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A B S T R A C T

Mobile Edge Computing (MEC) has been considered a promising solution that can address capacity and perfor-
mance challenges in legacy systems such as Mobile Cloud Computing (MCC). In particular, such challenges
include intolerable delay, congestion in the core network, insufficient Quality of Experience (QoE), high cost of
resource utility, such as energy and bandwidth. The aforementioned challenges originate from limited resources
in mobile devices, the multi-hop connection between end-users and the cloud, high pressure from computation-
intensive and delay-critical applications. Considering the limited resource setting at the MEC, improving the
efficiency of task offloading in terms of both energy and delay in MEC applications is an important and urgent
problem to be solved. In this paper, the key objective is to propose a task offloading scheme that minimizes the
overall energy consumption along with satisfying capacity and delay requirements. Thus, we propose a MEC-
assisted energy-efficient task offloading scheme that leverages the cooperative MEC framework. To achieve en-
ergy efficiency, we propose a novel hybrid approach established based on Particle Swarm Optimization (PSO) and
Grey Wolf Optimizer (GWO) to solve the optimization problem. The proposed approach considers efficient
resource allocation such as sub-carriers, power, and bandwidth for offloading to guarantee minimum energy
consumption. The simulation results demonstrate that the proposed strategy is computational-efficient compared
to benchmark methods. Moreover, it improves energy utilization, energy gain, response delay, and offloading
utility.
1. Introduction

The rapid penetration of smart Mobile Devices (MDs) and Internet of
Things (IoT) technology has brought opportunities for the development
of innovative mobile applications such as virtual reality, face recognition,
social networks and games [1,2]. The IoT technology is considered to be
a significant innovation that implements the concept of a connected
world to extend the idea of anywhere and anytime [3]. Recently, IoT has
been applied in various domain such as healthcare, smart cities, auton-
omous driving, smart home, and smart agriculture [4]. On the other
hand, mobile applications require High-Performance Computing (HPC)
environments with low latency, energy consumption and cost. Over the
years, cloud computing has been considered significant technological
advancement for the provision of HPC and cost-efficiency services to
end-users.

Accordingly, Mobile Cloud Computing (MCC) has been considered to
be the key technology to facilitate offloading of computation tasks from
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MDs into the cloud to improve Quality of Experience (QoE) and resource
utilization [5,6]. The MCC architecture shown in Fig. 1(a) is a 2-tier hi-
erarchy comprised of two major components, including the mobile de-
vices in the frontend and the cloud in the backend. To facilitate
communication between the frontend and the backend, MCC utilizes
technological infrastructures such as wireless communication,
location-based tools, and mobility services to provide plentiful resources
in the cloud [7]. The main benefits of MCC include augmenting mobile
devices by delivering productive processing capacity and storage in the
cloud. It improves performance in resource-intensive mobile applications
by outsourcing execution into the cloud, and it supports multi-platforms
to execute the workload of various applications in the cloud.

However, the number of connected MDs is growing rapidly and
predicted to grow more in future, producing more data in the fifth-
generation (5G) network than in the fourth-generation (4G) network
[8]. Similarly, resource-intensive and delay-critical applications rapidly
emanate great challenges in the MCC system in terms of both capacity
Sokoine University of Agriculture, Morogoro, 3218, Tanzania.

il 2022

ng Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
enses/by-nc-nd/4.0/).

mailto:mahenge@sua.ac.tz
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcan.2022.04.001&domain=pdf
www.sciencedirect.com/science/journal/23528648
http://www.keaipublishing.com/dcan
https://doi.org/10.1016/j.dcan.2022.04.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dcan.2022.04.001
https://doi.org/10.1016/j.dcan.2022.04.001


Fig. 1. The overview of mobile cloud computing architecture (a) and mobile edge computing architecture (b).
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and performance [9]. In particular, such challenges include intolerable
delay, congestion in the core network, insufficient QoE for end-users,
high cost of resource utility such as energy and bandwidth due to
multi-hop connection between end-users and the cloud [10,11]. More-
over, MDs face performance challenges emanating from limited power
sources, processing, and storage capacities that hinder achieving the
required QoE, especially for resource-intensive mobile applications.

To address the above-mentioned limitations, previous studies pro-
posed architectures that bring computing resources at the proximity of
end-users. In Bonomi et al. [12], the authors proposed a fog architecture
that facilitates execution of delay-sensitive tasks at the edge and routes
resource-intensive tasks to the cloud through a core network to achieve
low latency in IoT and big data applications. In the same vein, Fan and
Ansari [13] proposed workload-balancing strategy to enhance workload
assignment among Base Stations (BSs) and task allocation among fog
nodes. Also, in Patel et al. [14], the authors proposed Mobile Edge
Computing (MEC) that brings processing capability closer to the
end-users at the Access Points (AP) or BS of cellular networks. Essential
features of MEC include energy-efficiency, proximity, low response
delay, mobility, and location tracking support [14]. These properties are
in line with the required IoT application demands of high performance,
low delay, cost-effectiveness, and efficient resource utilization.

MEC architecture is a 3-tier architecture comprising of mobile devices
at the frontend, MEC servers at the intermediate, and the central cloud, as
shown in Fig. 1(b). MEC servers with necessary processing and storage
resources are deployed at BS or AP closer to end-users. Each mobile de-
vice is associated with one closest BS or AP, which is considered as home
BS depending on signal strength. MEC plays a great role, such as task
offloading, caching, processing, and service delivery, in alleviating
congestion in the core network, which is potential for minimizing
bandwidth cost, energy usage, and latency [15,16].

Compared to MCC, MEC is a promising solution to guarantee
improved performance, QoE for users, cost-efficient service delivery, and
efficient resource utilization especially for resource-intensive and delay-
critical applications because of its capability to deliver services at a
shorter distance than cloud computing. Previous studies investigated
offloading problem to reduce delay [17] or energy utilization [18,19]
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with an assumption that resources at the MEC are plentiful, while in
reality MEC resources are inadequate, especially in terms of power,
bandwidth and processing capability compared to cloud computing.
Therefore, to optimize the QoE especially for computation-intensive
applications, energy-efficient task offloading strategy that considers
computing capacity constraint and latency requirements is worthy to be
studied for the following reasons. First, the burden to process workloads
generated by IoT devices is large. The pressure from the big data
generated by IoT devices emanates challenges in traditional computing
architectures due to limited resources such as bandwidth, power and
processing resources. Second, high congestion in the core network, and
third, insufficient service quality emanating from low bandwidth and
limited processing capacity. Therefore, collaborative strategy between
MEC servers or between MEC and the cloud is a promising solution to-
wards increasing task processing capacity that can guarantee
cost-efficient service delivery along with ensuring QoE for end users.

In this paper, the task offloading problem is studied in collaborative
MEC with the objective of minimizing overall energy consumption along
with satisfying capacity constraint and latency requirements. This, in
returns, improves QoE for end-users. Two real-world examples of appli-
cation scenarios that can benefit from the proposed approach by off-
loading resource-intensive tasks to more resourceful MEC are given. First
is medical imaging [20] where the execution task can be offloaded to the
closest MEC server for processing instead of the central cloud which is
located at a longer distance from end users. The MEC servers can respond
to the end users after completion, or forward request to the central cloud.
The second is face recognition application [21] whereby image acquisi-
tion can be processed at the mobile device and the other tasks, such as
face detection, pre-processing, feature extraction, and classification, can
be offloaded to more resourceful MEC servers or central cloud for pro-
cessing. The two examples demonstrate the advantages of cooperative
MECwhich are closer to end users rather than the central cloud. Thus, the
proposed approach is potential for increasing processing capacity,
minimizing response delay, and resource consumption such as energy
and bandwidth which in returns improves QoE for end users. Therefore,
by considering limited resource settings and latency requirement, an
optimization problem for task offloading is formulated. Furthermore,
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Energy-Efficient Task Offloading Strategy (ETOS) based on swarm
intelligent optimization techniques is proposed. The key contributions of
this paper are summarized as follows:

� We propose a MEC-assisted model to design an energy-efficient task
offloading scheme that considers capacity constraints (both
computing and transmission), proximity constraints, and latency re-
quirements. Furthermore, to ensure minimum latency and increased
computing power, this study leverages MEC collaborative capability
that utilizes collaborative benefits between MEC servers or MEC
servers and the central cloud.

� In order to achieve energy efficiency, we propose a novel hybrid
approach established on the basis of Particle Swarm Optimization
(PSO) and Grey Wolf Optimizer (GWO) to solve the optimization
problem. The proposed approach considers efficient resource alloca-
tion such as sub-carriers, power, and bandwidth for offloading to
guarantee minimum energy consumption along with satisfying delay
requirements

� We perform extensive simulations to assess the performance of the
proposed strategy using various metrics. The simulation results from
various parameters show that the proposed ETOS outperforms the
baseline approaches in terms of energy utilization, energy gain,
response delay, and offloading utility under a limited resource
setting.

The remainder of the paper is organized as follows: the latest progress
of existing works related to this study is presented in Section 2, the
proposed approach mathematical models are presented in Section 3, and
the proposed algorithm is presented in Section 4. Section 5 describes the
simulation results, and lastly, Section 6 gives conclusion and proposes
future works.

2. Related works

Numerous studies have been done mostly in developed countries and
least in developing countries to examine methodologies for cost-efficient
computing and service delivery in MCC architectures. In Satyanarayanan
et al. [21], the cloudlet, a small-scale data center with computing and
storage capability placed near mobile users and accessed through WiFi
connection is proposed. However, limited WiFi coverage is one of the
major limitations reported in the literature. In Chiang [22], a fog archi-
tecture is presented where edges are part of the core networks and data
centers. Nevertheless, the known challenge in the literature is difficult to
guarantee QoE for mobile users as computations are not incorporated in
the mobile network architecture. In Khan et al. [23], the authors inves-
tigated the MCC architecture, incorporating cloud computing into the
mobile environment to augment the performance. Challenges facing
MCC architecture reported in the literature include response delay, high
bandwidth utilization, and high cost of data transportation to the cloud
for processing. Furthermore, a traditional centralized cloud computing
faces challenges of high network congestion, network overload and
depressed robustness [24]. On the other hand, the distributed cloud faces
challenges of complexity and resource management complications [25].
In order to address such challenges, the edge cloud architecture [26] and
the MEC architecture [14,27] are proposed to meet the requirements of
IoTs applications, such as low delay, cost-effectiveness, and efficient
resource consumption.

The energy and latency metrics have been considered important in
evaluating the Quality of Experience (QoE) in MEC systems. A dynamic
offloading and resource assignment model based on a stochastic opti-
mization strategy to reduce energy usage is proposed in Kwak et al. [28].
In Mao et al. [29], the authors proposed a dynamic strategy for compu-
tation offloading in a single-user setup with energy harvest equipment to
solve the challenge of energy in mobile devices. The proposed approach
is based on the Lyapunov optimization policy and focuses on offloading
choice to effectively utilize the available resources. In Sardellitti et al.
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[30], the authors studied the offloading problem in multi-user MEC
networks and proposed a resource allocation scheme based on a joint
optimization strategy to achieve low energy consumption and latency. In
Ref. [31], the authors studied the power-latency problem in multi-user
MEC network that aimed to reduce power consumption. They proposed
an online offloading decision algorithm governed by the Lyapunov
optimization strategy. In Ren et al. [32], the authors investigated the
latency optimization problem in multi-user MEC systems. They proposed
a combined approach for communication and resource provisioning
strategy to minimize the total energy usage and latency in
resource-constrained mobile devices. In Mahenge et al. [33], the authors
studied task unloading problems in collaborative mobile edge and cloud
computing focusing on improving QoE in resource-poverty devices. In
Cheng et al. [34], the authors proposed the combined approach for off-
loading and resource provisioning to reduce overall energy usage in
delay-critical applications based on multi-MEC networks. In Wang et al.
[35], the authors studied task offloading in MEC, focusing on the joint
optimization problem of delay and energy. They modeled the problem as
MINLP, which was solved by the relaxation method. In Cao et al. [36],
the authors proposed a joint optimization of computation and commu-
nication resource provisioning in MEC to reduce energy consumption
while satisfying latency constraints. They found that the cooperative
approach considerably enhances the performance and is energy effi-
ciency compared to other approaches without cooperative design. The
energy-efficient approaches in MEC have been proposed by a number of
prior works. In Liu et al. [37], the authors proposed an optimal task
scheduling scheme in single-user MEC to minimize latency under power
constraints. In You et al. [38], the authors studied an energy minimiza-
tion problem constrained by delay in multi-user MEC networks. They
proposed an efficient resource provisioning scheme that significantly
reduced the overall energy utilization. Also, a novel approach that in-
corporates the Wireless Power Transfer (WPT) into MEC to address the
challenges of limited energy in mobile computing is proposed in [39,40].

In conclusion, this work differs from existing studies: first, most
existing research addressed the task offloading problem in MEC without
taking into account characteristics of MEC such as limitation of MEC
resources. The proposed strategy considers capacity constraints (both
computing and transmission), and latency requirements. Then, effi-
ciently allocates MEC resources that meet minimum energy consumption
and deadline constraint. Second, most existing works focused on opti-
mising task offloading decisions autonomously among single user/multi-
user MEC and the central cloud or among several MEC servers. Instead,
this study considers a cooperative approach among multiple MEC re-
sources or between MEC servers and the central cloud to enhance ca-
pacity. Third, the proposed strategy based on intelligent swarm
optimization techniques only requires minimum information from MEC
system, which suits significantly in a decentralized approach.

3. System models

In the network model, an application scenario comprising of MDs
with N tasks is considered.

Also, it is considered that MEC servers with necessary processing and
storage resources are deployed in BS or AP. Correspondingly, it is
assumed that each MD is associated with one closest BS or AP, which is
considered as home BS depending on signal strength. Furthermore, the
home BS play two potential roles. First, it is responsible for task execution
if it has the resources required to satisfy the task requirements. Second, it
acts as a relay node to forward the task to the neighbouring BS or remote
servers. The end users connect to MEC servers through a wireless
network while the MEC server connects to neighbouring servers and
remote server via a backhaul link. Let φ ¼ f1;2;…:Qg be the set of MDs,
and J ¼ f1;2;…Ng denotes the set of tasks, respectively. Each task can
be characterized by three parameters denoted as Jðsk; ck;DkÞ where
skðinbitsÞ denotes the input-data size of the task, ckðMIPSÞ denotes the
computational intensity (workload), and DkðinsecondsÞ represents the
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maximum endurable delay. The estimation of these parameters can be
achieved by task profilers based on the nature of applications [41]. Also,
let Φ ¼ f1;2;…; s;…Sg be the set of MEC servers in the collaborative
domain with the total computation capacity K and bandwidth capacity
B respectively. Moreover, let αs denote the portion of resource allocated
to an individual task k at each MEC server s 2 S. Table 1 presents the list
of notations and Fig. 2 shows the overview of task offloading system
model.

3.1. Communication model

In this case, it is considered that users send requests to the BS/AP
currently associated (home BS), afterwards, the BS check if the requested
service can be delivered by the home BS. If the requested service cannot
be satisfied by the home BS, then the BS forwards the request to the
nearby BS/AP. Referring to this scenario, let Рη denotes the power
incurred by users' equipment during communication with the BS, and ψη

denotes the channel gain related to user η and the BS. Then, when a
request is sent to the BS/AP, data rate of users’ device η can be calculated
by

Rη ¼Blog2

�
1þ РηψηP

k2 J xkРkψ k þ σ2

�
(1)

where xk 2 f0; 1g is the control variable which is 1 if the task k is
executed in the mobile device, and 0 if it is offloaded to MEC layer, the
term

P
k2J

xkРkψk computes the interference at home BS which is caused by

other MDs uploading tasks to the MEC servers, σ2 is the noise variance,
and B is the network bandwidth.

For each request arriving at the BS/AP, MEC servers can cooperate
with one another to deliver the requested service. For example, if a user
requests a video, MEC servers can transcode the video to the suitable
bitrate form and then deliver it to the requesting user. Transcoding a
video requires intensive-resources for processing, thus requiring efficient
resource assignment strategy to minimize cost that would be incurred for
task transmission and processing. The control server at the BS is
responsible for scheduling and assigning tasks to the MEC servers related
to minimum request execution cost. Let ψ s be the channel gain of server s
at BS i when communicating with the server h at BS j, and Рs be the
transmission power of server s. Therefore, the transmission rate between
server s and server h can be found by

Rs ¼Blog2

�
1þ Рsψ sP

k2J ykРkψ k þ σ2

�
(2)

where yk 2 f0;1g is the control variable which is 0 if the task k can be
satisfied by the home BS and 1 if the task is forwarded to the neigh-
bouring BS in the collaborative range,

P
k2J

ykРkψk is the interference

caused by inter-cell communication when MEC servers in different lo-
cations communicate.
Table 1
List of important notations.

List of notations

Рη ; Рs Power consumption of device η , server s when communicating with BS or o
ψη ;ψ s Channel gain of device η , server s
Rη ;Rs Data transmission rate of device η , server s
B Network bandwidth
σ2 Noise variance
xk;yk Offloading control variables
Ck Computational intensity (workload)
E d;E ser The energy coefficient of device, server
Bkω Sub-carrier bandwidth allocated to task k
Dk Task execution deadline
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3.2. Service utility cost models

In this study, we consider binary offloading, referred to as the process
whereby the entire task can be computed either locally or unloaded to
more resourceful MEC servers without being partitioned. For local
computation, let fdev be the processing capacity (CPU frequency) of the
MD. Then, without offloading policy, the delay cost can be obtained by
DL ¼ Ck

fdev
½seconds�; and the energy utilization cost can be obtained by EL ¼

E dðfdevÞ2Ck [42], where E d is the energy consumed per CPU cycle.
When the task is offloaded to the MEC layer, the home BS can process

the task only if it has the required resources to complete processing.
Otherwise, the task is forwarded to other nearest MEC servers in the
collaborative domain or to the remote servers based on capacity and
proximity constraint. Therefore, the offloaded task incurs communica-
tion as well as computation costs. The offloading parameters are defined
as xk 2 f0;1g, where xk ¼ 1 is an indicator that task k is processed locally
in MD; otherwise, xk ¼ 0 denotes that task k is offloaded to the MEC
layer. Also, let yk 2 f0;1g, with yk ¼ 0 indicating that the offloaded task
k is processed by home BS; otherwise, yk ¼ 1 denotes that task k is for-
warded to the nearest BS in the collaborative domain or remote servers
based on resources and time constraint. Therefore, the delay and cost
models for an offloaded tasks are formulated as follows.

Delay-cost model: In this case, the end-to-end delay is considered. For
example, consider an application scenario where a medical image is
captured by IoTs devices that need to be offloaded to more resourceful
MEC servers for processing. In this case, the system incurs the image
uploading delay, overhead delay for queueing and task scheduling, the
execution delay, and delay incured for a server to respond to the MD.
Without the loss of generality, the response delay is ignored in this study.
Therefore, let Dd;s denote the delay incurred during task transmission
from MD to MEC, which can be obtained as Dd;s ¼ sk

Rη
. Also, let Dqo

represent the overhead delay which can be obtained by Dqo ¼ sk=ω;where

ω is the average rate for sub-carriers assignment. Also, denote Ds;j as the
communication delay incurred for the task forwarded from home BS s to
the nearby BS j in the collaborative domain through X2 link [43] or to the
remote server through a backaul link. Therefore, Ds;j can be obtained by

Ds;j ¼
PN
k¼1

yksk
Rs

where Rs is the link capacity connecting adjacent MEC

servers. Moreover, if fser denotes the CPU execution rate of task k allo-
cated by MEC server, the execution delay denoted as Dp can be computed

as Dp ¼
PN
k¼1

xkck
fser

. Therefore, the overall delay of the offloaded tasks can be

obtained by

Doff ¼Dd;s þ Dqo þ Ds;j þ Dp (3)

Energy-cost model: Let F ¼ f1; 2;…;ω;…; Fg represent the set of
manageable sub-carriers with sub-carrier average bandwidth Bω for
transferring task k to the MEC. The parameter ωω

ks;whereω 2 F ; k 2 J ;

s 2 Φ; denotes the offloading indicator such that ωω
ks ¼ 1 means task k is

offloaded to MEC server s by sub-carrier ω, otherwise, ωω
ks ¼ 0. Also, the
ther servers DL Delay for local execution
EL Energy consumption for local execution
sk Input-data size of the task
Doff Total delay for remote task execution
Eoff Total energy consumption for remote task execution
Pd;s Uplink transmission power
pBestlz Best location vector of each device
gBest Global best position vector
fdev CPU frequency of the mobile device
fser CPU frequency of MEC server
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power allocation matrix can be represented by
R ¼ fP ω

ks

��P ω
ks 2 ½0;P budget�;ω2 F ; k2 J ; s2 Φg; where P ω

ks indicates
the power allocated to the task k uploaded to MEC server. Therefore, the
task uploading strategy must satisfy the constraint expressed as
X
s2Φ

X
ω2F

Ωω
ks � 1; k 2 J (4)

Also, let Pd;s [Watts] be the power for transferring a job k from MD to
MEC, and Ps;j [Watts] be power required for communication overhead
between server s and server j: The energy consumption for uplink
transmission (Ed;s) can be found by Ed;s ¼ Pd;sDd;s ¼ Pd;ssk=Rη

: Likewise,

the energy consumption incurred for communication overhead between
MEC servers can be obtained by Es;j ¼ Ps;j

sk
Rs
: If the task is not forwarded to

other nearby server, then Ps;j ¼ 0:Moreover, the execution energy cost of
the tasks offloaded to a particular server is denoted as Ee which can be
obtained by Ee ¼ E serðfserÞ2ck; where E ser is the energy cost per one CPU
cycle of the MEC server. Therefore, the overall energy cost (Eoff ) incurred
for the offloaded task can be obtained by

Eoff ¼Ed;s þ Es;j þ Ee (5)

3.3. Problem formulation

In this study, the main objective is to find out the energy-efficient
design that minimizes the system's overall energy cost and satisfies the
capacity and delay constraints. Therefore, the task offloading problem is
transformed into an optimization model with an objective function
expressed as
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minimize XN XQ
xkEL þ

XS
ykEoff (6)
xk; yk k¼1

 
i¼1 s¼1

!

Subject to

XN
k¼1

xk ¼ 1;8k2J (7)

XN
k¼1

yk ¼ 1;8k2J (8)

XN
k¼1

XS
s¼1

xkαs � K (9)

XF
ω¼1

Bkω � B ; 8k2J (10)

Doff � Dk (11)

The expression (6) above presents the optimization objective that
minimizes the total energy usage cost. Constraint (7) guarantees the
feasibility of the task offloading strategy by restricting eachMD to offload
task k to at most one MEC server, and (8) guarantees that the home BS
can choose only one nearby MEC server in the collaborative domain to
process task k. Constraints (9-10) ensures that the allocated computing
resources and bandwidth cannot exceed the available capacities, and
(11) ensures that task processing delay meets its maximum tolerable
delay.
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Moreover, to demonstrate that problem (6) with constraints (7)–(11)
is NP-complete, we consider that the Set Cover Problem ðSCPÞ may be
defined as: given a universal set P ¼ fp1;p2;…pNg and a collective subset
of P represented by H ¼ fh1;h2;…hLg where every subset hk incurs en-
ergy cost ξk for processing task k. The aim is to find out a collection of
members of H whose union equals to P; i.e. ; ð[hi ¼ P; i¼ 1;2;…Þ and
the overall energy consumption is minimized.

To prove NP-hardness, the SCP is reduced to an instance of the
problem formulated in this study as follows: First, each member pi in the
SCP is mapped to a MD requesting services from the BS. Second, the
energy consumption for processing user requests at the ith BS is set to ξk:
Third, the energy cost Eoff ¼ 0 if pi 2 hk; otherwise, it is set to 2ξk, and
fourth, the energy cost Es;j ¼ 0 if the task is processed at the home BS. All
members of SCP are covered if and only if the overall energy cost (Eoff ) of
the solution is 0: Moreover, if 9x such that x is the solution in SCP with
energy cost E , then the sets form the MEC servers and the overall cost is
E : Moreover, it is assumed that there is a solution to the optimization
problem (6) with energy cost E ¼ E local þ E remote, where E local is the
entire energy cost for executing tasks locally in MDs and E remote is the
overall energy cost for offloaded tasks.

Then, the first case occurs when the total energy cost (Eoff ) is 0:
Subsequently, the chosen MEC servers produce the collective sets of the
SCP with energy cost E . Conversely, the second case occurs when Eoff >
0; which implies that there exist some members in the SCP that are not
covered. Then, for each BS iwhose Eoff 6¼ 0; the newMEC server (i.e., the
new subset hk) is selected to process task k where Es;j ¼ 0: Subsequently,

Es;j þ ðEd;s þEeÞ ¼ 0þ ξk � 2ξk; thus the new overall energy cost E * �
E . Therefore, the SCP;which is NP-hard, is a polynomial-time that can be
reduced to the formulated optimization problem.

4. The proposed energy-efficient task offloading strategy

The optimization problem (6) is a Non-Linear Problem (NLP) that is
NP-hard; in practice, finding the best solution to the problem (6) can be
challenging and time-consuming. Therefore, it is required to establish an
efficient method to find the best solution. Recently, numerous ap-
proaches have existed to solve NP-hard problems, such as Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization
(ACO), and Grey Wolf Optimization (GWO). Specifically, the PSO
inspired by search behaviours and hunting is widely used in hybrid al-
gorithms based on a swarm intelligent technique because of its high
global optimization efficiency, fast convergence speed and easy imple-
mentation. On the other hand, GWO has been adopted in solving various
real-world problems, such as resource allocation problems, scheduling
problems, forecasting, and many others as presented in Refs. [44–47].

Therefore, in this study, Energy-efficient Task Offloading Strategy
(ETOS) is proposed to solve the optimization problem. The proposed
approach is a hybrid method based on a swarm intelligent technique
established through PSO and GWO. The motive behind using a hybrid
approach is to improve the search capacity within the solution space and
enhance the convergence performance towards a better solution. It is
known from the literature review that PSO is characterized by high
global optimization efficiency, fast convergence speed and easy imple-
mentation. Also, the resilient strength of GWO dwells in the capability to
explore the search space achieved through imitation of the leadership-
hierarchy of grey-wolves. Therefore, in this study, we leverage the
combined strengths of the two methods to improve the quality of results,
speed of iterative convergence, and capability to search global optimum.

The PSO algorithm [48] is an intelligent and stochastic swarm algo-
rithm. Its motivation is to learn search and hunting from animal behav-
iour to determine the global optimization problem in which each
member of the group is called particle. In this study, the researchers
considered a mobile-application scenario where N tasks with
resource-intensive and low-latency requirements must be unloaded into
MEC servers for processing. Each mobile device is considered as a
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particle. Consequently, the proposed problem can be represented as N�
dimensional vectors. Thus, the placement vector can be represented by
λzðtÞ ¼ ðλz1; λz2;…λzm;…; λzηÞ where λzm denotes the mth position of the
zth particle (device) representing the probable solution vector. Also, the
velocity vector can be represented as VzðtÞ ¼ ðvz1; vz2;…vzm;…; vzηÞ with
vzm indicating the velocity of zth particle in mth dimension. Likewise, the
best location vector for each device is indicated by pBestlz ¼ ðpBz1; pBz2;

…; pBzηÞ and the best position vector of the whole population is repre-
sented as gBest ¼ ðgB1; gB2;…; pBηÞ respectively. In PSO method, the
location of each member of the crowd in the search space should be
updated using the following mathematical models

Vzðtþ 1Þ¼VzðtÞþ θ1η1ðpBzi � λzðtÞÞ þ θ2η2ðgbest � λzðtÞÞ (12)

λzðtþ 1Þ¼ λzðtÞ þ Vzðtþ 1Þ (13)

The GWO algorithm [49] is a swarm intelligent method motivated by
the hunting and leadership hierarchy whereby the crowd can be divided
into four dissimilar groups known as alpha ðαÞ, beta ðβÞ, delta ðδÞ, and
omega used for mimicking the leadership hierarchical structure. The α is
the highest level in the structure which is responsible for overall decision
making. The β is the second high level in the structure known as assistant
wolves that assist α in making decisions and guide the lower levels in the
structure. The δ is the third ranked grey wolf which assists the higher
levels and it plays a great role in observing the boundaries of their region,
guarding the group, and hunting. The omega is the lowermost rank which
must obey the members of higher levels. According to Mirjalili et al. [49],
the algorithm implements three key hunting: searching, encircling, and
attacking.

Let λðtÞ and λpðtÞ denote the location of the wolf and prey at time t, the
mathematical models for encircling procedure can be expressed as

d¼ ��θ:λpðtÞ� λðtÞ�� (14)

λðtþ 1Þ¼ λpðtÞ � v:d (15)

where θ and v are vectors.
In the hunting process, it is assumed that α; β and δ have a better

understanding of the optimal solution λpðtÞ; which is the location of the
prey. Also the location of wolves can be updated with respect to the
location of α; β and δ. Therefore, the hunting behavior can be modeled
mathematically as

dα ¼ jθ1:λαðtÞ � λðtÞj;
dβ ¼

��θ2:λβðtÞ � λðtÞ��;
dδ ¼ jθ3:λδðtÞ � λðtÞj

(16)

λ1 ¼ λαðtÞ � v1:ðdαÞ;
λ2 ¼ λβðtÞ � v2:ðdβÞ;
λ3 ¼ λδðtÞ � v3:ðdδÞ

(17)

λðtþ 1Þ¼ λ1 þ λ2 þ λ3
3

(18)

where θj ¼ 2η2 and η2 2 ½0; 1�; which is generated randomly for j ¼ 1; 2;
and 3. Similarly, vj ¼ 2h:η1 � h where η1 2 ½0;1�; which is generated
randomly. According to Ref. [49], h progressively declines from 2 to 0.
Let V be the value generated randomly in the range ½ � 2v; 2v�, if jV j < 1;
the members of the crowd are forced to approach the prey, which is the
optimal point. When jV j > 1, the members of the crowd are forced to
deviate from the prey.

In the proposed ETOS, searching and attacking processes are
controlled by inertial weight Iω. Therefore dα dβ, and dδ can be updated
using the newly adapted expression as follows [50]:

dα ¼ jθ1:λαðtÞ� Iω * λðtÞj;
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dβ ¼
��θ2:λβðtÞ� Iω * λðtÞ

��; (19)

dδ ¼ jθ3:λδðtÞ� Iω * λðtÞj
Similarly, the velocity and location of each particle in the global

search domain can be updated according to the following newly formu-
lated equations

Vzðtþ 1Þ¼ Iω*

0
@VzðtÞ þ θ1η1ðλ1 � λzðtÞÞ

þθ2η2ðλ2 � λzðtÞÞ
þθ3η3ðλ3 � λzðtÞÞ

1
A (20)

λzðtþ 1Þ¼ λzðtÞ þ Vzðtþ 1Þ (21)

where z ¼ 1; 2; 3;…; Iω is the inertia weight, VzðtÞ is the speed of a
particle z at a time t, λzðtÞ is the position of a particlez at a time t, θi is the
uniformly distributed random numbers, and ηi is the accelerating factor.

Finally, in order to evaluate whether the solution is improved, the
fitness function method is used whereby the fitness equation can be
expressed as

Fðx; yÞ¼
XN
k¼1

 XQ
i¼1

xkEL þ
XS
s¼1

ykEoff

!
þ Pðx; yÞ (22)

where Pðx; yÞ is the penalty function. In order to establish the penalty
function of the fitness equation (22), the method proposed by Dai et al.
[17] is applied to adjust the penalty co-efficient function to solve the
capacity-associated constraints. Therefore, the penalty function can be
expressed as

Pðx; yÞ¼ ξðx; yÞ þ βðxÞ (23)

where

ξðx; yÞ¼
XQ
i¼1

ξ1 �
 XN

k¼1

xk � 1

!2

þ
XN
s¼1

ξ2 �
 XN

k¼1

yk � 1

!2

(24)

βðxÞ¼
XQ
i¼1

 
β1�

 
1PN

k¼1

PS
s¼1xkαs�K

!2!
þ
XF
ω¼1

 
β2�

 
1PF

ω¼1Bkω�B

!2!

þ
XQ
i¼1

 
β3�

�
1

Doff �Dk

�2
!

(25)

where ξ1; ξ2; β1; β2 and β3 represent penalty variables. The penalty vari-
ables represent the weights of the constraint expressions in the initial
constrained objective function (6). Particularly, ξ1 and ξ2 represent
weights of constraints (7) and (8), while β1, β2 and β3 represents the
weights of (9), (10) and (11). The purpose of the penalty variable is to
guarantee the execution of the proposed algorithm in the domain of the
feasible region. Therefore, the expression (22) is the new objective
function obtained through combination of the original objective function
(6) with the weighted constraint expressions. The motive behind the
combination is to convert the constrained expression (6) to an uncon-
strained expression (22).

Algorithm 1is the pseudo-code of the proposed ETOS strategy that
find the optimal processing plan for each task in terms of energy cost. The
proposed ETOS algorithm obtains all necessary information and starts the
execution process. First, the necessary parameters are set, and the algo-
rithm determines the preliminary sub-carrier assignment during the first
run of iteration (Algorithm 1 line 1–3). The initial velocity and location of
each particle/device are set randomly (Algorithm 1 line 4), and the
corresponding fitness value of each device is acquired from equation (22)
(Algorithm 1 line 5). Moreover, the algorithm sets the vector pBestlz
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which keeps track of individual particles’ best location, and gBest vector
which keeps track of the particle with the best result of all particles in the
population (Algorithm 1 line 6). The offloading decision is made based
on the task processing costs in terms of delay and energy preferences
(Algorithm 1 line 7–12). Second, the algorithm starts iterative execution
in the loop until the termination criteria are met (Algorithm 1 line
13–28). For each particle, the individual best value and the global best
value are updated (Algorithm 1 line 15–22). Furthermore, the velocity
(Vzðt þ 1Þ) and location (λzðt þ 1Þ) are updated using the established
expressions (20) and (21) (Algorithm 1 line 23–26). Finally, the algo-
rithm returns the optimized energy utilization results (Algorithm 1 line
31).

The optimized results achieved by the proposed algorithm are po-
tential information required by BS/AP to efficiently allocate resources,
such as power and sub-carriers, for task offloading. Therefore, the BS/AP
will reply to the service requester (end user), which will make the off-
loading choice based on the results. Specifically, the scenario is as fol-
lows: the Mobile Device (MD) owning task decides which task should be
computed locally or offloaded to more resourceful MEC servers. Then,
the MDs inquire required resources from the BS currently connected
(home BS). Upon inquiry reception at the BS, the controller server, which
maintains the Resource Allocation Table (RAT) and is responsible for task
scheduling, allocates the optimal MEC server within the cooperative
space. Then, the MDs offload the task to the selected optimal MEC server
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to process the task.
The complexity of the proposed Algorithm 1 lies in computing the

cost of a candidate solution depending on the current location of the MDs
and the computations needs to update each particle's velocity based on
expression (20) and location (21). Algorithm 1 optimizes energy con-
sumption and resource allocation through two phases. Initially, the al-
gorithm initializes the device's locations represented as a dimensional
vector with size N. Therefore, the time complexity of the initialization
process isOðNÞ. Then, the search agents explore the solution space to find
the best solution that satisfies the optimization objective. Therefore, the
complexity for computing the cost of candidate solution for each iteration
is OðN*ΘÞ where N is the dimension of the problem, and Θ is the pop-
ulation size. The following section presents the discussion of the simu-
lation results.

5. Simulation results and discussion

This section discusses the simulation results to assess the possible
benefits from the proposed approach using various parameters, such as
the size of input data, processing capacity, number of MEC servers, and
data uploading rate. In the simulation, the coverage radius (R) of the BS is
set to 500 m. Each user can inquire about services from the closest BS in
an area covered by radius R. Similar to Ref. [51], users are distributed
randomly following poisson distribution by poisson parameter μ > 0 and
the distribution variable δ ¼ 1; 2;3;…, with an average of 50 users at
each BS. Throughout the simulation, the number of search agents are set
to 30, number of iterations varies between 10 to 500;θ1 ¼ θ2 ¼ θ3 ¼
0:5; and Iω ¼ 0:9751. The values of ηi are randomly generated and
evenly distributed in the range 0 and 1. All over, it is considered that
resources for eachMEC server are evenly distributed within 8 GB–500 GB
for storage and 100MIPS to 1000 MIPS for processing. The energy con-
sumption per CPU cycle E d and E ser considered to be 1x10�24 and
1x10�26[34]. Furthermore, the noise variance (σ2) is set to � 102dBm.
Other simulation parameters are presented in Table 2 below.

The proposed approach was evaluated using various parameters, and
the metrics used for assessment include the average energy utilization,
total energy utilization, energy gain, response delay, and the offloading
utility. From the simulation results, the performance was assessed in
comparison with the following existing baseline approaches.

1) Optimal Enumeration Offloading Strategy (OEOS): This method
searches for the optimal solution through enumeration of all potential
solutions and chooses the optimal server to offload the task [52].

2) Random Offloading Approach based on Dynamic Programming with
Hamming distance termination (ROA-DPH): The ROA-DPH makes off-
loading decision randomly and freely select the server to offload the
tasks based on resource availability. ROA-DHP uses a random-based
approach and hamming-distance termination principle to obtain a
better offloading decision [53].

3) Adaptive Task Offloading (ATO): The MDs dynamically offload jobs to
the higher layers with more computing resources to minimize
execution cost [54]

4) Local: All tasks executed by MDs.
Table 2
Variables, value and description of each variable used in the simulation.

Variables Values

Number of MEC servers (S) 10
Uplink transmission power (Pd;s) 20 dBm
System Bandwidth (B) 20 MHz
MEC execution rate (fser ) [2,5] GHz
MDs execution rate (fdev) 1GHz
Input data size (sk) 20 � 100MB
Workload (Ck) ð1 � 2:5Þ � 107

ðCPU cyclesÞ
Sub-carrier average bandwidth 15 kHz
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Fig. 3 illustrates the comparison of energy consumption between the
remote execution (all tasks offloaded to MEC servers) and the local
execution (tasks processed in MDs) under various MEC execution rates
and data size. The ratio of energy consumption for local execution is 1.
From the figure, it is obvious that the ratio of energy consumption will
decrease when the MEC execution rate increases because when the
execution rate of MEC server is large, sufficient resources can be provided
to handle large workload with fewer servers, so as to reduce processing
time and overall energy consumption. For example, the ratio differences
(local� remote) of energy consumption for data sizes 20MB; 50MB;
and 80MB are 0:42; 0:26; 0:12 when the MEC execution rate is small,

e.g., 2� 109 Hz while they are 0:62;0:419;0:22when the MEC execution
rate is large, e.g., 7� 109 Hz. Also, when the data size is small (for
example, 20 MB), the remote execution consumes less energy compared
to the medium data size (50 MB) and large data size (80 MB), resulting in
a small ratio because the energy consumed for transmission and execu-
tion is less for small data size. Conversely, when the offloaded file is
large, more energy is required for transmission and processing which will
increase energy consumption. For example, the ratio of energy con-
sumption (data size ¼ 80 MB, MEC execution rate ¼ 1� 109Hz) is larger
than 1 because when the data size is large (80 MB), more resources are
required for data transmission and processing. Therefore, when the MEC
execution rate is low (1� 109Hz), offloading task toMEC consumes more
energy than processing locally in a mobile device, which causes the ratio
of energy consumption to be larger than 1. Moreover, when the number
of MDs uploading tasks to servers with richer resources becomes larger, it
may lead to a high probability of interference resulting in high energy
consumption. Therefore, it is critical to optimize the selection of MEC
servers to unload tasks according to application preferences and available
resources to achieve minimum energy cost.

Fig. 4 demonstrates the complexity comparison analysis between
proposed ETOS and OEOS when the number of tasks changes and the
task-input size is fixed. Although OEOS guarantees optimal solution for
offloading decisions, the main shortcoming of this algorithm resides in its
exponential time-complexity Oð3kÞ, where k is the number of tasks.
Consequently, OEOS is inappropriate in application scenarios with a
bigger number of tasks requiring intensive resources for execution.
Therefore, in this paper, we use OEOS as a benchmark algorithm to the
proposed ETOS. The analysis of the simulation results proves that the
proposed ETOS executes faster than OEOS in both cases when, the task-
input size is set to 24 MB and 48 MB respectively, as shown in Fig. 4.
Fig. 3. Ratio of energy consumption to local execution versus MEC execution
rate under various data size.



Fig. 4. Comparisons of the execution time between OEOS and proposed ETOS
when the number of tasks changes. Fig. 5. Average energy utilization versus the number of iterations.

Fig. 6. Comparison of energy consumption for four approaches when the task
input size varies.
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When the number of tasks is small (2–6 tasks), the execution time of
OEOS and the proposed ETOS is nearly the same. However, when the
number of tasks increases further, the proposed ETOS exhibits faster
execution speed than OEOS, with performance gap growing rapidly. This
demonstrates the superiority of the proposed ETOS over OEOS especially
on application scenarios having a large number of tasks.

In Fig. 5, the performance evaluation is compared with the bench-
mark algorithms [47,49] in terms of statistical results and optimal energy
utilization for processing user requests.

As shown in Fig. 5, compared to the GWO and ROA-DPHmethods, the
proposed ETOS algorithm performs the near-optimal solution (OEOS)
with less than 5% difference from the optimal strategy and provides the
best minimum energy utilization in less iterations (50). This is because,
the penalty function is established to adjust the fitness function to find
the best solution of the optimization problem which considers both
resource availability and cost of task computation. Similarly, the estab-
lished penalty function is applied to speed up the iterative convergence
and enhance the correctness of the results.

Fig. 6 presents the impact of task size on energy consumption.
Obviously, as the task size increases, the difference in ratio of energy
consumption decreases. This is because when the input data is large, it
requires more resources for uploading tasks to the MEC and processing
which consumes more energy than small task size. Although, all strate-
gies exhibit similar trend of decreasing difference in energy consumption
ratio on increasing task size, the proposed ETOS performs closer to the
optimal scheme (OEOS) and outperforms the two baseline schemes ROA-
DPH and ATO, as shown in Fig. 6. This is essential because of the efficient
energy utilization achieved by the proposed strategy, which in return
improves data uploading rates and maximizes the energy saved by the
system.

Fig. 7 demonstrates the comparison in total energy utilization versus
processing capacity required to accomplish the task. It is observed that in
all approaches, the total energy utilization increases with the required
processing capacity. In view of Local execution, the energy utilization is
higher compared to all schemes because MDs are constrained in both
computing and energy resources. Therefore, offloading resource-
intensive jobs to more resourceful MEC is a promising solution to save
more energy in MDs. In view of the proposed ETOS, the total energy
utilization is closer to OEOS and lower compared to ROA-DPH, ATO, and
Local because the jobs are offloaded to the MECs that exploit cooperative
task processing. This, in return, maximizes utilization of resources at the
edge of the mobile network, thereby saving more energy that could be
used for job transmission through the backhaul link to the remote
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servers. In addition, the offloading decision strictly considers the capacity
constraints, proximity, and time constraint, as such minimizes the
transmission energy through a long distance which improves energy
consumption.

Fig. 8 shows the comparison of the proposed ETOS approach with
three baseline approaches ROA-DPH, ATO, and OEOS in terms of the
offloading utility by considering the effects of the data transmission rate.
It is observed that the offloading utility increases with transmission rate
for all approaches with a slight difference between the schemes when the
transmission rate is low. In each case, the proposed ETOS performs near-
optimal solution (OEOS), and it outperforms other baseline approaches
of ROA-DPH and ATO in terms of offloading utility. This is because the
proposed optimization strategy leverages the opportunity of MEC servers
located closer to end users for task execution which is potential for
minimizing latency and resource consumption such as energy and
bandwidth compared to remote cloud. This in returns maximizes
uploading rate of MDs which increases offloading utility, as shown in
Fig. 8. In addition, the cooperative capability of MEC servers has brought
opportunities for plenty resources that influence more task offloading to
the MEC to minimize resource consumption by MDs.



Fig. 7. Total energy utilization versus processing capacity required to accom-
plish the tasks.

Fig. 8. Offloading utility versus data transmission rate.
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6. Conclusion and future works

This paper addresses the task offloading problem focusing on coop-
erative MEC architecture. Initially, the task offloading is modeled as an
optimization problem with the objective of reducing the overall energy
consumption. Then, the energy-efficient task offloading algorithm based
on swarm intelligent optimization techniques is proposed to ensure that
minimal energy cost is achieved. Furthermore, the performance of the
proposed algorithm is evaluated using simulation experiments with
various parameters. The simulation results verify that the proposed
approach is computational-efficient compared to benchmark methods.
Moreover, the proposed strategy considerably outperforms other base-
line approaches, such as OEOS, ROA-DPH, ATO, and Local execution in
terms of energy consumption, execution time, and offloading utility.

In the future, the researchers envisage extending the scope of the
work to an online scenario and evaluating the algorithm in the real
environment of mobile edge computing.
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