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ABSTRACT 

Understanding the influence of 

environmental parameters in determining 

tree species distribution and how it might 

change over time is a vital issue for species 

distribution modeling (SDM), yet it is poorly 

addressed in most of tropical forests and has 

not been addressed in the Eastern Arc 

Mountains (EAMs). This study was 

conducted with the objective of identifying 

most influencial environmental parameters 

contributing on tree species distribution in 

East Usambara Forests (EUF) and 

Udzungwa Mountain Forests (UMF) of the 

EAMs, Tanzania. Novel modelling method 

called Maximum Entropy Distribution 

(Maxent, version 3.3.3k), was used to model 

the distribution of eight most dominant tree 

species based on the frequency of occurence 

and 11 uncorrelated environmental 

variables. The drivers of species distribution 

in EUF and UMF are mainly climatic and 

edaphic factors. Climate change effects were 

driven by all climatic variables followed by 

edaphic variables while topographic factors 

had no effect. Soil factors have shown 

stronger effects in the UMF than in the EUF 

while the effects of temperature and 

precipitation were strong in both sites. 

Further studies on physiological responses 

and range shifts of selected species to 

environmental change (e.g climate change) 

within the EAMs are recommended. 

Keywords: Climate change - Eastern Arc 

Mountains - Maxent modeling - 

Tree species distribution. 

 

 

 

INTRODUCTION 

The application of Species Distribution 

Models (SDMs) to plant inventory data can 

provide useful indications of which areas 

may be important for biodiversity 

conservation, and offers a means to estimate 

the niche-space available for species of 

conservation concern (Platts et al. 2010, 

Tshwene-Mauchaza and Aguirre-Gutiérrez 

2019). Such models estimate the relationship 

between species records at sites and the 

environmental and/or spatial characteristics 

of those sites (Franklin 2009). They are 

widely used for many purposes in 

biogeography, conservation biology and 

ecology (Elith & Leathwick 2009). Species 

Distribution Models have been advocated as 

a tool to predict the current and potential 

distribution of species especially under the 

influence of climate change. 

Since the distribution of many species is 

determined to a large extent by climatic 

variables, changes in climate will thus 

modify their distribution and abundance 

(Parmesan 2006 & Mahgoub 2019). For 

example, vegetation zones may move toward 

higher latitudes or elevations in response to 

increasing average temperatures (Iverson & 

Prasad 1998). Such range shifts are 

predicted to be more pronounced at higher 

latitudes, where temperatures are expected to 

rise more than near the equator (Bakkenes et 

al. 2002). Some of the key climatic variables 

that stress forest ecosystems are changes in 

precipitation, temperature, evapo-

transpiration, and increased frequency of 

fires and storms (Iverson & Prasad 1998; 
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Ohlemüller et al. 2006). Forests may 

disappear in certain areas at a faster rate than 

they can migrate or regrow in new areas 

(Parmesan 2006).  

In the EAMs, a lot of quantitative 

information has so far been collected on 

both flora and fauna (Burgess et al. 2007). 

However, the effects of environmental 

change on species distribution and thus on 

biodiversity, particularly of plants, are 

poorly understood. Morever there is no any 

study that has focused on identifying the 

most influencial environmental parameters 

determing tree species distribution. Such 

knowledge may be acquired through the use 

of SDM and is useful in planning sustainable 

biodiversity conservation (Burgess et al. 

2007, Munishi et al. 2007, Platts et al. 

2013).  

Climate is an important determinant of tree 

species distribution, but its effects are 

mediated through topographic features and 

soils apart from biotic factors.  Thus, it is 

important to compare the relative 

contribution of the environmental factors 

when making predictions about plant species 

distribution changes (Lo et al. 2010 & 

Walthert 2017).   

The present study aimed at identifying most 

influential environmental parameters 

contributing on tree species distribution in 

EUF and UMF of EAMs. Spatially 

referenced inventory data (species 

occurrence records) combined with climate, 

topography and soil parameters were used to 

estimate the spatial distribution of dominant 

tree species using Geographical Information 

System (GIS) and the Maximum entropy 

distribution modeling approach (Phillips et 

al. 2006). The modeling results were used to 

identifying most influential environmental 

parameters contributing on tree species 

distribution in two forests under climate 

change scenarios. 

 

 

MATERIALS AND METHODS 

Description of the study areas 

The EAMs are a chain of crystalline 

mountains near the Indian Ocean coast 

which run from the Taita Hills in South-East 

Kenya to Udzungwa Mountains in South-

Central Tanzania (Lovett 1993, Burgess et 

al. 2007). They are located approximately 

between latitudes 3o2’S and 8o51’S and 

longitudes 34o49’E and 38o20’E (Fig. 1). 

The EAMs range from sea level up to 2635 

m in altitude. There are 13 blocks in EAMs, 

namely: Taita Hills including Kasigau in 

Kenya, North Pare, South Pare, West 

Usambara, East Usambara, Nguu, Nguru, 

Uluguru, Ukaguru, Rubeho, Malundwe, 

Udzungwa, and Mahenge in Tanzania. This 

chain of 13 block-faulted massifs harbour 

one of the world’s most important 

concentrations of biodiversity across a series 

of fragile sites (Brooks et al. 2002 & 

Mittermeier et al. 2004). 

East Usambara Mountains 

The East Usambara Mountains (Fig. 1) are 

located in Korogwe and Muheza districts, in 

Tanga Region in northeastern Tanzania. 

They cover an area of 1300 km2 (Rodgers 

and Homewood, 1982). It is located between 

latitudes 4° 48´ and 5° 13´S and longitudes 

38° 32´ and 38° 48´E, and altitude of up to 

1250 m a.s.l. It has bimodal rainfall 

averaging to 1500 mm per year. The forests 

are rich in flora and fauna and the number of 

endemic species is high (Rodgers & 

Homewood 1982). Soils in the East 

Usambaras are acidic at high altitudes and 

neutral to alkaline near the foothills (Sah 

1996).  

The East Usambaras are particularly 

important among the Eastern Arc Mountains 

for a number of reasons. Firstly, they are 

close to the Indian Ocean and so have a 

constant humid climate that has encouraged 

the growth and maintenance of tropical 

moist forest over very long periods of time.  
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Figure 1: Location of East Usambara and Udzungwa Mountains 

 

Secondly, the Amani plateau in the East 

Usambaras is at the elevation occupied by 

species rich sub-montane forest type. 

Thirdly, there was until recently substantial 

areas of relatively undisturbed forest in the 

East Usambaras. Even though the forests 

have been heavily disturbed in the last two 

decades and the forest area reduced, there 
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are still fine stands of natural vegetation rich 

in globally rare species of plants and 

animals. 

Udzungwa Mountains 

The Udzungwa Mountains (Fig. 1) are the 

largest block of the EAMs, covering about 

10,000 km2 (Rodgers & Homewood, 1982). 

It is found at the southern end of EAMs 

chain. Udzungwa Mountain’s highest point, 

Luhombero Peak, rises to 2,800 m (Zilihona 

& Nummelin, 2001). The rainfall varies 

according to topography and distance from 

the Indian Ocean. The eastern slopes, facing 

the Indian Ocean, have annual rainfall of 

more than 2000 mm, whereas the western 

slopes are in the rain shadow, receiving 

about 600 mm precipitation per year. There 

is a unimodal rainfall pattern between 

November and May (Lovett 1999).  The 

eastern scarp of the Udzungwa Mountains is 

one of the few areas left in the Afrotropical 

region where one can find a continuous 

moist forest cover from lowland (300 m) to 

highlands (2500 m). Soils are mostly sandy-

loams or sandy-clay-loams (Lovett et al). 

Tree data 

Point distributions for tree species in the 

EAMs were used. The tree dataset combined 

own field data with a large dataset 

contributed by the TROPICOS of Missouri 

Botanical Garden (http://www.tropicos.org). 

The field data collection was conducted 

using common forest field survey 

(inventory) procedures used in forestry. 

From the datasets, the most dominant 

species were selected based on the frequency 

of occurence in each study site. 

Nomenclature was standardized by reference 

to the African Flowering Plants Database 

(AFPD 2009).  A total of 16 dominant tree 

species (based on the frequency of 

occurrence), eight each from UMF and EUF 

were used in modelling (Appendix 2).  

Environmental data 

Climate is an important determinant of tree 

species distribution, but its effects are 

mediated through soils, topographic features, 

fire and biotic factors. Although most of the 

modelling approaches lack the capacity to 

include all variables, it is important that all 

available information is used to capture the 

possible sources of variations and address 

the interaction of the factors.  In the present 

study, the effects of climate on distribution 

of tree species were modelled by combining 

climatic, topographic and edaphic predictors. 

Environmental predictor variables 

Current climate data (bioclimatic variables) 

were obtained from 

https://worldclim.org/version2 (Hijmans et 

al. 2005) based on records from the period 

1950-2000, provided as grids at a spatial 

resolution of 30 arc seconds (1 km).  

Climate projections were obtained from the 

Max Planck Institute for Meteorology 

(Hamburg). These were provided as monthly 

grids at 55km resolution. These Regional 

Climate Models (RCMs) provide high 

resolution data than the commonly used 

General Circulation Models (GCM) outputs 

(~200km resolution). The RCMs were then 

downscaled to 1 km according to the 

methods described in Platts (2012) and Platts 

et al. (2013) to better suite ecological niche 

modelling.  

Two IPCC-AR4 scenarios were available for 

Regional Model (REMO). The first, scenario 

A1B, describes a world in which economic 

growth and globalisation prevail, and where 

energy sources are balanced across fossil-

intensive and non-fossil technologies. 

Global population peaks at mid-century and 

declines thereafter. The second scenario, B1, 

assumes similar population and convergence 

among regions as A1B, but with more rapid 

improvements in public services and 

economic structures. The emphasis is on 

clean and resource efficient technologies, 

leading to a reduced warming trend (IPCC, 

2007). Therefore, scenario B1 mainly 

focuses in economic issues while scenario 

A1B mainly focused in environmental 

sustainability. Temperature is predicted to be 

http://www.tropicos.org/
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high under scenario B1 than A1B. Given 

recent patterns in global energy consumption 

and sluggish rates of decarbonisation, both 

of the scenarios may now be considered 

optimistic (Peters et al., 2012). 

From the monthly grids, five climatic 

gradients known to correlate well with plant 

distribution in the study region were derived 

(Greve et al. 2011 & Platts et al. 2013). 

These were mean annual temperature; 

temperature seasonality (annual range); 

mean annual rainfall; dry season water stress 

(precipitation of driest quarter); and a 

moisture index (ratio of annual rainfall to 

potential evapotranspiration (PET), 

according to Thornthwaite (1948). Water 

stress is defined as the cumulative deficit in 

mean monthly rainfall throughout the 

longest dry season, where a deficit is <10 

mm month-1.  

Additionally, topographic and edaphic 

variables were derived from digital elevation 

model (DEM) and Soil and Terrain Digital 

Database (SOTER), respectively (Table 1). 

As elevation is highly correlated with 

temperature and the latter is a more 

functional predictor of plant distribution, 

derived measures such as slope, aspect and 

topographic wetness index can be useful 

surrogates for soil moisture and micro-

climate. Thus, slope, aspect and topographic 

wetness index were derived from the digital 

elevation model. PET was adjusted into the 

future climate according to the projected 

changes in temperature under scenarios A1B 

and B1. On the other hand, the spatial 

distribution of all climate data below half-

degree scale was assumed to be constant 

through time prior to change-factor 

technique used in downscaling. Soil was 

assumed to be constant into the future. 

Similarly, the topographic wetness index 

was also assumed to be constant over time. 

All calculations were done using Raster 

calculator in ArcMap 10. A detailed 

description on calculations of environmental 

predictor variables are shown in Appendix 1. 

Boundary definitions for study locations 

were according to Platts et al. (2011). 

Table 1: List of environmental predictor 

variables used in Maxent modelling  

Environmental 

variables/layers Description 

Climatic  Mean Annual Temperature (0C) 

 

Temperature Seasonality 

(Annual Range/ Temperature 

CV) (0C) 

 Mean Annual Rainfall (mm) 

 

Precipitation of Driest 

Quarter/Dry Season Water 

Stress (mm) 

 Moisture Index (Rainfall/PET) 

  

Topographic Slope (degrees) 

 Aspect (cosine transformed)  

 Topographic Wetness Index 

  

Edaphic  Soil Reaction (pH) 

 

Effective Cation Exchange 

Capacity (cmolckg-1)  

 Available Water Capacity (mm) 

Note: CV= Coefficient of Variation 

Maximum entropy (Maxent) modelling of 

species distribution 

The Maxent program is based on the 

maximum-entropy approach for species 

habitat modeling. It takes as input a set of 

layers or environmental variables (such as 

elevation, precipitation, etc.), as well as a set 

of geo-referenced occurrence locations 

(presence point locations/presence-only 

species records), and produces a prediction 

model of the range of the given species. It is 

a powerful tool applicable in exploring 

ecological relationships with fine-scale, 

raster (gridded) environmental data using 

spatial information on species occurrence in 

relation to environmental data to estimate 

potential (suitable) habitat for species. It is a 

promising new method for modelling 

species potential distribution and has proven 

to perform well in comparison with 

alternative approaches (Elith et al. 2006).  
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Maxent uses environmental variables 

represented in GIS layers to predict 

probability distribution/habitat suitability for 

the target species by evaluating different 

combinations of variables and their 

interactions. Based on the maximum-entropy 

principle, Maxent finds the probability 

distribution/habitat suitability for the species 

that maximizes entropy (is closest to the 

uniform distribution), using a set of 

constraints/variables imposed by the 

modeller (Phillips et al. 2006). Maxent 

calculates the percentage contribution of all 

environmental factors involved in 

determining the distribution of tree species 

under study. 

Modelling framework 

Prior to modelling, all environmental 

variables were modified using GIS 

techniques into formats required by Maxent 

modelling (Phillips et al. 2006). Using 

boundary layers of the modelled areas, the 

environmental layers were modified to be in 

the same extent (geographic bounds and cell 

size) using GIS tools. Maxent requires all 

the environmental layers to be in raster 

format and have the exact same cell size, 

extent and projection system (e.g., 

geographic or UTM). Thus, all 

environmental layers were spatially 

projected to geographic coordinate system, 

WGS 1984 zone 37S.  

For tree data, point distribution of species 

occurrence records in longitude and latitude 

coordinates were converted to comma-

separated value (.csv) files in excel 

spreadsheet for a particular modelled 

geographic extent. Using Maxent, the 

samples (y-variables) in this case the 

selected tree species, were modelled with 

environmental variables (x-variables) based 

on the current conditions and future climatic 

scenarios A1B and B1 (Fig. 2). Maxent 

software version 3.3.3k was used to fit the 

models. The Maxent algorithm was run with 

default parameters (convergence threshold = 

10-5, regularization multiplier = 1, maximum 

number of background points = 10 000); 

these default settings have been shown to 

achieve good performance (Phillips and 

Dudík 2008). 

 

Figure 2: Flow chart of the modelling procedure (modified from Platts et al. 2008) 

Fieldwork/Herbarium 

records 

Elevation 

model 
Climatic 

model 

Soil model 

Species presence-only 

records 

Topographic 

predictors 

Climatic 
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Soil 

predictors 

Samples/y-variables Environmental/x-variables 

MaxEnt Modelling 

Probability of occurence 
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Maximum iteration value was set to 5000 (to 

give the model adequate time for 

convergence). A jackknifing procedure was 

used to examine the importance of each 

variable (Phillips et al. 2006).  

Models were created using 75% of the 

localities for model training and 25% for 

model testing under current conditions and 

in the future for both scenarios. Statistical 

evaluation of the models was based on 

threshold independent receiver operating 

characteristic (ROC) analysis (Phillips et al. 

2006). For presence-only modelling, the 

ROC curve is a plot of sensitivity 

(proportion of correctly predicted presences) 

against the fractional area predicted present. 

The area under the ROC curve (AUC) is 

subsequently compared with the area under 

the null expectations line connecting the 

origin and (1, 1), thus providing a measure 

of predictive model performance. An AUC 

approximating 1 would mean optimal 

discrimination of suitable versus unsuitable 

sites, whereas an AUC between 0 and 0.5 is 

indicative of predictions no better than 

random. (i.e., when comparing predicted 

value and the observed, the slope should be 

1 if the model is good. Greater or less than 1, 

the prediction is poor). 

 

RESULTS 

Model performance  

Models of all tree species performed better 

than random, with average test AUC values 

greater than 0.5 (Table 2). Except for some 

few cases where there was evidence of over 

estimation with higher AUC values of up to 

one (~1), for example Didymosalpinx norae, 

most of the variables fell within reasonable 

range. 

 

 

Species responses to climate change 

scenarios 

(a) East Usambaras 

The contribution of predictor variables to 

current distribution of tree species in the 

EUF is shown in Table 3. There was 

pronounced effect of mean annual 

temperature on the distribution of 

Grandidiera boivinii while precipitation of 

driest quarter showed stronger influnce to 

the distribution of Leptonychia 

usambarensis, Mesogyne insignis, Sorindeia 

madagascariensis, Synsepalum msolo and 

Trilepisium madagascariense. Meanwhile 

mean annual rainfall was linked to the 

distribution of Psychotria leucopoda and 

available water capacity linked to the 

distribution of Funtumia africana.  Mean 

annual temperature had highest predictive 

contribution (77.9%) than other variables 

and it affected Grandidiera boivinii. Soils 

showed little effects only with available 

water capacity (Table 3). 

The future distribution under scenario 2055 

A1B for most species was also dominated by 

changes driven by precipitation of the driest 

quarter except for Mesogyne insignis and 

Psychotria leucopoda (Table 4). This was 

followed by predictive contributions by 

mean annual temperature, moisture index 

and mean annual rainfall. Soils and 

topography showed little contribution to the 

models under this scenario. Precipitation of 

the driest quarter showed greater influnce 

(62.1%) on the distribution of Synsepalum 

msolo relative to other species. Thus, 

increasing dry conditions, temperature, 

moisture and rainfall will likely drive 

species distribution. 

Under scenario 2055 B1, the distribution of 

most tree species was mainly governed by 

moisture index and to a lesser extent by 

mean annual temperature, precipitation of 

the driest quarter and available water 

capacity (Table 5).  
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Table 2: The average test AUC for the replicate runs in the maxent models  

 Current  2055 A1B  2055 B1  2090 A1B  2090 B1  

Species AUC 

STD 

DEV AUC 

STD 

DEV AUC 

STD 

DEV AUC 

STD 

DEV AUC 

STD 

DEV 

           

East Usambara           

Funtumia africana 0.85 0.06 0.91 0.03 0.79 0.07 0.80 0.11 0.88 0.04 

Grandidiera boivinii  0.80 0.08 0.58 0.15 0.67 0.12 0.58 0.13 0.62 0.12 

Leptonychia usambarensis  0.83 0.07 0.90 0.04 0.89 0.04 0.81 0.10 0.85 0.07 

Mesogyne insignis  0.76 0.08 0.80 0.06 0.77 0.09 0.78 0.08 0.79 0.08 

Psychotria leucopoda  0.63 0.08 0.52 0.10 0.58 0.11 0.57 0.12 0.49 0.11 

Sorindeia madagascariensis  0.90 0.06 0.83 0.07 0.72 0.11 0.79 0.10 0.80 0.10 

Synsepalum msolo  0.86 0.05 0.80 0.07 0.73 0.11 0.74 0.08 0.74 0.10 

Trilepisium madagascariense  0.89 0.03 0.77 0.05 0.67 0.14 0.69 0.06 0.72 0.08 

           

Udzungwa           

Coffea mufindiensis subsp. mufindiensis  0.87 0.06 0.81 0.06 0.77 0.09 0.81 0.07 0.79 0.06 

Didymosalpinx norae  0.99 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 

Englerodendron usambarense 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 

Parinari excelsa  0.90 0.07 0.95 0.04 0.89 0.04 0.93 0.06 0.91 0.06 

Pavetta lynesii  0.89 0.05 0.81 0.05 0.82 0.05 0.83 0.05 0.83 0.05 

Psychotria goetzei  0.90 0.04 0.82 0.06 0.90 0.04 0.82 0.06 0.86 0.05 

Sorindeia madagascariensis 0.99 0.01 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 

Tabernaemontana usambarensis  0.99 -1.00 0.97 -1.00 0.99 -1.00 0.87 -1.00 0.99 -1.00 

Note: STD DEV denotes the standard deviation, AUC denotes area under receiver operating characteristic (ROC)
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Table 3: Percent variable contributions in the maxent models under current conditions in 

EUF 

 Species 

Variables (a) (b) (c) (d) (e) (f) (g) (h) 

as 0 0.3 1.3 20.7 2.3 0 0.1 0.1 

ce 9.3 0.1 8.5 0.4 0.8 0.1 6.5 0 

mi 0 0 2.9 10.1 34.4 24.6 1.7 0 

mr 0 8.2 0 9.3 37.7 0.3 0.1 0 

mt 0 77.9 0 0 15.8 0 0 0 

ph 0 0.5 0 17.1 0.5 0.9 0.1 1.2 

pq 40.8 0 51.9 34.9 1.1 45 65.5 59.4 

sl 0.1 10.9 0 1.4 4 6.2 3 1.3 

ts 0.3 1.3 0 3 0.3 4.5 3.4 10.4 

wc 48.2 0.8 34.9 0 2.6 18.1 19.4 27.6 

wi 1.3 0.1 0.6 3.1 0.4 0.3 0.2 0 

Note:  Values shown are averages over 15 replicate runs. Bold numbers are the variables with highest 

contribution for each model per species. wc=Available Water Capacity; mt=Mean Annual 

Temperature; pq=Precipitation of Driest Quarter; mr=Mean Annual Rainfall.  (a) Funtumia 

africana (b) Grandidiera boivinii (c) Leptonychia usambarensis (d) Mesogyne insignis (e) 

Psychotria leucopoda (f) Sorindeia madagascariensis (g) Synsepalum msolo (h) Trilepisium 

madagascariense.  

 
Table 4: Percent variable contributions in the maxent models under future conditions (2055 

A1B) in EUF 

 Species 

Variables (a) (b) (c) (d) (e) (f) (g) (h) 

         

as 0.1 0.1 0.1 9.9 9.9 0 0.6 0 

ce 1.8 0.6 3.2 0 0.1 0.5 2 0 

mi 16.8 0.7 30.7 36.2 0.1 11.4 8.2 20.2 

mr 0.5 0.5 0.6 3.1 34 5.5 4.7 4.3 

mt 0 45.7 0 2 32.6 2.3 0 0.2 

ph 0 1.6 0 15.9 1.3 0.3 0.2 0.9 

pq 45 18.5 35.3 2 5.7 40.8 62.1 51.1 

sl 0.1 25.1 0 1.7 3.2 10.2 3.3 8.9 

ts 0.2 5.3 1.9 25.5 4.3 10.7 0.5 0 

wc 33.4 1.8 27.3 0 5 17.6 17.8 14.4 

wi 2.1 0 0.7 3.7 3.7 0.7 0.6 0 

Note:   Values shown are averages over 15 replicate runs. Bold numbers are the variables with highest 

contribution for each model per species. pq=Precipitation of Driest Quarter; mt=Mean Annual 

Temperature; mi= Moisture Index; mr=Mean Annual Rainfall. (a) Funtumia africana (b) 

Grandidiera boivinii (c) Leptonychia usambarensis (d) Mesogyne insignis (e) Psychotria 

leucopoda (f) Sorindeia madagascariensis (g) Synsepalum msolo (h) Trilepisium 

madagascariense.  
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Table 5: Percent variable contributions in the maxent models under future conditions (2055 

B1) in EUF 

 Species 

Variables (a) (b) (c) (d) (e) (f) (g) (h) 

as 1.9 0 0.1 13.7 2.9 0.1 0.1 0.2 

ce 8.8 0.2 2.1 0.2 0.1 0.1 7.6 0 

mi 27.1 0.8 53 49.9 0.2 27.6 24 44.3 

mr 4.9 0.1 5.1 1.6 39.4 8.3 10 5.7 

mt 0 61.8 0.1 0.5 41.5 11.2 0.1 0 

ph 0 4.2 0 24.4 1.1 0.1 3.6 11.1 

pq 6.1 12.9 4.6 0.8 1.6 14 28.8 6.1 

sl 1.1 18.9 0.1 1.7 5.4 8.9 5.3 12.7 

ts 1.2 0 0.1 1.9 2 0.1 2.5 6.7 

wc 46.2 1.1 33.7 0 5.1 28.3 15.8 13.3 

wi 2.8 0 1 5.4 0.7 1.4 1.9 0 

Note: Values shown are averages over 15 replicate runs. Bold numbers are the variables with 

highest contribution for each model per species. wc=Available Water Capacity; 

mt=Mean Annual Temperature; mi= Moisture Index; pq=Precipitation of Driest Quarter.  

(a) Funtumia africana (b) Grandidiera boivinii (c) Leptonychia usambarensis (d) 

Mesogyne insignis (e) Psychotria leucopoda (f) Sorindeia madagascariensis (g) 

Synsepalum msolo (h) Trilepisium madagascariense. 

 

However, the mean annual temperature 

showed strongest individual predictive 

contribution relative to other variables 

(61.8%). Except for the available water 

capacity, soil variables showed lower 

perecentage contributions to the models. 

Likewise, the topographic variables showed 

little contribution (Table 5). Therefore, 

under scenario 2055 B1, increasing 

moisture, temperature and dry conditions 

will likely be the main drivers of species 

distribution. 

Under scenario 2090 A1B, environmental 

predictor variables that showed higher 

predictive contributions to the models 

include available water capacity, mean 

annual temperature, moisture index, mean 

annual rainfall and precipitation of the driest 

quarter (Table 6). Mean annual temperature 

had higher contribution (59.4%) than other 

variables and affected the distribution of 

Grandidiera boivinii.  Similarly, it 

contributed to the distribution of Psychotria 

leucopoda by 39.5%.  Moisture index 

affected the distribution of Leptonychia 

usambarensis (47.8%) and Mesogyne 

insignis (50.8%) while mean annual rainfall 

affected the distribution of Sorindeia 

madagascariensis (21.6%) and Trilepisium 

madagascariense (30.1%). On the other 

hand, precipitation of the driest quarter 

affected the distribution of Synsepalum 

msolo by 37.6% while available water 

capacity affected the distribution of 

Funtumia africana by 43.4%.  Thus, under 

scenario 2090 A1B, increasing aridity will 

likely be the main driver of species 

distribution. 

Under scenario 2090 B1, available water 

capacity affected the distribution of more 

species than other variables although with 

lower contribution (Table 7). Highest 

contribution of available water capacity was 

47.2% and affected the occurence of 

Funtumia africana. Other species affected 

by high predictive contribution of available 

water capacity relative to other variables 

were Sorindeia madagascariensis (22.1%) 

and Synsepalum msolo (24%). Overall 

highest contribution of 56.4% was observed 

on mean annual temperature and was found 

to affect the occurence of Grandidiera 

boivinii. Apart from Grandidiera boivinii, 

the mean annual temperature also 

contributed to the distribution of Psychotria 

leucopoda by 37.2%. Other variables that 
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showed substantial inputs to the models 

under this scenario were moisture index 

which contributed by 53.3% to the 

distribution of Leptonychia usambarensis 

and by 52.6% to Mesogyne insignis and the 

mean annual rainfall which contributed by 

27.2% to the distribution of Trilepisium 

madagascariense. Therefore, under this 

scenario soil water holding capacity, mean 

annual and rainfall are likely to be the main 

drivers of species distribution. 

 

Table 6: Percent variable contributions in the maxent models under future conditions (2090 

A1B) in EUF 

 Species 

Variables (a) (b) (c) (d) (e) (f) (g) (h) 

as 0.1 0.1 1 12.3 8.4 0 0.6 0 

ce 12.3 0.1 5.2 0 0.1 0.6 5.8 0 

mi 27.2 0.2 47.8 50.8 0.3 15.1 10.8 17.7 

mr 7 0.4 9.2 1.6 34.5 21.6 21.8 30.1 

mt 0.1 59.4 0 1.9 39.5 10.6 0.3 0.1 

ph 0 5.4 0 18.6 2.3 0.3 2.5 8 

pq 6.1 15.1 3.2 0.3 4.2 16.6 37.6 9.9 

sl 1 16.3 0.2 1.4 3.3 8.3 2.6 15.9 

ts 0 1.7 0.1 9.2 4 2.5 0 0.1 

wc 43.4 1 31.8 0 1.7 23 17 18.2 

wi 2.9 0.3 1.4 3.8 1.7 1.5 1 0 

Note:  Values shown are averages over 15 replicate runs. Bold numbers are the variables with highest 

contribution for each model per species. wc=Available Water Capacity; mt=Mean Annual 

Temperature; mi= Moisture Index; mr=Mean Annual Rainfall; pq=Precipitation of Driest 

Quarter.  (a) Funtumia africana (b) Grandidiera boivinii (c) Leptonychia usambarensis (d) 

Mesogyne insignis (e) Psychotria leucopoda (f) Sorindeia madagascariensis (g) Synsepalum 

msolo (h) Trilepisium madagascariense.  

 
Table 7: Percent variable contributions in the maxent models under future conditions (2090 

B1) in EUF 

 Species 

Variables (a) (b ) (c) (d) (e) (f) (g) (h) 

as 0.9 0.7 0.2 10.5 6.2 0 0 0.2 

ce 2.1 0.1 3.6 0.1 0.1 0.7 4.6 0 

mi 37.1 0 53.3 52.6 4.9 19.7 18.2 26 

mr 6.9 0 7.6 0.4 31.5 12.8 22.7 27.2 

mt 0.1 56.4 0 4.1 37.2 8 0.1 0.2 

ph 0.1 3 0.1 16.3 1.7 0.2 3 6.3 

pq 1 13.8 0.5 0.1 4.4 12.5 20.9 1.7 

sl 1.7 24.3 0.3 1.5 4.6 9.7 3.5 14.8 

ts 0 0 0 12.5 4.2 13.1 2.1 0 

wc 47.2 1.4 32.7 0 2.9 22.1 24 23.6 

wi 2.9 0.2 1.7 1.8 2.4 1.3 0.8 0 

Note:  Values shown are averages over 15 replicate runs. Bold numbers are the variables with highest 

contribution for each model per species. wc=Available Water Capacity; mt=Mean Annual 

Temperature; mi=Moisture Index; mr=Mean Annual Rainfall.  (a) Funtumia africana (b) 

Grandidiera boivinii (c) Leptonychia usambarensis (d) Mesogyne insignis (e) Psychotria 

leucopoda (f) Sorindeia madagascariensis (g) Synsepalum msolo (h) Trilepisium 

madagascariense.  
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(b) Udzungwas 

The current distribution of most species in 

the UMF were mainly predicted by 

precipitation of the driest quarter. Moisture 

index, pH and effective cation exchange 

capacity also showed substantial 

contribution relative to other variables 

(Table 8). Precipitation of the driest quarter 

had highest predictive contribution (66.3%) 

than other variables and had a stronger effect 

on distribution of Pavetta lynesii. Apart 

from Pavetta lynesii, the effect of 

precipitation of the driest quarter was also 

pronounced for the distribution of Coffea 

mufindiensis by 52.3%, Englerodendron 

usambarense by 38.1% and Psychotria 

goetzei by 46.5%. On the other hand, the 

effect of soils was also evident. The effect of 

effective cation exchange capacity was 

observed on the distribution of 

Didymosalpinx norae by 38.9% and on 

Sorindeia madagascariensis by 32.5% while 

that of pH was observed on 

Tabernaemontana usambarensis by 35.8%. 

Therefore the distribution of species in the 

Udzungwas under current climatic 

conditions are likely to be controlled by dry 

conditions, soil chemical properties and 

moisture. 

 

Table 8: Percent variable contributions in the maxent models under current conditions in 

UMF 

                   Species    

Variables (a) (b) (c ) (d) (e) (f) (g) (h) 

as 0.7 0.3 0 3.8 2.1 2.5 0 0 

ce 5.6 38.9 31.6 2 0 20.5 32.5 23.9 

mi 3.1 1.3 20.1 37.5 0 0.1 13.1 0.6 

mr 1.9 32.3 1.8 1.4 1.8 0.5 5.2 22.6 

mt 19.5 0 0 0.1 14.3 19.2 0.6 0 

ph 0.4 13.1 3.4 17.2 1.4 0 1.4 35.8 

pq 52.3 5.8 38.1 14.9 66.3 46.5 23.8 0 

sl 11 8.2 4.6 5.6 5 1.8 1.5 16.7 

ts 4.2 0 0 17.3 5.7 3.7 20.5 0.4 

wc 0.9 0 0.4 0.2 2.7 2.5 1.3 0 

wi 0.4 0 0 0.2 0.7 2.6 0.1 0.1 

Note: Values shown are averages over 15 replicate runs. Bold numbers are the variables with highest 

contribution for each model per species. pq=Precipitation of Driest Quarter; ce= Effective 

Cation Exchange Capacity; mi= Moisture Index; ph= Soil Reaction (pH). (a) Coffea 

mufindiensis subsp. mufindiensis (b) Didymosalpinx norae (c) Englerodendron usambarense 

(d) Parinari excelsa (e) Pavetta lynesii (f) Psychotria goetzei (g) Sorindeia madagascariensis 

(h) Tabernaemontana usambarensis.   

 

Under scenario 2055 A1B, soils showed 

stronger influence on four species of the 

eight modelled. Effective cation exchange 

capacity had higher predictive contribution 

on Didymosalpinx norae (35.5%), 

Englerodendron usambarense (37.1%) and 

Psychotria goetzei (43.4%) while pH had 

higher contribution (36.7%) on 

Tabernaemontana usambarensis (Table 9). 

Among the climate variables, moisture index 

showed higher effects than other variables. It 

attained a contribution of 56.5%, which was 

highest relative to all variables in the 

scenario. The moisture index had a stronger 

effect on the distribution of Pavetta lynesii. 

It was also observed to affect the distribution 

of Coffea mufindiensis by contributing 

46.7% of the model (Table 9). Apart from 

moisture index, another climate variable that 

showed higher effects was temperature 
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seasonality. Temperature seasonality had 

predictive contributions of 54.3% and 35.8% 

to the distribution of Parinari excelsa and 

Sorindeia madagascariensis, respectively 

(Table 9).  Therefore, the distribution of 

species under this scenario is likely to be 

driven by changes in soil conditions, 

moisture and variations in temperature. 

Table 9: Percent variable contributions in the maxent models under future conditions (2055 

A1B) in UMF 

             Species    

Variables (a) (b) (c ) (d) (e) (f) (g) (h) 

as 2.2 0.5 0.5 5.1 2.3 4.3 0.1 0 

ce 20.2 35.5 37.1 0.2 0.2 43.4 35.1 25.5 

mi 46.7 23 0.1 3.9 56.5 25.4 0 20.9 

mr 1.4 8.4 11.8 9.3 3.1 6.9 15.4 5.2 

mt 5.2 6.2 0.6 0.2 1.4 5.8 3.1 3.8 

ph 2.2 20.3 15.3 20.5 13 0 8.9 36.7 

pq 0.3 2.8 9.3 3.2 10.5 5.4 0.5 0.2 

sl 20.3 1.7 3.3 3.2 7.2 3.4 0.3 7.7 

ts 0.6 1.5 21.6 54.3 0.8 1.2 35.8 0.1 

wc 0.8 0 0.4 0.2 3.7 2.2 0.8 0 

wi 0.1 0 0 0 1.3 2.1 0 0 

Note:  Values shown are averages over 15 replicate runs. Bold numbers are the variables with highest 

contribution for each model per species. mi=Moisture Index; ce=Effective Cation Exchange 

Capacity; ts=Temperature Seasonality; ph=Soil Reaction (pH). (a) Coffea mufindiensis subsp. 

mufindiensis (b) Didymosalpinx norae (c) Englerodendron usambarense (d) Parinari excelsa 

(e) Pavetta lynesii (f) Psychotria goetzei (g) Sorindeia madagascariensis (h) 

Tabernaemontana usambarensis. 

 

The effects of soil properties were also 

apparent under scenario 2055 B1. This was 

indicated by higher variable contributions by 

effective cation exchange capacity and pH. 

For effective cation exchange capacity, 

higher contribution of 32.7% and 36.8% had 

strong effects on the distribution of 

Didymosalpinx norae and Englerodendron 

usambarense respectively. For pH, the 

predictive contribution of 37.6% had strong 

effect on Tabernaemontana usambarensis 

(Table 10). The influence of moisture index 

on distribution of tree species was also 

evident under this scenario. Moisture index 

contributed to occurence of Coffea 

mufindiensis (47.3%), Pavetta lynesii 

(73.4%) and Psychotria goetzei (55.4%) 

(Table 10). The predictive contribution of 

73.4% observed was the highest of all 

variables under this scanario.  Temperature 

seasonality was another climate variable 

with high contribution to tree distribution. It 

accounted for 42.7% and 39.7% in 

predicting distribution of Parinari excelsa 

and Sorindeia madagascariensis, 

respectively (Table 10). Thus, the 

distribution of species under this scenario 

will likely be controlled by soil factors, 

moisture and variation in temperature. 

Under scenario 2090 A1B, temperature 

seasonality had highest contribution (49.6%) 

relative to other variables in the models and 

had strong effect on Parinari excelsa (Table 

11).  Six out of eight modelled species were 

affected by soil factors. The effective cation 

exchange capacity contributed by 35% to the 

distribution of Didymosalpinx norae, 35.1% 

to Englerodendron usambarense, 41.3% to 

Psychotria goetzei and 34.9% to Sorindeia 

madagascariensis while the effect of pH was 

evident on Pavetta lynesii and 

Tabernaemontana usambarensis. Slope was 

the only strongest topographic predictor and 

had effect on the distribution of Coffea 
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mufindiensis (Table 11). The effective cation 

exchange capacity had a negative effect on 

the distribution of Didymosalpinx norae, 

Englerodendron usambarense and Sorindeia 

madagascariensis while it showed a positive 

effect to Psychotria goetzei. 

Table 10: Percent variable contributions in the maxent models under future conditions (2055 

B1) in UMF 

              Species    

Variables (a) (b) (c ) (d) (e) (f) (g) (h) 

as 0.9 0.2 0 4 1.9 4 0 0 

ce 23.7 32.7 36.8 2.2 0 25.1 32.1 20 

mi 47.3 9.8 1.6 0.1 73.4 55.4 0.3 7.5 

mr 0.3 22.5 16.4 19.3 0 3.4 15.9 19.3 

mt 8.5 7 1.7 0.5 0.9 2.6 0.6 4.3 

ph 2.3 19.5 16.1 22.3 9.9 0 8.7 37.6 

pq 1.1 2.1 5.8 3.7 5.7 3.3 0.5 0.2 

sl 15 5.9 5.1 5.2 5.2 1.4 1.3 10.7 

ts 0 0.2 16.1 42.7 0.4 0.7 39.7 0 

wc 0.4 0 0.2 0 2 1.6 0.8 0 

wi 0.5 0 0 0 0.7 2.6 0 0.3 

Note:  Values shown are averages over 15 replicate runs. Bold numbers are the variables with highest 

contribution for each model per species. mi=Moisture Index; ce=Effective Cation Exchange 

Capacity; ts= Temperature Seasonality; ph= Soil Reaction (pH). (a) Coffea mufindiensis 

subsp. mufindiensis (b) Didymosalpinx norae (c) Englerodendron usambarense (d) Parinari 

excelsa (e) Pavetta lynesii (f) Psychotria goetzei (g) Sorindeia madagascariensis (h) 

Tabernaemontana usambarensis.  

Table 11: Percent variable contributions in the maxent models under future conditions (2090 

A1B) in UMF 

                  Species    

Variables (a) (b) (c) (d) (e) (f) (g) (h) 

as 1.2 1 0.5 5.8 5.2 3.3 0.2 0 

ce 27.9 35 35.1 0.1 3.5 41.3 34.9 19.2 

mi 1.2 0 0 0.1 1.8 0.5 0 1.4 

mr 5.8 26.7 10 6.5 7 0.6 9.9 17 

mt 20.2 6.2 2.8 0.3 10.1 4.6 5.2 1.2 

ph 3.9 19.5 11.3 18 18.7 0 8.5 43.5 

pq 0.7 8 21.8 11.8 18.5 13.6 11.9 0.7 

sl 28.7 3.6 4.6 7.4 15.2 6.1 1.2 16.8 

ts 9.7 0 13.8 49.6 14.6 21.7 27.1 0.2 

wc 0.4 0 0.2 0.1 2.9 2.7 1 0 

wi 0.3 0 0 0.4 2.5 5.7 0.1 0 

Note:  Values shown are averages over 15 replicate runs. Bold numbers are the variables with highest 

contribution for each model per species. sl=Slope; ce=Effective Cation Exchange Capacity; 

ts= Temperature Seasonality; ph= Soil Reaction (pH). (a) Coffea mufindiensis subsp. 

mufindiensis (b) Didymosalpinx norae (c) Englerodendron usambarense (d) Parinari excelsa 

(e) Pavetta lynesii (f) Psychotria goetzei (g) Sorindeia madagascariensis (h) 

Tabernaemontana usambarensis. 
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Thus, increasing variation in temperature is 

likely to be the key driver of species 

distribution under scenario 2090 A1B. The 

distribution of species under this scenario 

will largely depend on variations in monthly 

mean temperatures and soil conditions. 

Soil pH and effective cation exchange 

capacity showed stronger effects under 

scenario 2090 B1. Of the eight species 

modelled, five were affected by soil 

properties 

The effect of effective cation exchange 

capacity was highest (48.2%) on the 

distribution of Psychotria goetzei followed 

by 33.5% on Sorindeia madagascariensis, 

33.4% on Englerodendron usambarense and 

33.3% on Didymosalpinx norae. 

On the other hand, pH showed stronger 

effect on Tabernaemontana usambarensis 

with percentage contribution of 37.7% 

(Table 12).  In regard to climate variables, 

temperature seasonality had strongest effect 

and had highest percentage contribution of 

49.1% relative to other variables in scenario 

2090 B1. Apart from temperature 

seasonality, moisture index showed stronger 

effects and contributed by 40.8% and 37.8% 

to the predicted distribution of Coffea 

mufindiensis and Pavetta lynesii respectively 

(Table 12).  Thus, the interactive effects of 

soil and climate are likely to be key drivers 

of species distribution under this scenario 

 

Table 12: Percent variable contributions in the maxent models under future conditions (2090 

B1) in UMF 

 Species 

Variables (a) (b) (c ) (d) (e) (f) (g) (h) 

as 0.9 0.1 0.2 5 2.4 3.1 0.2 0 

ce 25.3 33.3 33.4 0.2 0 48.2 33.5 20.1 

mi 40.8 21.5 0.3 1.2 37.8 12.7 0 21.6 

mr 1.4 8.8 11.9 13 7 10.9 16.9 1.7 

mt 6.4 8.3 0.3 0.7 1.9 5.4 4.3 9.2 

ph 2.2 20.8 13.2 18.3 18.4 0 10.2 37.7 

pq 0.2 1.6 9.9 5.7 11.8 5.3 1.6 0.4 

sl 21.4 2.4 7.4 6.8 13.4 3.1 1.6 8.3 

ts 0.6 2.9 23.5 49.1 3.2 6.9 30.5 0 

wc 0.4 0 0 0 2.9 1.7 0.9 0 

wi 0.4 0.3 0 0.2 1.2 2.7 0.3 1 

Note: Values shown are averages over 15 replicate runs. Bold numbers are the variables with highest 

contribution for each model per species. mi=Moisture Index; ce=Effective Cation Exchange 

Capacity; ts= Temperature Seasonality; ph= Soil Reaction (pH). (a) Coffea mufindiensis 

subsp. mufindiensis (b) Didymosalpinx norae (c) Englerodendron usambarense (d) Parinari 

excelsa (e) Pavetta lynesii (f) Psychotria goetzei (g) Sorindeia madagascariensis (h) 

Tabernaemontana usambarensis.  

DISCUSSION 

Variable importance 

In regard to variable importance analysis, 

modelling results under current conditions 

revealed some variables having stronger 

predictive contribution than others. The 

observed mixed-predictive contributions of 

environmental parameters on the distribution 

of tree species in the two forests suggest the 

need for site-specific assessments in the 

EAMs forests. Contrally to the results 

reported in the temperate forests where soils 

were found to have greater influence on the 

distribution of trees than climate (Walthert 

2017), in the present study climate has 

indicated to be the strongest driver of tree 

species distribution in the tropics. Elsewhere 
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in tropics, climate has been reported to be 

the strongest driver of tree species 

distribution relative to other environmental 

parameters (Toledo et al. 2011). A study by 

Zhang et al. (2016) conducted in subtropical 

mountain forests in China revealed elevation 

(which is surrogated to temperature) to be 

the most important parameter in plant 

species distribution. In the Atlantic-

Mediterranean environmental gradient, 

distribution patterns of forest tree species 

were mainly determined by the north–south 

topographic-climatic differences (Olthoff 

2016). 

Changes in variable contribution over 

time 

Some variables e.g. mean annual 

temperature (mt) showed a decrease in 

variable contribution with time. In EUF for 

example the contribution of mean annual 

temperature in determining the distribution 

of Grandidiera boivinii was 77.9% under 

current condition. But the value decreased to 

45.7% under 2055 A1B and to 61.8% under 

2055 B1 for the same species Grandidiera 

boivinii. An increase in temperature may 

change other ecological processes that in 

turn may have a stronger influence in 

species distribution than temperature itself.  

For example, under 2055 A1B Precipitation 

of Driest Quarter (pq), a parameter which is 

a function of temperature had a stronger 

influence in governing species distribution 

than other variables by contributing to the 

distribution of Synsepalum msolo by 62.1% 

and Trilepisium madagascariense by 51.1%. 

On the other hand, temperature again had a 

higher variable contribution under 2055 B1 

in EUF, which is in agreement with IPCC 

Assessment Report (IPCC-AR4) whereby 

temperature is predicted to be high under 

scenario B1 than A1B. Similar patterns have 

exhibited by other variables. These mixed 

trends apparently are mainly due to the 

changes of ecological process as a result of 

rise in temperature and the difference in 

predicted temperatures between the two 

scenarios used in the present study. Climate 

is an important determinant of tree species 

distribution, but its effects are mediated 

through topographic features and soils apart 

from biotic factors.  Thus, it is important to 

compare the relative contribution of the 

environmental factors when making 

predictions about plant species distribution 

changes (Lo et al. 2010; Walthert, 2017).   

Environmental predictors can exert direct or 

indirect effects on species along a gradient. 

They can act as limiting factors (or 

regulators), by controlling species eco-

physiology (e.g. temperature, water, soil 

composition); they can act as disturbance, 

defined as all perturbations affecting 

environmental systems and they can act as 

resources, defined as all compounds that can 

be assimilated by organisms (e.g. energy and 

water). Temperature increases may initially 

drive forest productivity (Boisvenue and 

Running, 2006), but as it increases further, 

productivity can fall (Fischlin et al. 2007). 

Moreover, seasonal climate variability may 

have a strong influence on forest 

productivity in the long-term (Williamson et 

al. 2009). Furthermore, temperature changes 

have a direct influence in the processes that 

determine local weather, chiefly 

precipitation, wind and the frequency and/or 

intensity of extreme weather events (IPCC 

2007). The single or combined result of 

these climatic changes will drive changes in 

forest ecosystem resources, site conditions, 

disturbances, and individual tree variables 

(Williamson et al. 2009).  

 

CONCLUSION AND 

RECOMMENDATIONS 

This study has revealed that the influencial 

parameters in tree species distribution in 

EUF and UMF are mainly climatic and 

edaphic factors. Topographic derivatives 

showed little impact on species distribution. 

Soil factors showed stronger effects in the 

UMF than EUF.  Thus, tree species were 

predicted to respond uniquely in both 

scenarios.  
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Some variables e.g. mean annual 

temperature (mt) showed a decrease in 

variable contribution with time with the 

contribution being compensated by other 

parameters e.g., precipitation of driest 

quarter. These mixed trends have been 

related to the changes in ecological process 

as a result of rise in temperature and the 

difference in predicted temperatures between 

the two scenarios used in the present study. 

The study provides a benchmark for future 

studies within and ouside the Eastern Arc 

Montanis. The observed mixed-predictive 

contributions of environmental parameters 

on the distribution of tree species in the two 

forests suggest the need for site-specific 

assessments in the EAMs forests.  
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Appendix 1: Description of environmental predictor variables used in modelling tree species’ distribution  

Environmental 

variables/layers 
Description Definition/Source of data 

Climatic  

 

Mean Annual Temperature (0C) 

 

The mean of all the monthly mean temperatures in a year. Each monthly mean temperature is the mean of that 

months's maximum and minimum temperature 

 Temperature Seasonality (0C) 

 

The difference between the maximum temperature of warmest period and the minimum temperature of coldest 

period. It can also be calculated as the standard deviation or a coefficient of variation 

 Mean Annual Rainfall (mm) The mean of all the monthly precipitation estimates 

 Precipitation of Driest Quarter (mm) It is surrogate to dry season water stress.  The driest quarter of the year is determined (to the nearest month), and 

the total precipitation over this period is calculated. A quarter is a period of three months (1/4 of the year) 

 Moisture Index (Rainfall/PET) 

 

The ratio of annual rainfall to potential evapotranspiration. This is therefore an estimate of actual water balance 

(rainfall input / moisture output) at ~1km resolution. PET is derived from WorldClim temperature data according 

to the Hargreaves method (Hargreaves et al., 1985). 

Topographic  Slope (degrees) In the present study it was generated in GIS using DEM 

 Aspect (cosine transformed)  This was also generated in GIS using DEM 

 Topographic Wetness Index It is a 90m raster dataset showing zones of increased soil moisture where the landscape area contributing runoff 

is large and slopes are low. Local upslope contributing area and slope are combined to determine the wetness 

index. (WI):   

 
where As is flow accumulation or effective drainage area and b is slope gradient. 

It differs from moisture index as it is derived solely from the complexity of the terrain (DEM elevation data), 

with no explicit inclusion of rainfall per se. It was obtained from AfSiS database. 

Edaphic  Soil Reaction (pH) pH measured in water (pHH2O). It was derived from SOTER data. 

 Effective Cation Exchange Capacity 

(cmolckg-1) 

Defined as exchangeable (Ca++ + Mg+++ K+ + Na+) + exchangeable (H+ + Al+++). It was also derived from 

SOTER database. 

 Available Water Capacity (mm) 

 

Available Water Capacity (mm, -33 to -1500 kPa conform to USDA standards). It was derived from SOTER 

database 
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Appendix 2: List of tree species used in Maxent modelling 

 Family Scientfic name Sample size Source Location 

1 Rubiaceae Didymosalpinx norae (Swynn.) Keay  40 1 1 

2 Fabaceae Englerodendron usambarense Harms  93 1 1 

3 Chrysobalanaceae Parinari excelsa Sabine 101 1 1 

4 Anacardiaceae Sorindeia madagascariensis Thouars ex DC. 123 1 1 

5 Apocynaceae Tabernaemontana usambarensis K. Schum. ex Engl. 123 1 1 

6 Apocynaceae Funtumia africana (Benth.) Stapf 62 1 2 

7 Sterculiaceae Leptonychia usambarensis K. Schum. 110 1 2 

8 Anacardiaceae Sorindeia madagascariensis Thouars ex DC. 74 1 2 

9 Sapotaceae Synsepalum msolo (Engl.) T.D. Penn. 56 1 2 

10 Moraceae Trilepisium madagascariense Thouars ex DC. 51 1 2 

11 Flacourtiaaceae Grandidiera boivinii Taub. 17 2 2 

12 Moraceae Mesogyne insignis Engl. 25 1 2 

13 Rubiaceae Psychotria leucopoda E. Petit 27 1 2 

14 Rubiaceae Coffea mufindiensis Bridson subsp. mufindiensis 31 2 1 

15 Rubiaceae Pavetta lynesii Bridson  33 2 1 

16 Rubiaceae Psychotria goetzei (K. Schum.) E.M.A. Petit 29 2 1 

Source: 1=Field survey, 2=TROPICOS database; Location: 2=East Usambara Mountains, 1= Udzungwa Mountains 
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