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Abstract: Water scarcity and nutrient availability for rice farming have become great matters of
concern in the contexts of climate change and land use change globally. Both interact and contribute
to crop productivity at the expense of nutrients and future water sustainability. The objective of
this study was to understand the on-farm potential response of soil organic carbon (SOC), total
nitrogen (TN), and total phosphorous (TP) to water management practices in rice farming within the
Kilombero Valley, Tanzania. Soil samples were collected from three villages in the study area at four
depths: 0–20, 20–30, 30–40, and 40–50 cm. Four water management regimes, namely: A = traditional
flooding (rainfed) without intensification of rice farming; B = traditional flooding (rainfed) involving
a system of rice intensification (SRI); C = alternative wetting and drying (AWD) involving SRI for
one cropping season; D = abandoned fields (fallow); and E = AWD involving SRI for two cropping
seasons, were investigated as regards their impact on SOC, TN, and TP. There were significant
(p < 0.05) effects of water management regimes on SOC, TN, and TP. AWD involving SRI for one
cropping season indicated a positive effect on SOC and TN across all depths as compared to other
practices. We conclude that water management practice that involves AWD with SRI for one cropping
season is a plausible approach to maintaining high SOC and TN, with the potential for increasing
crop production while minimizing water consumption.

Keywords: rice; soil nutrients; farming management practice; irrigation; alternative wetting and
drying (AWD); system of rice intensification (SRI)

1. Introduction

Rice (Oryza sativa L.) farming is one of the main activities and sources of income
for people and is the most widely cultivated crop worldwide [1,2]. It is a major staple
crop which sustains about 3 billion people [3], with about two-thirds of the total rice
production grown under irrigation [2,4]. To achieve high yields, soils in rice fields need to
be saturated [5,6], which requires large amounts of freshwater to be available. It is thus not
surprising that the rice water productivity (yield per unit water used) averages as low as
0.4 kg of grain per cubic meter of water, or about half the water productivity of wheat [3].
Irrigation of rice grown during the dry season encompasses nearly 30% of global freshwater
withdrawals. Considering the current 2.4% per year increase in rice demand [7], the need
for more rice with less water is crucial for food security, and irrigation plays a greater role in
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meeting future food needs under climate change and land use change—driven by human
population growth.

In the context of climate change and population growth, more efficient water man-
agement practices are required to meet food demand in an era of increasing water scarcity.
One important water-saving practice in the rice field is alternative wetting and drying
(AWD) that is conducted at varying frequencies and intensities during crop production [8,9].
The practice deliberately saves water and enhances the crop’s water use efficiency. For
example, [8,10] reported reducing water use by 23–30% compared to flooding practice. The
use of irrigation water for producing rice can potentially be reduced by lowering the depth
and duration (time) of standing water and by allowing the soil surface to dry before the
next application of irrigation water. The practice ensures a supply of moisture at a level
where rice roots can access the water in the subsurface soil, which remains saturated. It is
also used for enhancing minimum use fertilizer as it minimizes leaching effects below the
soil surface of farmland [5,11].

The duration, regularity, and predictability of rice field flooding have effects on the
temporal variation of the water depth (volume), chemistry, microbial activity, and soil
fertility [12–15]. AWD can improve crop nutrition, and re-wetting dry soil provokes both
physical and biological changes that affect soil nutrient availability. Whether this alters crop
nutrient uptake depends on competition between plants and microbes for nutrients, with
the rate of re-wetting determining microbial dynamics. The practice creates aerobic and
anaerobic conditions in the soil; the aerobic favoring soil microbial metabolism, fostering
the degradation of soil organic carbon (SOC) [16], and releasing nutrients [17]. Under
anaerobic conditions typical of flooded paddy fields, SOC can accumulate at a rate of
0.5 t/ha/y [18,19], but under more aerobic conditions, much of SOC is lost [20,21].

Soils in rice monoculture are susceptible to either loss or built-up SOC and nutrients
when converted to the production of aerobic rice. Globally, SOC losses due to shifts
to aerobic conditions could amount to about 1.2 Gt (about 20% of anthropogenic SOC
emissions over one year), with agriculture accounting for a large portion, suggesting that
AWD may reduce the global carbon sink of rice land in the long run; submergence of rice
soils helps maintain SOC, even with intensive rice cropping [22]. This maintenance of SOC
ensures that C remains sequestered in the soil. Soil submergence also promotes biological
nitrogen fixation [23,24], and submerged soils can reduce microbial biological activity in
long-term experiments.

SOC concentrations correlate with agricultural productivity and resource use effi-
ciency [25]. When SOC is lost, nutrients in organic form—specifically N and P—are
mineralized because they are chemically bound to organic C in relatively fixed propor-
tions [17,26]. In contrast to relatively stable organic N and P, mineralized products can
be leached, especially in the humid conditions typical of rice growing areas [3]. Thus,
reducing the duration of soil saturation will increase water savings and minimize farm
nutrient loss. Fertilizer requirements for rice production could be higher for aerobic soil
than submerged soil. A higher need for fertilizer can arise from a lower natural N supply
due to lower fixation nutrients (N) and possible lower net N mineralization in aerobic soil.
A higher need for fertilizer P can arise from the reduced availability of soil P in aerobic soil.
The crop management practice of using water-efficient practices is being promoted as a
water-saving irrigation practice in the current population expansion and climate change
era. Management of water by drying and wetting substantially affects yield and investment
cost. However, there is still a need for more experiments to understand the influence of
practice on the dynamics of nutrients, particularly in small-to-medium-scale rice farmers in
developing countries where most have limited capital to access fertilizers and agrochemi-
cals. Therefore, this study aims to evaluate the performance of various rice farming water
management practices on enhancing soil organic carbon and nutrients using the Kilombero
Valley in Tanzania as a case study.
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2. Materials and Methods
2.1. Study Area

The was conducted in the Kilombero Valley, located in the southern central part of
Tanzania (Figure 1). In situ experimental design was used in three selected villages, namely:
Njage, Mkangawalo, which are located in the north, and Mkula, in the south-west of
Ifakara town. The valley covers an area of approximately 39,000 km2, with elevation ranges
of 200 and 2500 m.a.s.l extending from Usangu to lower Rufiji [27]. The valley forms a
broad floodplain bordered by a series of Udzungwa mountains in the north-west and the
Mahenge highlands in the south-east.
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Figure 1. Map of Kilombero District and basin (Tanzania—inset) showing sampling villages in
black circles.

The climatic condition of the valley is typical of the humid tropics, with an annual
average rainfall of 1200–1400 mm. The valley is characterized by bimodal rainfall. The long-
rain season is between March and May, and the short-rain season is between November and
January. Despite uniform rainfall, the discharge of the rivers changes year to year due to
variability and siltation. The daily mean temperature is between 22 and 23 ◦C. However, it
varies with topography, where forested mountain areas are cooler compared to open flood
plain areas [27]. The vegetation in the valley follows the gradient from high altitude, where
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there are higher plants comprised of miombo and evergreen forest, to the lower part of the
valley, with shrubs and grassland. The lower part is used for farming, unlike the upper part
of the valley, which is a reserve and a national park with small patches converted to small
cultivated farms. The soils of the Kilombero Valley floodplain are classified as cambisols
(inceptisols) on the upper slopes, fluvisols (entisols) in the valleys, and leptosols (entisols)
on the lower slopes, and they hold water for long periods of time [28].

The valley is among important agro-investment sites in the Kilimo kwanza (Agriculture
First) initiative, under the Southern Agricultural Growth Corridor of Tanzania (SAGCOT)
project. Common crops are rice, maize, and banana for both food and commercial purposes.
Other crops are cocoa, sugarcane, sesame, and sunflower, which are strictly commercial [12].
Farmers range from the majority of small-scale to medium-scale and large-scale. Over 80%
are smallholders participating in irrigated and rainfed farming [29,30]. At Njage and Mkula,
they depend both on irrigation schemes and rainfed farming for up to two rice farming
seasons; unlike at Mkangawalo, where they only depend on rainfed farming for one farming
season. Within irrigation farming practices there are different water management and
farming techniques, both with goal of minimizing water usage, prolonging farming seasons,
and increasing production. In most irrigation schemes of Kilombero, farmers adopted
systems of rice intensification to increase crop yield with minimum agro-input and water.
The practices include various AWD techniques (with either one or two cropping seasons)
and organic amendment to conserve soil moisture. Rice farming practices in the Kilombero
Valley are mainly traditional flooded irrigation that depends on rainfall, or irrigation using
stream water diverted to irrigation canals. Under traditional flooding, farmers do not have
control over ponding water in terms of quantity and residence time. However, the farming
is either non-intensive or intensive, using agrochemicals to increase production. In sites
with irrigation schemes or a reliable supply of water, systems of rice intensification (SRI)
are common. The practice is water-efficient and uses improved seedlings singly spaced.
Farming management and harvesting involve the use of agrochemicals, fertilizers, and
simple machinery.

2.2. Sampling Design and Experimental Set up

Soil sampling methods were adopted and slightly modified from [12] (see flow chart
in Figure 2). Soil sampling was conducted during the dry season, involving sites that were
either already harvested or about to be prepared for another cropping season. Within
each selected field and management practices, sampling plots were established with four
to five replicated plots each. Five plots with a 10 m radius relative to the center of the
farm were randomly distributed in each field under each of the following management
practices: A = traditional flood irrigation (rainfed) without intensification of rice farming;
B = traditional flooding (rainfed) with a system of rice intensification (SRI); C = alternative
wetting and drying (AWD) farming practice involving SRI with one cropping season;
D = abandoned fields (fallow) that had not been cultivated for approximately 7 years
(reference sites); and E = AWD farming practice involving SRI with two cropping seasons.
The selection of sites with different management practices was not random, but plots
were randomly distributed to capture variations in farms during soil sampling work. The
farming practices were locally adopted, yet have national and regional importance.

To estimate concentrations of soil organic carbon (SOC), total nitrogen (TN), and total
phosphorus (TP), each plot in each field was sampled to 50 cm depth, including four soil
layers: 0–20, 20–30, 30–40, and 40–50 cm. In each plot, five soil subsamples were taken
using a soil auger (UNISON ENV. AB); one at the center and four others following a
90◦ sequence with respect to the center (Figure 3). Collected subsamples were mixed to
obtain one homogenized sample per plot. Homogenized samples were stored in zip bags
and taken to the laboratory for physical (texture) and chemical analyses (pH value, SOC,
TN, TP). In addition, an undisturbed soil core was taken at the center of each plot for bulk
density (BD) determination.
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Figure 2. Flow chart for field experimental design and laboratory procedures and analyses. Letters
A = traditional flood irrigation (rainfed) without intensification of rice farming, B = traditional
flooding (rainfed) with rice intensification (SRI), C = AWD farming practice involving SRI with one
cropping season, D = abandoned fields, and E = AWD farming practice involving SRI with two
cropping seasons. BD—bulk density; PD—particle density; SOC—soil organic carbon; TN—total
nitrogen; TP—total phosphorous.
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2.3. Laboratory Analyses

Prior to laboratory analysis, the samples were oven dried at 50 ◦C (for 24 h), sorted to
remove roots and litter debris, and grinded and sieved to obtain a homogenous mixture.
Soil texture was analyzed using the hydrometer method [31,32], pH using supernatant
suspension of 1:2.5 soil: 1 M KCL [32], bulk density (BD) using dry weight and volume of
core (Equation (1)), particle density using mass of dry soil and volume (Equation (2)), and
porosity using BD and particle density (Equation (3)). The determination of SOC concen-
trations was analyzed by the Walkley–Black procedures [31] where potassium dichromate
(K2Cr2O2) and concentrated sulfuric acid (H2SO4) were used. TN concentrations were com-
pleted following the Kjeldahl acid-digestion procedures [31,32], and TP was determined
through perchloric acid digestion and then measured by calorimetry [32].

Bulk Density (BD) =
Dry weight (g)

Volume of soil core (cm3)
(1)

Particle Density (PD) =
Mass of dry soil (g)

Volume of soil particle (cm3)
(2)

Porosity = 1 −
(

Bulk Density (BD)

Particle Density (PD)

)
(3)

2.4. Statistical Analyses

The data was tested and found to be normally distributed. Descriptive analyses
were used to find variation in mean SOC, TN, and TP concentrations among farming
practices and soil profiles. Textural characteristics of sampled soils were analyzed using
the United States Department of Agriculture (USDA) classification system. Multivariate
analysis of variance (MANOVA) was used for comparison of concentrations of SOC and
TN and TP among different farming practices (A = traditional flood irrigation (rainfed)
without intensification of rice farming; B = traditional flooding (rainfed) with intensification
of rice farming; C = AWD farming practice involving SRI with one cropping season;
D = abandoned fields; and E = AWD farming practice involving SRI with two cropping
seasons), and depth (0–20, 20–30, 30–40, and 40–50 cm). A pairwise comparison using a post-
hoc Tukey test was conducted to determine differences within management practices and
depth intervals. Environmental factors (physical properties of soils) were also incorporated
into the study. Because they are continuous variables, Pearson correlations were used to
discover relationships between SOC and nutrient variation and soil physical and chemical
characteristics (pH, soil texture, BD, and porosity). Analyses were carried out using
Microsoft Excel 2016, Texture AutoLookup (TAL) Version 2.81 and IBM SPSS Version
26 statistical software. All statistical tests were considered statistically significant at p < 0.05
(95% confidence interval).

3. Results
3.1. Soil Texture

Soil texture was classified using both in the field and laboratory techniques to deter-
mine soil classes based on their physical texture. Soil texture (such as loam, sandy loam or
clay) refers to the proportion of sand, silt, and clay sized particles that make up the mineral
fraction of the soil. All sampling plots regardless of management practices and depth were
similar, about 98% fall under silt loam texture (Figure 4). With this texture, roots are not
restricted from growing and water holding and nutrient retention is fairly good.
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3.2. Variation in SOC and Nutrients across Farming Practices

We compared concentrations of SOC, TN, and TP between different water management
farming practices. Alternative wetting and drying with one cropping season were found to
have a higher mean concentration of SOC (21.94 4.45 g kg−1) and TN (2.21 0.37 g kg−1).
In contrast, lower concentrations of SOC and TN were 7.45 1.26 and 1.08 0.90 g kg−1,
respectively, found in traditional rice flooding irrigation with intensification. SOC, TN,
and TP concentrations were found to be affected by farming practices (Figure 5; Table S1).
AWD farming practice involving SRI with one farming season had significantly higher SOC
compared to traditional flooded with (p = 0.000) and without (p = 0.001) intensification.
Similarly, TN was significantly higher in AWD farming practices involving SRI with one
farming season compared to flooded irrigation farming practices. TP concentrations were
significantly different (p = 0.037) between traditional flooding farming without intensifi-
cation and AWD farming practice involving SRI with two seasons. Interestingly, AWD
involving SRI with one cropping and abandoned field had relatively higher SOC and TN
but lower bulk densities.

3.3. Effects of Farming Practices and Depths on BD, SOC, Soil pH, TN, and TP

SOC, TN, and TP concentrations varied from one farming practice to another, whereas
BD increased with depth across the practices, as expected (Figure 6; Table S2). SOC was
highly variable in AWD involving SRI for one cropping season as contrasted to traditional
flooding, even though they had comparable quantities in top soil. TP was generally
low across practices and depths, save for top soil layer in AWD involving SRI for one
cropping season, fallow, and AWD involving SRI for two seasons. In all farming practices,
higher mean concentrations of SOC, TN, and TP were found in the upper soil layers. SOC
concentration (g kg−1) decreased with depth in all farming practices except in fallow field,
which were relatively constant (see Figure 6). SOC were higher in AWD farming practice
involving SRI for one cropping season across soil depths. However, AWD farming practice
involving SRI with two cropping seasons and fallow field had lower SOC in upper soil
layers and significantly higher (p < 0.05) SOC and TP were in deep soil layers, 30–40 cm,
and 40–50 cm. No significant difference (p = 0.263) of mean TP concentration with depth
in farming in all farming practices was observed. Median soil pH was lower in top soil of
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AWD farming practice involving SRI with one farming season and AWD farming practice
involving SRI with two cropping seasons, compared to that of traditional flooding practices
and in a fallow (Figure 6).
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3.4. Relationship among SOC, Nutrients (TN and TP), and Physical Characteristics of Soils

After examining the effect of farming practices with depth, we find a relationship of
environmental variables with SOC, TN, and TP (Table 1). Pearson correlation indicated BD
had a significant negative correlation with SOC, TN, and TP concentrations. Furthermore,
porosity was positively correlated with mean SOC, TN, and TP, meaning increases in pore
spaces increased accumulation of nutrients and lower bulk density. SOC, and TN and silt
were significantly positive correlated and negative correlated with sand.

Table 1. Pearson correlation matrix between soil texture, pH, BD, porosity, SOC, TN, and TP in
Kilombero Valley.

% Clay % Silt % Sand pH BD
g cm−3 Porosity SOC

g kg−1
TN

g kg−1
TP

g kg−1

%Clay 1 0.088 −0.869 ** −0.142 −0.070 0.051 0.009 0.081 −0.168
%Silt 1 −0.570 ** −0.073 −0.563 ** 0.538 ** 0.485 ** 0.454 ** 0.122

%Sand 1 0.153 0.338 ** −0.310 ** −0.248 * −0.293 ** 0.077
pH 1 0.216 * −0.210 * −0.254 * −0.260 * 0.028

BD g cm−3 1 −0.835 ** −0.685 ** −0.587 ** −0.221 *
Porosity 1 0.569 ** 0.477 ** 0.227 *

SOC g kg−1 1 0.881** 0.137
TN g kg−1 1 0.133
TP g kg−1 1

** Correlation is significant at the 0.01 level and * at the 0.05 level.

4. Discussion

As the human population increases, more food will be required, and consequently,
more pressure will be felt on land resources. The situation will worsen, especially in
rice-growing areas where per capita land holding is decreasing. Soil fertility and quality
are likely to suffer as a result of continuous cultivation and unsustainable soil and water
management practices. Rice agriculture systems, on the other hand, are both causes (high
potential for greenhouse gas emissions) and victims (increased water scarcity) of climate
change. There is a pressing need to strike a balance between mitigating climate change and
overcoming water scarcity and soil fertility challenges in rice agriculture.

4.1. Variation in SOC, TN, and TP with Management Practices

Farming management practices impact nutrient accessibility in agroecosystems [33,34].
Most farming practices are expected to improve soil quality, structure, and fertility, which
are crucial for food production and global food security. In this study, mean concentrations
of SOC, TN, and TP differed between water management farming practices. Alternative
wetting and drying have been promoted as farming practices with the potential to reduce
greenhouse gas emissions, especially methane [35,36]. The fact that AWD with SRI in
one cropping season had a higher mean concentration of SOC and TN as compared with
continuous flooding agrees with findings by other researchers [10,37,38]. In [39], the
authors show that AWD fosters SOC and nitrogen accumulation as it halts anaerobic
decomposition of organic matter in the soil, which results in methane and denitrification,
which in turn emits N2O [39]. Any practice that prevents carbon and nitrogen depletion in
the soils under rice agriculture saves energy. Incorporation of crop residues requires tractor
power, which should be derived from fossil fuel, while the production of nitrogen fertilizer
demands energy too, right from the production process to transportation and application.
In this regard, AWD may be an important farming practice in rice-cropping systems due
to its low carbon footprint and hence a mitigation pathway as far as climate change is
concerned. In addition, AWD can potentially save water, up to 23% compared to continuous
flooding [8,10], suggesting that as precipitation drops and pressure on freshwater resources
mounts, AWD practice should be taken seriously to overcome imminent challenges.
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4.2. Influence of Management Practices and Depth on SOC, TN, and TP

As expected, depth had significant effects on soil quality and fertility with higher
values at the top than deep layers across water management practices. This trend can be
attributed to the fact that most operations are confined to the plough layer (0–20 cm depth)
below which the exchange of materials becomes slow over time. For instance, the authors
of [40–43] pointed to a decreasing trend of concentrations of SOC and TN with depth under
irrigation and fertilizer application. The current study points to a similar pattern as well.
However, AWD with one cropping season had higher mean concentration of SOC, TN
across the soil profile compared to other practices, suggesting enhanced root penetration
which contributes to SOC as a result of root decomposition, TN and TP as a result of
increased root exudates and/or microbial activity. As for continuous flooding, anaerobic
conditions may not necessarily contribute to SOC since the organic matter decomposing
anaerobically forms methane which is released to the atmosphere. Thus, less organic carbon
may be left in lower soil layers, and hence low SOC reported in the current study. The
concentrations of SOC, TN, and TP were decreasing with increasing depth. In all farming
management, higher SOC, TN, and TP concentrations were found in the upper soil layers.
SOC concentration decreased with depth in all farming practices except in abandoned
field, which were relatively constant (Figure 6). Our findings are similar to those reported
by [22,44,45], where higher nutrients were found in the top soil layer, because of water
saturation and direct nutrient inputs. In cultivated land, higher concentration in the top
layers can be explained by additional residuals and chemical fertilizers. The amount of
available nutrients in soils also depends on microbial and decomposition rate of organic
matter. Higher levels of moisture content brought about by irrigation management can
create anaerobic conditions that reduce decomposition and mediate nutrient accumula-
tion [10,16]. AWD with SRI in one cropping results in the accumulation of SOC and TN in
the upper-most layer that is saturated with water. These findings concur with [16,45], who
noted that moisture above threshold level lowers microbial activities resulting in accumula-
tion of nutrients. In addition, AWD with intensification accompanied with fertilization that
has a positive impact on the SOC and TN concentrations in the upper soil layers [37,38],
unless exposed to leaching.

Although AWD associated with SRI involves the use of both organic amendments and
inorganic fertilizers [46], low quantities of TN may be due to less application of N fertilizers
typical of low input farming or less water volumes used. The authors of [47] and [12]
found higher TN concentrations in deep soil layers in organic amendment and irrigation.
In continuous flooding practice where TN was expected to be higher in lower layers than
AWD with SRI due to leaching, because of a large water volume used [48], it was not the
case. This suggests that the nitrogen supply might have just been enough to cater for plant
demand for the respective growing season. For instance, in [40,49] the authors pointed out
that excess irrigation and fertilization contributed to higher nutrients in deep soil layers
and deprived nutrients in the top soil layer; however, the degree of irrigation dominated
the effect. The irrigation frequency also determines the leaching potential. Maintaining the
moisture threshold improves agronomic conditions through mitigation of the impacts of
excessive water use on crop yields [5,50].

Concentrations of TP were not significantly different among all farming practices
across the depths. These results contrasted with other large-scale studies reporting in-
creased phosphorous availability following soil drying and rewetting under both aerobic
and anaerobic conditions. For example, AWD causes destruction of aggregates unlike
continuous wetting [44]. Our findings may be attributed to the fact that the time frame for
management practices was short, unlike in most large-scale farms, insufficient to notice
changes in concentration of TP with depth [12,14,51]; unlike SOC and TN which respond
quickly to microbial dynamics triggered by moisture content with depth. This might be
the case in the Kilombero where soil is wetter; the addition AWD is more likely to cause
accumulation SOC and TN, quicker than TP.
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4.3. Environmental Factors and SOC and Nutrient Dynamics

Physical properties of soils were correlated with SOC, TN, and TP concentrations. BD
was negatively correlated with SOC, TN, and TP, while porosity was positively correlated
with SOC, TN, and TP. SOC and TN were positively correlated and were positively associ-
ated with the silt content and negatively with sand. High SOC and TN in the topsoil layer
are associated with low bulk density and high porosity, all of which lead to increased water
holding capacity [8,10,52]. Aggregates due to low bulk density allow water and nutrients
to percolate to deeper soil layers, contributing to higher concentrations in deep soil layers
reported in AWD practices involving SRI. Interestingly, high nutrients in traditional flooded
areas with and without intensification may be associated with soil colloidal systems which
enhance nutrient holding capacity and hence show a positive correlation with TN. This
also points to the possibility of increasing N availability under AWD [5,10].

Soil texture affects plant growth and nutrient uptake because it alters the availability
of water in the soil. The soils in AWD practice involving SRI had higher silt and clay
content, subsequently SOC. The authors of [53] reported similar results, finding that soils
in lacustrine accumulate SOC and favor less movement of water, which can influence
root growth and crop production [3,52,54]. Soils with clay and silt contents have small
to moderate pore spaces, thus lower rates of water diffusion, further compounded by
absorption of water. This is an interesting fact that has practical application, especially for
selection of crops; for examples, crops with small roots perform well in organic rich soil with
less BD in upper soil layers. Further, the authors of [14,53] noted irrigation management
that improves bulk density and soil texture associated with irrigation water saving, nutrient
accumulation, and high crop yields. In contrast, irrigation practices lacking the soil and
water conservation practices cause infiltration problems and loss of soil nutrients.

5. Conclusions

Water use management in rice farming is very important, particularly because of
increasing water scarcity and the need to reduce greenhouse gas emissions to mitigate
climate change challenges. We conclude that water management practice that involves
AWD with SRI for one cropping season is a plausible approach for maintaining high
SOC and TN in small-scale rice farming systems. This not only limits CO2 emissions and
nitrogen leaching, but also saves water. More research is required to understand the rates
at which greenhouse gases can be reduced by this approach, the thresholds beyond which
nitrogen leaching may become problematic, as well as water application rates that maintain
higher yields in the Kilombero valley.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy12051148/s1, Table S1: Multivariate analysis of variance
(MANOVA) to show differences in SOC, nutrient, and physical properties of soil among farming
management practices and depth at Kilombero Valley; Table S2: Post hoc Turkey test results to
show direction of variation in soil properties and nutrients among farming practices and depth at
Kilombero Valley.
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