieves the highest accuracy. The auto.arima() Python 

library function was used to determine the optimal online fit 

o f the A R IM A  model. The function is based on a variation 

o f the Hyndman-Khandakar algorithm [16], which integrates 

unit root tests, maximum likelihood estimation, and cross­

validation techniques. The algorithm starts w ith identifying 

the number o f differences d required to generate a stationary 

data. A fter differencing the data d times, the algorithm chooses 

values o f p and q by m inim izing the Akaikes Information  

Criterion (A IC ), which utilises the stepwise search to navi­

gate the model space rather than considering every possible 

combination o f p and q.

An accurate bandwidth prediction is essential for providing 

proper guidance for D A S H  players. The presented method­

ology starts w ith splitting the traces into two datasets. The 

training set comprises 60%  o f the trace and is used for 

validating the parameters o f the prediction model, w hile the 

validation set is used for estimating the prediction error. The 

prediction methodology retrains the prediction model w ith the 

new observed values every h seconds. Further, we fixed h 
in this study and to be proportional to the duration o f the 

requested video chunk.

D. Video Bitrate Boundary Identification

The main objective o f the proposed approach is to identify 

the optimum set o f bitrate levels that D A S H  players should be 

using to adopt the quality locally. To achieve that, we introduce 

two algorithms, namely Confidence-Based Bounding (C B B ) 

(A lgorithm  1) and Error-Based Bounding (E B B ) (Algorithm  2) 

that exploit the power o f time series forecasting to identify the 

optimal boundaries o f the requested bitrate.

For each step i , C B B starts w ith forecasting the throughput 

yt+ h for the horizon h, h >  0, then it computes the confidence 

interval value (a ), which identifies the initial boundaries o f the 

requested bitrate levels. In  the next step, the algorithm maps 

the continuous values o f the computed boundaries into discrete

bitrate values based on Algorithm  3 and it ends by sending 

the computed boundaries to each D A S H  player.

Algorithm 1 Confidence Based Bounding (C B B )

1: for each step i do
2: Forecast the throughput y t+ h using (5).

3: Find the initial boundaries using (6).

4: Quantise the initial boundaries to the discrete video

bitrate boundaries: C all algorithm 3

In  the Algorithm  2, we replaced step 3, which defines the 

initial boundaries based on the prediction error rather than the 

confidence interval.

Algorithm 2 Error Based Bounding (EBB )

1: for each step i do
2: Forecast the throughput y t+ h using (5).

3: Find the initial boundaries as:

a =  yt+h ±  RM SE  (7)

4: Quantise the initial boundaries to the discrete video

bitrate boundaries: C all algorithm 3

E. Perceptual Quality and Cluster Identification

Video perceptual quality measurement has a non-linear 

relationship with bitrate [10], [17], [18]. To embed this in 

our approach, we adopt the bitrate to perceptual quality 

mapping function from [19], which takes three features o f a 

video streaming session including device resolution, content 

type, and service plan type and then map all o f them in 

one common SSIMplus-based space (the Structural S IM ilarity  

plus index) [20]. W ith  this model, the existing BBGDASH+ 
players can be clustered into five non-overlapping clusters 

denoted Cl =  { C l1, . . . ,  C l5}. Hence, clustering players into 

a set o f clusters helps b b g d a s h + to send per-cluster bitrate 

recommendation rather than per-client.

F  QoE-driven quality optimization

To achieve a fair QoE allocation among D A S H  players and 

an efficient resource utilization, we present a dynamic pro­

gramming based algorithm that provides each player w ith the 

optimal bitrate guidance. The proposed Algorithm  3 provides 

fair QoE distribution and efficient resource allocation among 

different players w ith different requirements that may request 

videos with heterogeneous representation levels.

V. E X P E R IM E N T A L  S E T U P

The proposed architecture in Section I I I  has been im ple­

mented in a testbed environment in order to investigate the 

performance o f the proposed approaches. In  this section, we 

explain the testbed setup and the experimental methodology.
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TA B L E  I: Notation and Symbols Description.

Symbol Descriptions
N Total Number of DASH players

Cl Set of clusters clk,k = [1 , . . . ,  5] of specific screen 
resolution reik

Nelk Number of DASH players in cluster clk
lini,pi
elk Initial bitrate selection for player pi in cluster clk

iopt Optimal bitrate for cluster clk

Sf Scaling factor

BWe The total available bandwidth for HAS players at time t
BWpi The bandwidth consumed by player pi
BWleft The remaining bandwidth after the first allocation

LVpi The complete set of bitrate levels [l^ : lMpi ] of video vPi
requested by player pi
The difference between the current bitrate level and the 
next level of the video vPi requested by player pi

idiff
LPi

h Prediction horizon related to the duration of the 
requested video chunk

Vi Maximum allowed bitrate set for the players

V2 Minimum allowed bitrate set for the players

a The set of the max. and min. bandwidth computed 
by the prediction alg.

A. Evaluation Testbed

A  set o f experiments was conducted on an SDN-based 

testbed. The data plane was implemented on M in inet using 

a D A S H  player connected to an Apache server serving video 

content via two OpenFlow switches OVS1 and O VS2. The 

control plane was implemented using Ryu S D N  [21]. On 

the video server side, we used the 600s Big Buck Bunny 

video, encoded using FFmpeg at 4  different resolutions (360p, 

480p, 720p, and 1080p) and 20 bitrate levels using two passes. 

Then each video is segmented into set o f 4  seconds chunk 

using GPAC M P 4B ox [22]. The client side used the dash.js 

JavaScript-based D A S H  player [23]. Additionally, in order 

to allow D A S H  clients to send the QoE-related metrics and 

receive the optimal guidance to/from  the proposed BBGDASH+ 

agent (see Fig. 1), a websocket channel has been initiated 

between D A S H  players and the BBGDASH+ agent. For the 

archiving purposes, M yS Q L  V 5 .7  is deployed in management 

plane for archiving the QoE and the network related parame­

ters.

B. Experiment Design

The implemented testbed was used to investigate the per­

formance o f the presented approaches under wireless network 

conditions, where the throughput is subject to considerable 

fluctuations. In  order to replicate the same network conditions, 

we shaped the link between O V S 1-O V S 2 based on a real set of 

traces gathered from IE E E  802.11 wireless local area networks 

(W L A N s) [24].

First Experiment: The first experiment aims to investigate 

the impact o f the forecasting horizon and the sampling rate 

o f the network bandwidth measurement on the accuracy of 

the prediction algorithm and their implications on the pro­

posed schemes (i.e. EB B  and C B B ). To find the optimal 

configurations, we investigate the prediction algorithm under

Algorithm 3 Bitrate Selection Algorithm

Input: N , L vPi, Cl, N clk, l j p ,  a

1 for j  ^  1 to 2 do
2 C a l c u l a t e  Sf  ^  = 5— ° bl ,°p*

Ck= 1 N^k * lclk
3 for each cluster clk € Cl do
4 i C T  ^  i t  *  S f

5 for each cluster clk € Cl do
6 for each player pl € P  do
7 FIN DM A X (lp. € LvPi) | lp.

.  rtni,pi
< lClk

8 INSERT(lp.) in toV 1[]

9 for each player p̂  € P  do
10 if lU  =  1p/ *  then
11 F IN D (lp + 1)

12 ld if f  =  ( C 1) -  ( & )
13 else
14 lP+1 =  TO

15 IN S E R T(lp^1) into V2 []

16 i N S E R T ^ f ) into V3[]

17 C a l c u l a t e ( B W  left) =  Y,N= 1 llnl,pi l u
lClk lPi

18 So r t ( V  1)

19 while B W left >  m i n (V3) do
20 for each l € V1 do
21 if V3[l] < B W left and V2[l] =  t o  then
22 V1[l] =  V2 [l]
23 B W left =  B W left - V3 [l]
24 else CONTINUE()

25 R ETUR N(V j)

four different horizons (i.e. 2, 4, 8, and 12 seconds). Further, 

for each horizon, different sampling rates o f the network 

bandwidth measurement have been also examined.

Second Experiment: The goal o f the second experiment is 

to evaluate the stability o f the received video when a D A S H  

player stream a video under wireless network conditions w ith­

out any application/network-assistance. In  this experiment, 

D A S H  player relies only on the local A B R  algorithm (i.e. 

throughput-based) to estimate the network conditions and to 

adapt the quality o f the requested segment.

Third Experiment: In  the third experiment, the first network- 

based bitrate guidance approach (i.e. C B B ) is investigated 

under a different set o f configurational parameters (i.e. horizon 

and sampling rate) to see the efficiency o f the proposed ap­

proach for providing an efficient video delivery. The potential 

o f C B B has been evaluated when it runs under four different 

horizons (i.e. 4, 6, 8, and 12 sec.). Further, for each o f 

the examined horizon h, two different sampling rates o f the 

network bandwidth measurement (i.e. 1 and h seconds) are 

provided as an input to the prediction algorithm.

Fourth Experiment: Another network-assistance bitrate guid­

ance approach (i.e. E B B ) is evaluated in the fourth experi­

ment to be compared with the other approaches. For a fair 

comparison, the same configurational parameters o f the third
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(a) Prediction Accuracy. (b) Mean Width of Conf. Bands. (c) Mean Width of Error Bands

Fig. 2: Impact of measurements’ resolution and forecasting horizon on the prediction schemes

experiment have been deployed with this experiment.

VI. EXPERIMENTAL RESULTS

This section presents the results of the experiments de­
scribed above to evaluates the proposed error-based and 
confidence-based bounding guidance. The overall aim is to 
gradually determine the effectiveness of the two methods, from 
accurately predicting the bandwidth, through enforcing it in a 
timely fashion, and ultimately achieving better QoE.

1) Prediction Accuracy: Fig. 2a shows the results of hori- 
zon/sampling rates(resolution) against the forecasting accuracy 
that are measured with the RMSE. It can be observed from 
Fig. 2a that, the lowest horizon has the highest accuracy of 
prediction under the highest sampling rates. This implies that, 
at 0.5, the RMSE for horizon 2 is 0.3 giving a good prediction 
accuracy compared to horizon 8 and 12, which lead to a large 
RMSE of 0.8 and 0.9 respectively.

2) Mean Width of Confidence Bands: Fig. 2b shows the 
results of horizon/sampling rates (resolution) against the mean 
width of confidence bands. The results indicate that as the 
horizon increases the mean width of the confidence bands also 
increase. For example, at 0.5 the mean width of confidence 
bands for horizon 8 and 12 is 3.3 Mbps and 3.4 Mbps 
respectively. Similarly, a lower horizon provides a lower mean 
width of confidence bands; at 0.5, a horizon value of 2 results 
in a mean width of the confidence bands of 1.2 Mbps.

3) Mean Width of Error Bands: Fig. 2c indicates the results 
of the horizon/sampling rates(resolution) against the mean 
width of the error bands. It can be observed that the mean 
width of the error bands has a lower value than the mean 
width’s value of the confidence bands, as the later bounds 
the true values with probability of 0.95. For example, at 0.5, 
horizon 8 and 12 have a mean width error bands of 1.58 Mbps 
and 1.73 Mbps respectively. However, the lowest horizon 
provides a lower mean width of the error bands. Horizon 2, 
for example, leads to a mean width error bands of 0.56 Mbps 
at 0.5 while that of horizon 4 is 0.96 Mbps.

4) The Performance of Normalized QoE: In Fig. 3 the 
different approaches are compared in term of the normalized 
QoE when they have been deployed under different combina­
tions of the forecasting horizons and measurement sampling

4 8 12

Horizon

Fig. 3: Normalised QoE.

rates (resolutions). The results show that the end user’s QoE 
using EBB/R=1 under a forecasting horizon of 4 outperforms 
the other approaches, as the last provides the highest average 
bitrate levels and the lowest switching amplitude. It is worth 
mentioning here that EBB is more sensitive for the prediction 
accuracy than other approaches. Further, It is obvious that 
the non-assisted approach (Dash.js) performs poorly in every 
aspect compared to other approaches.

V II. Co n c l u s io n

This paper present a novel QoE-driven network-assisted 
architecture for HTTP adaptive video streaming called 
BBGDASH+ that provides a real-time bandwidth prediction 
using SDN. We propose an Error-Based Bounding (EBB) and 
Confidence-Based Bounding (CBB) that exploit the power 
of time series forecasting to identify the optimal bitrate 
boundaries of the requested bitrate in a wireless environment. 
We conduct an initial investigation of the proposed system 
to evaluate the impact of the configurational parameters (i.e. 
prediction horizon and measurement sampling rate) on the 
accuracy of the predicted boundaries. The results show that, 
the proposed algorithms (EBB and CBB) can significantly 
improve the end-users QoE compared to the purely client 
based HAS applications.

Authorized licensed use limited to: Plymouth University. Downloaded on May 18,2021 at 12:58:20 UTC from IEEE Xplore.  Restrictions apply. 



15th International Conference on Network and Service Management (CNSM 2019)

Re f e r e n c e s

[1] A. Alissa, A. Bentaleb, T. Zinner, B. Ghita, and I. Mkwawa., “A 
Max-Min Bounded Bitrate Guidance for SDN Enabled Adaptive Video 
Streaming,” 22nd Conference on Innovation in Clouds, Internet and 
Networks (ICIN, February 2019.

[2] “Cisco Visual Networking Index: Forecast
and Trends, 2017 - 2022 White Paper.”
https://www.cisco.com/c/en/us/solutions/collateral/service- 
provider/visual-networking-index-vni/white-paper-c11-741490.html.

[3] T. Stockhammer, “Dynamic adaptive streaming over http-: standards and 
design principles,” in Proceedings o f the second annual ACM conference 
on Multimedia systems, pp. 133-144, ACM, 2011.

[4] I. Sodagar, “The MPEG-DASH Standard for Multimedia Streaming Over 
the Internet,” IEEE MultiMedia, vol. 18, pp. 62-67, April 2011.

[5] B. Abdelhak, C. B. Ali, Z. Roger, and S. Harous, “SDNHAS: An SDN- 
Enabled Architecture to Optimize QoE in HTTP Adaptive Streaming,” 
IEEE Transactions on Multimedia, vol. 19, pp. 2136-2151, Oct 2017.

[6] T. Mangla, N. Theera-Ampornpunt, M. Ammar, E. Zegura, and 
S. Bagchi, “Video through a crystal ball: Effect of bandwidth prediction 
quality on adaptive streaming in mobile environments,” in Proceedings 
of the 8th International Workshop on Mobile Video, p. 1, ACM, 2016.

[7] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, 
X. Jin, J. Rexford, and R. K. Sinha, “Can accurate predictions improve 
video streaming in cellular networks?,” in Proceedings of the 16th 
International Workshop on Mobile Computing Systems and Applications, 
pp. 57-62, ACM, 2015.

[8] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, 
and stability in HTTP-based adaptive video streaming with festive,” 
IEEE/ACM Transactions on Networking, vol. 22, no. 1, pp. 326-340,
2014.

[9] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal 
bitrate adaptation for online videos,” Proceedings - IEEE INFOCOM, 
vol. 2016-July, 2016.

[10] A. Bentaleb, A. C. Begen, and R. Zimmermann, “SDNDASH: Improving 
QoE of HTTP Adaptive Streaming Using Software Defined Network­
ing,” Proceedings of the 2016 ACM on Multimedia Conference - MM 
’16, pp. 1296-1305, 2016.

[11] E. Liotou, K. Samdanis, E. Pateromichelakis, N. Passas, and L. Merakos, 
“Qoe-sdn app: A rate-guided qoe-aware sdn-app for http adaptive video 
streaming,” IEEE Journal on Selected Areas in Communications, vol. 36, 
no. 3, pp. 598-615, 2018.

[12] G. Cofano, L. D. Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and 
S. Mascolo, “Design and performance evaluation of network-assisted 
control strategies for http adaptive streaming,” ACM Transactions on 
Multimedia Computing, Communications, and Applications (TOMM), 
vol. 13, no. 3s, p. 42, 2017.

[13] E. Thomas, M. van Deventer, T. Stockhammer, A. C. Begen, and 
J. Famaey, “Enhancing MPEG DASH Performance via Server and 
Network Assistance,” SMPTE Motion Imaging Journal, vol. 126, no. 1, 
pp. 22-27, 2017.

[14] C. Chatfield, The analysis of time series: an introduction. Florida, US: 
CRC Press, 6th ed., 2004.

[15] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and 
machine learning forecasting methods: Concerns and ways forward,” 
PloS one, vol. 13, no. 3, p. e0194889, 2018.

[16] R. J. Hyndman, Y. Khandakar, et al., Automatic time series fo r fore
casting: the forecast package fo r R. No. 6/07, Monash University, 
Department of Econometrics and Business Statistics , 2007.

[17] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran- 
gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,” 
Ieee Communication Surveys & Tutorials, vol. 17, no. 1, pp. 469-492,
2015.

[18] G. Cermak, M. Pinson, and S. Wolf, “The relationship among video 
quality, screen resolution, and bit rate,” IEEE Transactions on Broad
casting, vol. 57, no. 2, pp. 258-262, 2011.

[19] A. Bentaleb, A. C. Begen, R. Zimmermann, and S. Harous, “SDNHAS: 
An SDN-enabled architecture to optimize QoE in HTTP adaptive 
streaming,” IEEE Transactions on Multimedia, vol. 19, no. 10, pp. 2136­
2151, 2017.

[20] A. Rehman, K. Zeng, and Z. Wang, “Display device-adapted video 
quality-of-experience assessment,” in Human Vision and Electronic 
Imaging XX, vol. 9394, p. 939406, International Society for Optics and 
Photonics, 2015.

[21] “RYU SDN Framework. http://osrg.github.io/ryu/.”
[22] “GPAC:Multimedia Open Source Project,” What’s New, pp. 0-60.
[23] “DASH Industry Forum. http://www.dashif.org/..”
[24] K. Miller, A.-K. Al-Tamimi, and A. Wolisz, “Qoe-based low-delay 

live streaming using throughput predictions,” ACM Transactions on 
Multimedia Computing, Communications, and Applications (TOMM), 
vol. 13, no. 1, p. 4, 2017.

Authorized licensed use limited to: Plymouth University. Downloaded on May 18,2021 at 12:58:20 UTC from IEEE Xplore.  Restrictions apply. 


