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Artificial Intelligence (AI) and deep learning have the capacity to reduce losses in crop production, such 
as low crop yields, food insecurity, and the negative impacts on a country’s economy caused by crop 
infections. This study aims to find the knowledge and technological gaps associated with the 
application of AI-based technologies for plant disease detection and pest prediction at an early stage 
and recommend suitable curative measures. An evidence-based framework known as the Preferred 
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology was used to 
conduct systematic reviews of the state-of-the-art of AI and deep learning techniques for crop disease 
identification and pest prediction in developing countries. The results demonstrate that conventional 
methods for plant disease management face some challenges, such as being costly in terms of labour, 
having low detection and prediction accuracy, and some are not environmentally friendly. Also, the 
rapid increase in data-intensive and computational-intensive tasks needed for plant disease 
classification using traditional machine learning methods poses challenges such as high processing 
time and storage capacity. Consequently, this paper recommends a deep learning and AI-based 
strategy to enhance the detection, prediction and prevention of crop diseases. These recommendations 
will be the starting point for future research. 
 
Key words: Plant diseases detection, pest prediction, pesticide recommendation, artificial intelligence, machine 
learning. 

 
 
INTRODUCTION 
 
The common bean (Phaseolus vulgaris L.) is considered 
to be the potential grain legume used as food as well as 
the key source of important micronutrients needed by 
millions of  people  worldwide,  including  in  sub-Saharan 

Africa (Said and Taher, 2020). In Tanzania, consumption 
of common bean dry seeds with cereal-based food 
guarantees access to a balanced diet and supplementary 
nutrients  that  help   alleviate   malnutrition   and  prevent 
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Figure 1. An overview of symptoms of common bean diseases.  
Source: Hughes and Salathé (2015) 

 
 
 

various diseases such as cardiovascular, certain types of 
cancer, and diabetes (Muimui, 2010; Hangen and Benink, 
2003). In 2019, about 28.9 million tons of common beans 
were produced, with tropical low-income countries 
producing three-quarters of the total (FAOSTAT, 2016). 
Latin America is the leading bean producer worldwide, 
with Brazil being a leading country for both bean 
production and consumer (Rezende et al., 2018). In 
Africa, Tanzania is the prevalent producer of beans, 
followed by Uganda and Kenya (Philipo et al., 2020). In 
Tanzania, the main bean production areas are the 
northern region, the Great-lakes zone and the southern 
highlands, where more than 90% are produced by small-
scale farmers on farms ranging from 0.5 to 2 ha in size 
(Ndakidemi et al., 2006). Unfortunately, the importance of 
the crop cannot be adequately measured due to 
numerous biotic and abiotic constraints. Biotic constraints 
refers to the numerous infections caused by bacteria, 
fungi, viruses, and nematodes (Markell et al., 2012; 
Pamela et al., 2014; Chilagane et al., 2016; Mpeguzi et 
al., 2020). Numerous infectious diseases are posing 
major limitations to bean productivity in Tanzania and 
worldwide (Hillocks et al., 2006). This in turn threatens 
the economy of many countries by affecting the 
production and quality of agricultural products and 
ultimately reducing food security. Other limiting factors 
include varieties with low genetic potential for yield; poor 
soil fertility; weather conditions; drought; insect pests and 
diseases  (Hillocks   et  al.,  2006).  Some  crop  diseases 

common in Tanzania include Angular Leaf Spot (ALS) 
(Phaeoisariopsis griseola), root rots (a complex of 
pathogens), common bacterial blight (CBB) 
(Xanthomonas campestris pv. phaseoli), and anthracnose 
(Colletotrichum lindemuthianum). Other essential 
diseases include halo blight (Pseudomonas phaseolicola), 
leaf rust (Uromyces phaseoli), bean common mosaic 
necrosis virus (BCMNV), and bean common mosaic virus 
(BCMV) (Mwaipopo et al., 2017). These diseases are 
prominent in Tanzania, occur in all bean-growing areas 
and emanates a yield loss of up-to 100% subject to the 
environment and variety grown (Tryphone et al., 2013). 
Recently, anthracnose has emerged as a major problem 
in Tanzania, as observed while conducting a 
comprehensive survey of common bean viruses in 
2016/2017. Moreover, these diseases reduce the quality 
of harvested-seeds, germination capacity, and market 
significance, and some can be seed-borne, thereby 
threatening the seed supply (Degu et al., 2020). Figure 1 
displays a synopsis of the symptoms of various diseases 
in common beans. Bean anthracnose is among the 
serious infection of beans in Tanzania triggered by the 
fungal-pathogen called Colletotrichum lindemuthianum 
(Mpeguzi et al., 2020). If the disease is not well 
controlled, would cause yield losses of upto 100% 
(Markell et al., 2012). The infection affects leaves, seeds, 
pods, and stems of beans. The infected seeds initiate 
and disperse the disease to the plant (Mudawi et al., 
2009).  The  main  symptoms  of  anthracnose  disease in 
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common beans are: growth dark and collapse of veins on 
the leaf underside; sunken lesions on pods displaying 
spore creation at the centers; and seed discoloration. 
Diseased plants may dry and crack, showing seeds 
inside the pods. Seed formed beneath pod lesions does 
not show the signs of infection (Padder et al., 2017). In 
Tanzania, few studies on anthracnose have been 
indicated regardless of the presence of the disease, such 
as Padder et al. (2017), Ndee (2013), Shao and Teri 
(1981). The ALS is the major damaging fungal disease 
affecting beans (Phaseolus vulgaris L.) spreading in 
tropical and subtropical areas, causing up-to 80% harvest 
losses in a given area (Muthomi et al., 2011). The 
infection is prominent in Eastern and Central African 
countries, including Tanzania (Pamela et al., 2014; 
Chilagane et al., 2016). Considering Tanzania as an 
example, the symptoms has been testified to spread from 
low to high altitudes above sea level where the common 
beans are grown (Hillocks et al., 2006) which covers the 
northern zone, the lake zone, the western regions and 
the southern regions. ALS has been extensively studied 
in various previous studies (Wani et al., 2022; Tryphone 
et al., 2015; Mongi et al., 2016; Mongi, 2018; Chilagane, 
2017). Common bean rust is one of the major diseases in 
the common bean growing areas caused by the fungus 
called Uromyces appendiculatus (Fromme, 1924; Stavely 
and Pastor-Corrales, 1989). Leaf rust has been studied in 
detail by Mmbaga et al. (1996); Liebenberg and Pretorius 
(2010); Aylor (1990); and Hillock (2006).  

The diseases caused by bacteria such as CBB and 
halo blight are also common worldwide with more cases 
reported in the USA, Asia, and Africa (Muimui et al., 
2011; Chen et al., 2021b; Noble et al., 2019). CBB 
causes up to 75% of harvest losses (Allen et al., 1996; 
Muimui et al., 2011). In Tanzania, CBB is very common in 
all areas that produce beans, especially in the southern 
highlands of Tanzania. Symptoms of CBB appear on 
seedlings, foliage, stems, pods, and seeds of common 
bean plants (Chen et al., 2021b; Wohleb, 2011). CBB 
and halo blight diseases have been extensively studied to 
identify symptoms, factors triggering the incidence of 
disease, and curative measures (Chen et al., 2021a; 
Tugume et al., 2019; Chen et al., 2021a; Noble et al., 
2019; Mwamahonje, 2018; McGrath, 2021). Moreover, 
common beans are infected with various viral diseases 
such as BCMV, BCMNV, and Bean Yellow Mosaic Virus 
(BYMV). In Tanzania, the above-mentioned viruses were 
discovered in bean samples using the next-generation 
sequencing method. More studies are needed to address 
their incidence, distribution, and severity, to complement 
few reported viruses (Mwaipopo et al., 2018). BCMV and 
BCMNV are the most common viruses that affect beans 
globally, where the beans are produced (Worrall et al., 
2015). This in return causes up-to 80% harvest losses 
(Drijfhout, 1991). Consequently, various published 
articles investigated efficient mechanisms to detect 
viruses causing bean mosaic disease from the 1980s to 
date in Tanzania (Mwaipopo  et  al.,  2017;  Mwaipopo  et  

 
 
 
 
al., 2018). Plant disease detection and prediction of 
harmful emerging pests is a challenging task due to the 
lack or inadequate tools for efficient surveillance, 
prediction, and prevention. Traditional methods based on 
scouting in combination with various diagnostic tools are 
labour and time-intensive. The use of deep learning and 
emerging artificial intelligence (AI)-based technologies to 
detect plant diseases and predict harmful pests is an 
interesting research area that needs to be explored.  

This paper contributes to the implementation of the 
second Sustainable Development Goal (SDG), which 
focuses on eradicating hunger, guaranteeing food security 
and sustainable agriculture by 2030. It also addresses 
the goal of the 3

rd
 SDG, which targets to safeguard 

healthy lives and stimulate well-being by 2030. Likewise, 
the aim of the target of the fourth goal is to ensure a well-
educated and actively learning society, for which this 
paper leverages innovative emerging AI-based tools to 
propose a framework that can detect, classify, and 
disseminate knowledge on plant disease and pest control 
measures to ensure food security. This paper reviews 
new and novel AI-based tools for plant disease detection 
and prediction of harmful pests at an early stage and to 
recommend cost-efficient solutions to minimize damage 
to crop production.  
 
 
RESEARCH METHODOLOGY 

 
This study applied the well-known evidence-based framework 
namely PRISMA to support standard reporting and conduction of 
systematic reviews (Moher et al., 2009; McKenzie et al., 2021). 
Four key steps were followed to conduct this study which includes 
identification of data-sources and search plan, article screening, 
quality evaluation, and data extraction and analysis. Figure 2 
presents the PRISMA workflow for systematic review of the AI-
based solutions in crop disease detection and harmful pest 
prediction.  
 
 
Identification of data-sources and search strategy 

 
During the period from April 2022 to June 2022, we conducted an 
extensive literature search in well-known online databases such as 
Scopus, Science Citation Index (SCI), and other related databases 
indexing journals such as IEEE, Springer, Elsevier, ACM, and IGI 
Global Publishers. The keywords considered for searching cut 
across crop disease management and the application of AI-based 
technology in agriculture, such as “crop disease classification”, 
“pest management”, “artificial intelligence”, “Internet-of-Things”, 
“machine learning” and crop disease management. We considered 
various sources of information such as articles and reports 
published in English between 2006 and 2022. Therefore, the search 
query guiding information retrieval from the databases was (“crop 
disease classification” OR “crop disease management” OR “pest 
management” OR “plant disease identification”) AND (“artificial 
intelligence” OR “Internet-of-Things” OR “machine learning”) AND 
“precision agriculture”). 
 

 
Article screening 

 
Initially,  the  total number of identified records based on the guiding  
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Figure 2. The PRISMA workflow for systematic review of the AI-based solutions in crop disease detection and harmful 
pest prediction. 
Source: Adapted from McKenzie et al. (2021). 

 
 
 
search query was 523 records. We conducted a manual evaluation 
of the retrieved records, considering analysis of various criteria 
such as title, abstract, index terms, publication language, and 
duplication. The initial evaluation process identified 69 records to be 
omitted for exclusion in the screening phase. The remaining 454 
records were thoroughly screened based on their context and 
relevance to our study. The results of the screening process 
excluded 217 records that were found out of context and irrelevant 
to our study. 
 
 
Quality evaluation 
 

The remaining 237 records were considered in the assessment for 
eligibility to be selected as relevant records. Based on the exclusion 
criteria, 114 records were found to be irrelevant and were therefore 
excluded based on the quality issues. 
 
 
Data extraction and analysis 
 

Finally, 123 records were found relevant and qualified for inclusion 
in the qualitative synthesis as a sample for this study. A summary of 
the qualified papers was prepared using Microsoft excel 2013 and 
refined to filter information such as publication details, techniques 
used, performance evaluation indicators, dataset used for machine 
learning, and performance accuracy achieved for each technique. 
The summarized data were analyzed and reported on the basis of 
PRISMA checklist (Moher et al., 2009; McKenzie et al., 2021). 

 
 

RESULTS AND DISCUSSION 
 

In Tanzania, agriculture is the backbone of the national 
economy with 80% of Tanzanians considering agriculture 
as their source of revenue (FAO, 2016). Also, Tanzania is 
considered to be among the leading countries in 
producing beans. The area under common bean 
production has increased from 1961 to 2016, thereby 
increasing total production. The increased bean 

production emanates from the growth of the total 
production fields rather than productivity. Low productivity 
is due to many diseases, as discussed earlier in this 
document. The source of diseases and how severely they 
damage common bean fields are influenced by a number 
of factors such as host resistance, the vectors, pathogen 
genetics, and the environment. For example, many crops 
are threatened by plant-viruses because it is challenging 
to control viruses because of inadequacy and 
economically sustainable methods for large production 
areas (Thresh, 2003). The pot viruses are particularly 
problematic because they are readily transmitted in 
seeds, so they may move over long distances in this form 
without being spread in the immediate environment by 
insect vectors. This leads to difficulties in their 
management (Galves and Molares, 1989; Shukla and 
Ward, 1989). Some fungal and bacterial diseases are 
transmitted in and on seeds, and all may be harboured in 
plant debris and spread by rainfall splashes. These 
varied modes of transmission make it difficult to control 
these diseases. Often, an understanding of the seasonal 
cycles of hostplants, pathogens, and vectors is needed in 
order to devise proper control measures for a disease. 
Different strategies can be used to minimize infections of 
common beans by plant pathogens depending on the 
nature of the disease, as described in the following 
section. 
 
 
Conventional plant disease management methods 
 

Conventional plant disease management methods include 
various strategies such as Integrated Pest Management 
(IPM), cultural, physical, chemical, and biological controls, 
and host plant resistance. IPM is an active and  
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environmentally sensitive approach to pest management 
that involves a combination of common- sense practices. 
IPM plans use up-to-date, comprehensive evidence on 
pest life cycles and their interactions or relationships with 
the environment. This information is used in combination 
with available pest control methods to manage pest 
damage by the most economical means and with the 
least possible hazard to people, property, and the 
environment. Disease control is the most effective 
method through the use of IPM; crop rotation; controlling 
of weeds; destroying of old crops; avoiding planting of 
new crops on diseased plantings; and rouging are very 
important (Persley et al., 2010; Munir, 2017). However, 
the IPM method is labour-intensive, as reported by Jørs 
et al. (2017). The cultural method is the method of 
controlling bean diseases by removing or burying infected 
plant debris after harvest to reduce overwinter survival of 
the pathogen (Mohammed, 2013b). It also includes two to 
three years of crop rotation with non-host plants to break 
the disease cycle and minimise the chances of pathogen 
survival (Coyne et al., 2003). Weekly scouting of the field 
for disease symptoms can assist in such a way that 
infected plants can be uprooted and removed. Additional 
cultural controls may include adequate plant spacing and 
removal of weeds to allow air circulation and foliar drying, 
as cool, humid conditions can promote certain diseases 
(McGee, 1995). Overhead irrigation should be avoided 
because it can cause the leaves to be wet, resulting in 
pathogen proliferation and sporulation on the foliage. 
Alternatively, drip irrigation that supplies water to the 
plant at the root zone (Buruchara et al., 2010) does not 
wet the leaves and can reduce disease incidence. 
Moreover, sanitation is another cultural method that has 
been implemented through the use of certified disease-
free seeds and use of IPM. Physical methods include 
heat treatment through soil solarization with a plastic 
sheet over the plot about a month before planting, which 
reduces the incidence of pathogens such as anthracnose 
on beans. Apart from physical methods, there are 
biological methods that involve some fungi and bacteria 
producing bioactive volatile organic compounds that 
inhibit the growth of pathogens.  For example, Mota et al. 
(2021) reported using endophytic fungi belonging to the 
genus Induratia spp. to control anthracnose, angular leaf 
spot, and white mould in beans. The effectiveness of 
bioagents against bean-causing disease pathogens was 
also supported by Abdel-Fattah et al. (2011), who 
revealed that the use of arbuscular mycorrhizal fungi as 
bioagents in common bean reduced the incidence and 
severity of Rhizoctonia root rot. Therefore, from these 
studies, it shows that different bioagents can be used as 
biological controls against bean disease-causing 
pathogens and they can offer a promising control of the 
diseases, although physical and biological methods still 
have weaknesses by Btryon (2022). Chemical methods 
comprise specific pesticides and have been proven to 
offer control of bean disease pathogens. Pesticides that 
are effective against Pythium spp have been reported by  

 
 
 
 

Abawi et al. (2006). 
Also, the list of chemicals that are effective in reducing 

the severity and incidence of bean anthracnose, resulting 
in increased yield, has been reported (Mohammed et al., 
2013a; Beshir, 2003). Moreover, phosphoric acid, 
benzoic acid, Bion, and pyrocatechol applications offered 
good control of Uromyces appendiculatus, a pathogen 
causing bean rust (Mansour et al., 2016). Lemessa et al. 
(2011) recommended spraying Benomyl for effective 
management of angular leaf spot.  

Furthermore, various chemicals such as copper 
sulphate, copper hydroxide, and potassium methy-
dithiocarbamate have been reported to control foliage 
infection of bean common bacterial blight (Karavina et al., 
2011). Apart from other methods, host plant resistance is 
the most efficient and potentially durable disease 
management strategy for both resource-poor farmers and 
medium-sized small-holder farmers in Africa. Breeding for 
resistance is the most affordable method for these 
resource-poor farmers as they use it to retain their seeds 
for subsequent cropping cycles. Different cultivars with 
resistance to different diseases have been screened and 
developed by breeders as a long-term control of plant 
diseases. This is the most effective method of controlling 
viral diseases (Kelly et al., 1995). For example, it has 
been reported that the dominant I gene and the bc-3 
recessive gene together in the same variety of common 
bean give complete resistance to BCMV and BCMNV 
(Drijfhout, 1978; Vallejos et al., 2006; Naderpour et al., 
2010). Anthracnose and angular leaf spot resistance 
were explained by Gonçalves-Vidigal et al. (2020). CBB 
resistance (Miklas et al., 2000), ALS (Oblessuc et al., 
2012; Caixeta et al., 2005). Wasonga et al. (2010) 
developed snap bean lines with broad spectrum rust 
resistance and heat tolerance for tropical 
agroecosystems. Offering resistance to beans is crucial 
in minimising the diseases, though the challenge is to 
breed the varieties with resistance that is effective, 
stable, and broad–spectrum (Nelson et al., 2018). Palloix 
et al. (2009) also reported that resistance breakdown is 
obvious, and sometimes there is a negative correlation 
between yield and disease resistance variables, whereby 
the durability of plant major resistance genes to 
pathogens depends on the genetic background, 
experimental evidence, and consequences for breeding 
strategies. For instance, the wheat rust resistance gene 
reduces grain yield by 5%. Apart from that, since the 
resistance involves multiple gene introgression, the 
planning needs greater effort than single gene resistance. 
Lastly, horizontal resistance is durable but difficult to 
relate to an accurate and reliable assessment of the level 
of resistance.    
  
 

Research trends on plant disease management using 
artificial intelligence and deep learning based 
technologies 
 

Sensing technology, Unmanned Aerial Vehicle (UAV),  



 
 
 
 
Internet of Things (IoT), machine learning techniques and 
Mobile Cloud Computing (MCC) are driving smart farming 
and innovative disease management strategies. The 
following subsection discusses the cost-efficient 
innovative technologies for efficient management of plant 
diseases. 
 
 
Low-cost sensors 
 
Rapid advances in sensor technology have aided in the 
detection of plant diseases and pests, overcoming the 
limitations of traditional methods and the reliance on 
human experts. For example, Huang et al. (2014) 
analysed the detection of Maize Chlorotic Mottle Virus 
(MCMV) using a bio-sensor implemented on the basis of 
Quartz Crystal Microbalance (QCM), which achieved high 
detection accuracy. Jócsák et al. (2019) investigated the 
application of Electrochemical Impedance Spectroscopy 
(EIS) sensors to detect viruses or pathogens that 
threaten plants. The EIS proved useful, especially for in-
field investigations due to its portability and capability to 
deliver quick feedback. Khater et al. (2019) reported an 
innovative sensor to detect Citrus Tristeza Virus (CTV) in 
multiple infections, which is a common scenario for 
planted crops. Also, wearable sensors play a great role in 
real-time monitoring of plants’ health. For example, 
Nassar et al. (2018) described wearable sensors that 
were configured to monitor plants’ health. The sensors 
gathered data such as temperature, strain, and humidity 
that were used to investigate the influence of 
environmental conditions on the health of plants. 
Wearable sensors are also widely used in precision 
agriculture to observe variations in solute content in 
plants and keep records of water usage in plants 
(Coppedè et al., 2017).  
 
 
Unmanned aerial vehicle  
 
The advancement in sensing technology such as 
Hyperspectral Imaging Sensors (HIS) is augmenting the 
traditional tools used for capturing airborne and satellite 
images. Analysing airborne or satellite-based data is 
expensive and time-consuming (Behmann et al., 2018). 
Hyperspectral sensing technology such as Unmanned 
Aerial Vehicles (UAVs) can guarantee a cost-efficient and 
effective way of acquiring imagery data from the field. 
UAVs can collect imagery data at a small aerospace 
attitude and provide an efficient platform for hyperspectral 
imaging, which is more suitable and cost-effective than 
traditional methods (Ishengoma et al., 2022). Moreover, 
UAVs contribute largely to supporting precision farming. 
For instance, UAVs are widely used in soil and field 
analysis to improve crop yield prediction through the 
implementation of data-driven techniques while improving 
fertilizer and pesticide utilisation (Peña et al., 2013;  
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Torres-Sanchez et al., 2013). Also, crop and spot 
spraying is another application area of the UAVs that has 
been reported to be efficient in terms of cost and time 
(Yallappa et al., 2017; Hentschke et al., 2018; Xiongkui et 
al., 2017).  Furthermore, Guo et al. (2012) demonstrated 
the applicability of UAVs in crop monitoring to assist 
farmers in tracking crop status and identifying areas that 
require immediate intervention to improve crop 
conditions.  This study uses the advanced capabilities of 
UAV-based data to propose an innovative and smart 
platform for crop disease detection and prediction of 
harmful pests. 
 
 
Internet of things technologies  
 
Advances in the Internet of Things (IoT) are transforming 
many sectors, including agriculture, to provide modern 
technologies in the agricultural production value chain 
such as precision farming, automated production 
processes, yield prediction, remote monitoring of plant 
diseases and pests, etc. In supporting smart farming, 
modern and innovative technologies such as IoT, remote 
sensing, wireless communication, and cloud computing 
have the potential to achieve real-time monitoring of plant 
health and the conditions necessary for plant growth 
(Maksimovic et al., 2017; Bastiaanssen et al., 2000; 
Hashem et al., 2015; Weber and Romana, 2010). 
Furthermore, the IoT and UAVs are widely used to track 
the occurrence of plant diseases and harmful pests. IoT 
equipment can collect real-time data such as weather 
data and plant growth by using cost-efficient sensor 
nodes, while UAVs could take field/farm and crop images 
that can be analysed to detect the prevalence of crop 
diseases and harmful pests. For instance, Gao et al. 
(2020) proposed a framework established on the basis of 
IoT and UAV to monitor pests and crop diseases. The 
proposed framework, in particular, considered the 
relationship between weather and the occurrence of 
pests and crop diseases.  
 
 
Machine learning techniques 
 
Over the years, Machine Learning (ML) techniques have 
been considered important for crop disease detection. 
Traditional ML methods are widely used for disease 
detection; for instance, Support Vector Machine (SVM) 
and random forest in tomato (Govardhan and Veena, 
2019; Mokhtar et al., 2015) and K-Nearest-Neighbors 
(KNN) in soybean (Shrivastava et al., 2017). An image 
segmentation algorithm established based on the Genetic 
Algorithm (GA) has been proposed to detect plant leaf 
diseases and classify them into appropriate classes 
(Singh and Misra, 2017). The proposed method used the 
K-means clustering technique with the lowest distance 
condition, followed by SVM classification. This, in turn,  
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Table 1. Deep learning techniques for plant disease detection and classification. 
 

Serial 
# 

Technique Evaluation Metrix Dataset 
Performance 
accuracy (%) 

Reference 

1 Convolution Neural Network (CNN) Accuracy PlantVillage dataset 96.50 Meen, 2019 

2 
Hybrid Convolution Neural Network (HCNN) 
model,   VGG16 and InceptionV3 

 

Accuracy, training time 
Field dataset of maize leaves 

 

96.98 
Ishengoma et al. (2021) 

3 ResNet 50 Accuracy PlantVillage dataset 97 Nithish et al. (2020) 

4 
CNN models: VGG16, VGG19,ResNet,Inception 
V3 

Precision, Accuracy, FI-Score, 
recall 

Field dataset of tomato leaves 93.6 Ahmad et al. (2020) 

5 CNN(4 hidden layers) Accuracy, precision, recall, FI-score PlantVillage dataset 91.2 Agarwal et al. (2020) 

6 Improved ANN and CNN Accuracy, FI-score PlantVillage dataset 93.75 Chen et al. (2021) 

7 CNN with fuzzy C-means segmentation Accuracy, sensitivity Field dataset of banana leaves 93.45 Krishnan et al (2022) 

8 CNN-AlexNet Accuracy PlantVillage dataset 99.16 Singh et al. (2022) 

9 CNN-AlexNet with PSO optimization Accuracy, FI-score, precision 
Field dataset of various crop 
leaves (corn, wheat, cotton,etc) 

98.83 Elaraby et al. (2022) 

10 CNN integrated with attention strategy Accuracy PlantVillage dataset 98 Karthik et al. (2020) 

11 
Principal Component Analysis(PCA) with Whale 
optimization and Deep Neural Network (DNN) 

Accuracy, loss rate PlantVillage dataset 86 Gadekallu et al. (2021) 

12 CNN-AlexNet, Inception V3, SVM Accuracy, recall, FI-score PlantVillage dataset 93.40 Verma et al. (2020) 

13 ResNet 50 (using contextual information) Accuracy 
Field dataset of various crop 
leaves (corn, wheat, rice,etc) 

98.0 Picon et al. ( 2019) 

 

Source: Author 

 
 
 
improved classification accuracy by 9.17%. 
Nevertheless, traditional ML approaches still face 
some challenges that need to be addressed, such 
as being highly dependent on feature extraction 
needed to train the models, which consumes a lot 
of time, and ML models are suitable for some 
specific environments, especially when used to 
process images (Nigam and Jain, 2020; 
Shrivastava and Pradhan, 2021). To address the 
aforementioned challenges, deep learning 
algorithms with automated feature extraction are 
promising solutions for crop disease detection and 
classification (Agarwal et al., 2020; Kamilaris and 
Prenafeta, 2018). Table 1 summarizes research 

trends on deep learning techniques for crop 
disease detection.  
 
 
Mobile cloud computing  
 
Mobile Cloud Computing (MCC) technology has 
the potential to implement an integrated and 
collaborative solution for automated crop disease 
detection, tracking, and prediction. Farmers can 
instantly and precisely detect the prevalence of 
diseases and acquire recommendations for 
curative actions with the help of a cloud-based-
mobile application such as a real-world mobile-

cloud based plant disease diagnosis system. 
However, the emerging trends of big data have 
brought substantial challenges in terms of 
processing time and cost (Hashem et al., 2015; 
Skourletopoulos et al., 2017; Pallis, 2017). This is 
due to the advancement of technologies for 
collecting data from fields such as sensors, UAVs, 
and mobile devices. To efficiently process this 
data, in line with meeting Quality of Experience 
(QoE) the combined and collaborative capabilities 
of Mobile Edge Computing and Cloud Computing 
technologies need to be explored. According to 
the findings of this study, artificial intelligence (AI) 
and deep learning algorithms are suitable for  



 
 
 
 
processing large amounts of data using cloud-based 
image processing techniques.  
 
 
Research gap 
 
Analysis of reviewed papers demonstrates that 
conventional plant disease management strategies such 
as IPM are considered to be a tool kit approach to crop 
protection.  However, the methods prove to be labour-
intensive and not easily disseminated to farmers (Jørs et 
al., 2017). Btryon (2022) and Nzungize et al. (2012) also 
reported that biological methods of controlling pests or 
diseases can sometimes fail in their specificity when the 
predator used a bio-control agent may switch to a 
different target. It was further reported that the biological 
methods are slow and do not destroy the pest, only 
reduce the pathogen. Generally, the application of 
chemicals in controlling pathogens causing bean 
diseases has been an efficient method.  However there 
are environmental concerns about their use and some 
are no longer available. Chemical treatments for large-
scale farmers could contaminate soil and water, whereas 
small-scale, poor-resource farmers cannot afford to apply 
chemical control and face health risks associated with 
handling chemical pesticides due to a lack of education in 
handling chemical pesticides to the farmer 
community. Consequently, smart crop disease detection 
and pest prediction technologies are considered as 
important worldwide. However, developing countries face 
numerous challenges in implementing automated 
systems for crop disease identification and pest 
prediction. Such challenges include inefficient internet 
connectivity, high costs for purchasing equipment and 
deploying smart technology on farms, and a shortage of 
experts on smart farming technology. Several previous 
studies proposed ML-based techniques to address the 
challenges related to plant disease identification, 
classification, and prediction. However, traditional ML 
techniques face challenges due to overwhelming 
progress in resource-intensive and data-driven tasks 
such as large datasets of images originating in the field. 
For instance, traditional ML relies heavily on feature 
extraction for model training, which consumes significant 
processing time and memory when processing large 
image datasets (Nigam and Jain, 2020; Shrivastava and 
Pradhan, 2021). To address this technological gap, this 
study reviewed various deep learning and AI-based 
models with automated feature extraction suitable for 
implementing cost-effective crop disease detection, 
classification, and prediction solutions. According to the 
results of the systematic review of this study, the 
combined strategies of machine learning, 
recommendation systems, WebGIS and image processing 
techniques have not been sufficiently explored to 
implement an AI-based solution for joint disease detection 
and prediction 
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Theoretical framework 
 
Figure 3 shows the main building block of the deep 
learning and AI-based framework for detecting crop 
diseases and predicting harmful pests. The white-labelled 
rectangles indicate the existing machine learning 
strategies, and the directed arrows indicate information 
workflow from one machine learning task to another. The 
coloured rectangles indicate innovative tasks proposed 
by this study for crop disease identification and harmful 
pest prediction strategies. For instance, the orange-
rectangles represent the proposed improvement of the 
machine learning tasks to predict harmful pests related to 
the detected disease, while the green-rectangle 
represents the proposed task that will be implemented in 
the system recommendation module to recommend 
possible solutions for the farmer to take curative actions. 
The proposed framework is expected to be applied by 
private and government agencies at district, regional, and 
national levels to monitor the plant’s health at various 
stages of growth. The trained crop disease detection and 
harmful pest prediction models map the locations where 
crops are planted and deploy the AI-based models to 
detect diseases, predict harmful pests, and recommend 
possible curative measures. Moreover, this study helps to 
fill the policy research gap by combining existing and 
emerging technologies for predicting harmful pests and 
detecting plant diseases using artificial intelligence 
technologies in collaboration with crop disease 
management centers at the community, district, and 
regional level. Also, the demonstration of the real-world 
applications at department level, university management 
level, government officials, private sectors, media, and 
social media will serve as evidence to engage 
policymakers. In collaboration with other stakeholders, it 
is crucial to develop and implement an interactive and 
social mobilisation strategy to influence decision makers 
and other stakeholders to mobilise resources needed to 
deploy the technology in the real work environment. 
Therefore, a collaborative strategy guarantees public 
awareness and consent. This, in turn, will ensure the 
social commitment among all stakeholders in fighting 
against prevalence of plant diseases and harmful pests in 
Tanzania.  
 
 
CONCLUSION AND FUTURE WORKS 
 
This paper presents a systematic review of the state-of-
the-art of artificial intelligence and deep learning 
techniques for crop disease detection and harmful pest 
prediction. Initially, the paper presented an overview of 
the current situation and symptoms of various diseases, 
specifically fungal diseases, bacterial diseases, and viral 
diseases affecting crops, particularly common beans. 
Then, we reviewed various articles on conventional plant 
disease management strategies to identify areas of  
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Figure 3. Main building block of deep learning and an AI-based framework for crop disease detection and harmful pest 
prediction. 
Source: Author 

 
 
 

improvement. The analysis of the reviewed articles 
reveals that conventional plant disease management 
strategies such as IPM are commonly used to minimise 
the prevalence of plant diseases. However, the review 
results further identified some challenges related to 
conventional methods, such as being costly in terms of 
labour, having low identification and prediction accuracy, 
and some not being environmentally friendly. Other 
identified challenges for implementing automated 
systems for crop disease identification and pest 
prediction, particularly in developing countries, include 
inefficient internet connectivity, high costs of acquiring 
equipment and deploying smart technology in farms, and 
a shortage of experts in smart farming technology. 
Previous studies also revealed that machine learning-
based techniques were commonly used to process and 
handle real-time data captured to detect crop diseases. 
However, in recent years, the rapid increase in data-
intensive and computational-intensive demands has 
posed challenges to traditional machine learning-based 
methods in terms of server capacity and performance, 
which should be addressed through complementary 
technologies capable of processing massive amounts of 
data, such as cloud computing, mobile cloud computing, 
edge computing, and big data processing architectures. 
Therefore, this systematic review recommends a deep 
learning and AI-based technique with automated feature 
extraction suitable for implementing cost-efficient crop 

disease detection, classification, and prediction. 
Moreover, this paper presents the theoretical framework 
describing the main components of deep learning and AI-
based strategies for crop disease identification and 
harmful pest prediction. Future work may consider 
extending and implementing deep learning and AI-based 
models for crop disease identification and pest prediction 
in real-working environments. Furthermore, another 
significant future research direction could be to conduct 
rigorous usability assessment and design requirements 
for implementing the solution in the real-working 
environment of Mobile Edge Computing (MEC) to enable 
service delivery proximate to users. 
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