Prevalence of Gastro-Intestinal Helminths in Slaughtered Cattle in Walungu Territory, South Kivu Province, Eastern Democratic Republic of Congo

Article - April 2018

4 authors:

Patrick Bisimwa
Université Evangélique en Afrique
15 PUBLICATIONS 6 CITATIONS
SEE PROFILE

Bwihangane AHADI Birindwa
Université Evangélique en Afrique
15 PUBLICATIONS 0 CITATIONS
SEE PROFILE

Gédéon Banswe
World Wide Fund
5 PUBLICATIONS 2 CITATIONS
SEE PROFILE

Wasso Shukuru
Université Evangélique en Afrique
4 PUBLICATIONS 0 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Brucellosis View project

Activity and toxicity of chitosan encapsulated bromelain in goats infected with Haemonchus contortus View project
Research Article

Prevalence of Gastro-Intestinal Helminths in Slaughtered Cattle in Walungu Territory, South Kivu Province, Eastern Democratic Republic of Congo

Bisimwa NP*, Lugano RM, Bwihangane BA, Wasso SD, Kinimi E, Banswe G and Bajope B

1Department of Animal Science, Faculty of Agricultural and Environmental Studies, Université Evangélique en Afrique, Bukavu, Democratic Republic of Congo
2Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoin University of Agriculture, Morogoro, Tanzania

*Corresponding author: Bisimwa NP, Department of Animal Science, Faculty of Agricultural and Environmental Studies, Université Evangélique en Afrique, P.O. Box 3323, Bukavu, Democratic Republic of Congo

Received: February 27, 2018; Accepted: April 06, 2018; Published: April 13, 2018

Abstract

An abattoir cross sectional survey was carried out to determine the prevalence of gastrointestinal parasitic helminths in slaughtered cattle at Kankinda and Mugogo Municipal abattoirs located in Walungu territory, South Kivu province, eastern Democratic Republic of Congo. Using qualitative and quantitative coprological examination, 200 fecal samples were tested. Gastrointestinal helminths’ eggs were detected in only 148 samples tested giving an overall prevalence of 74%. The most diversity class was nematodes with four species, followed by trematode and cestode with two species in each, both representing species abundances of 44.4%, 22.2% and 22.2% respectively and only one protozoan species was identified (11.1%). However, the prevalence of helminths in relation to sex and age group revealed no statistical difference at P value >0.05. The exotic breed presented the highest infection rate of 72.5% (OR=4.6, 95% CI: 1.9–11.1; p=0.0004) compared to the local breed. Similarly high prevalence of helminthes was found in slaughtered cattle from local farms (90.6% (OR=4.1; 95% CI: 1.9–9.5; p=0.0001) compared to cattle imported from Rwanda. The prevalent helminthes species identified were Eimeria bovis (74%), followed by Schistosoma bovis (41%); Hymenolepis diminuta (39%); Toxocara vitulorum (32.5%) and the least species observed were Fasciola gigantica (18%); Strongyloides papillosus (11.5%); Trichonstrongylus sp (7%); Haemonchus spp (6.5%); and Moniezia spp (6%). These findings reflect a growing burden of gastrointestinal parasite infections at abattoir level. Therefore, a proper management, improved hygiene and regular deworming practices should be institutionalized for prevention and control of parasitic infections in livestock.

Keywords: Parasitic infection; Public health; Bovine; Prevalence; South Kivu

Abbreviations

DRC: The Democratic Republic of Congo; GDP: Gross Domestic Products; Km: Kilometer; Mm: Millimeter; Ml: Milliliter; RPM: Rotor per Minute; CDC: Centre for Disease Control; OR: Odds Ratio; P: Probability; CI: Confidence of Interval; CRSN: Centre de Recherche en Science Naturelle

Introduction

Livestock farming is among the major sectors representing a valuable asset in both traditional and modern agriculture in Sub-Saharan Africa, as well as in other tropical and sub-tropical regions of the world providing animal protein, milk, and beef during festivities around the world, flexible income for family units, employment, farm energy and manure [1]. The Democratic Republic of Congo (DRC) is one of the countries in Africa with huge livestock resources that play a crucial role in the livelihoods of the majority of Congolese and contributing 9.2% of the gross domestic products (GDP) while cattle production solely contributes to more than 50% of the total meat which is one the most important livestock products consumed in the country [2]. However, this sector is hampered by the presence of several diseases including helminthes infections causing not only high mortality frequently causing losses of animal, but also decrease of meat and milk production, this situation discourages investment in livestock industry [3].

Helmint parasites are potential health hazard to livestock and produce enormous economic losses; they decrease animal productivity through a reduction of feed intake and feed conversion efficiency, loss of blood and may cause death [4]. Clinical signs in the infected stock include gastroenteritis, anaemia and malabsorption sequel to gut damage by parasitic larvae and coccidial schizonts [5].

In tropical and sub-tropical regions where marginal levels of nutrition exacerbate the detrimental effects of infection, animal deaths due to nematode infections are very common [6]. The trematodes, cestodes and protozoans are also important parasites that affect ruminant livestock. Some of these are zoonotic and therefore a threat to public health [7]. Abattoirs are instruments for the insurance of wholesome meat and meat products as well as providing abattoir by-products for livestock base industries. More importantly, abattoirs are used for the purpose of surveillance against animal and zoonotic diseases. The importance of abattoir records in analysis of prevalence rate and planning strategy for the control of livestock diseases cannot be undermined [8]. Several studies have therefore been conducted...
that is located between latitude 2°38’ South and longitude 28°40’ East, has a surface area of 1800Km², and a population of about 716671 habitants. The territory from February to June 2016. The animals were identified and labeled as male or female. Systematic random sampling method was used in selecting cattle that were present at the abattoirs and bought to be slaughtered.

Facial samples were collected by rectal palpation before slaughtering the animal, using a glycerine lubricated latex glove from 200 cattle of different age into well-labeled sterile polythene bags and transported in ice-cooled containers and kept in the refrigerator until processing in the Parasitology laboratory, Department of Animal Science at the Faculty of Agricultural and Environmental studies Université Évangélique en Afrique within 24 hours of their collection where they were examined for helminth egg. Formalin (10%) was added into the samples to avoid hatching of the eggs; for each animal tested, parameters such as the sex, breed, animal geographical origin and age group scores were recorded.

Materials and Methods

Study design and study sites

An abattoir survey was conducted based on cross sectional study during routine meat inspection and on randomly selected cattle slaughtered at Kankinda and Mugogo Municipal abattoir of Walungu territory from February to June 2016. Walungu is a large region with a surface area of 1800Km², and a population of about 716671 habitants that is located between latitude 2°38’ South and longitude 28°40’ East with major activities being livestock and crop production. Because of their location and the large number of animals sold and slaughtered in these abattoirs, they serve as a major source of meat consumed in this region. Cattle slaughtered in these abattoirs are mostly sourced from different cattle rearing regions of South Kivu province and some from East Africa neighboring countries including Rwanda and, Burundi and Uganda. Hence these abattoirs may serve as a good source of sentinel survey for disease including helminthic infections coming from different areas of South Kivu province and beyond. The territory experience two main seasons namely a rainy season of 9 months starting on September up to May; the second is a dry season for 3 months (June, July and August). The annual average rainfall range is around 1300mm.

Sample collection and preservation

At abattoir market day’s visits were done in every Tuesday and Saturday at the Kankinda and Mugogo markets respectively, in Walungu territory during a period of six months (January- June 2016), as early as 8:00am when the animals are taken to the abattoir. The animals were identified and labeled as male or female. Systematic random sampling method was used in selecting cattle that were present at the abattoirs and bought to be slaughtered.

Facial samples were collected by rectal palpation before slaughtering the animal, using a glycerine lubricated latex glove from 200 cattle of different age into well-labeled sterile polythene bags and transported in ice-cooled containers and kept in the refrigerator until processing in the Parasitology laboratory, Department of Animal Science at the Faculty of Agricultural and Environmental studies Université Évangélique en Afrique within 24 hours of their collection where they were examined for helminth egg. Formalin (10%) was added into the samples to avoid hatching of the eggs; for each animal tested, parameters such as the sex, breed, animal geographical origin and age group scores were recorded.

Laboratory identification of gastrointestinal helminthic parasites in faecal samples

Each faecal sample was tested for helminth parasites by formol ether technique [12,13]. In addition, eggs were identified on the basis of their morphological features using the protocol as described previously [14]. A sedimentation technique was also used to detect trematode eggs in the samples.

Briefly, in a tested tube, 4ml of 10% formol saline was emulsified after mixing with 1g of stool sample; a cloth gauge was used for filtering the mixture into a new test tube. Diethyl ether (3–4 ml) was added and shaken vigorously and allowed to stand for two minutes. The mixture was then centrifuged at 1000 revolutions per minutes (1000rpm) for 3 minutes. Faecal debris from the side of the tube was loosened using a glass rod and the tube inverted to pour off the supernatants. The tube was returned to its original upright position and the fluid from the side of the tube allowed draining to the bottom. To allow the fluid from the side draining to the bottom, the tube was then returned to its origin upright position.

Thereafter, the tube was tapped with finger as well as Pasteur pipette to mix the deposit. A drop of sediment was taken and applied on a microscope slide where it was covered with a cover slip; ×10 and ×40 objectives were then used for examination under the microscope [12,13]. Lugol’s Iodine was also used as a stain. Identification of parasites was done using standard keys [14]. Investigation and identification of Fasciola was done according to their distinct morphological characteristics following the standard guidelines [5].

Table 1: Prevalence of gastrointestinal helminthes obtained from slaughtered cattle in Walungu territory in relation to sex, breed, age group and origin of animals.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Number Anim.</th>
<th>Positives n(%)</th>
<th>Negatives n(%)</th>
<th>OR</th>
<th>95%CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>31</td>
<td>28(90.3)</td>
<td>3(9.7)</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>female</td>
<td>169</td>
<td>135(79.8)</td>
<td>34(20.1)</td>
<td>2.3</td>
<td>0.6 – 8.1</td>
<td>0.085</td>
</tr>
<tr>
<td>Breed</td>
<td>Local</td>
<td>119</td>
<td>11(9.2)</td>
<td>9(20.2)</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>19</td>
<td>8(42.1)</td>
<td>11(57.9)</td>
<td>1.6</td>
<td>5.3 – 52.3</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>Exotic</td>
<td>62</td>
<td>45(72.5)</td>
<td>17(27.5)</td>
<td>4.6</td>
<td>1.9 – 11.1</td>
<td>0.0004</td>
</tr>
<tr>
<td>Age group (month)</td>
<td>0–12</td>
<td>10</td>
<td>7(70.0)</td>
<td>3(30)</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>12–24</td>
<td>112</td>
<td>99(88.3)</td>
<td>13(11.7)</td>
<td>0.3</td>
<td>0.07 – 1.3</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>>24</td>
<td>78</td>
<td>57(73.0)</td>
<td>21(27)</td>
<td>0.8</td>
<td>0.2 – 3.6</td>
<td>0.41</td>
</tr>
<tr>
<td>Origin of Animal</td>
<td>Import from Rwanda</td>
<td>107</td>
<td>97(90.6)</td>
<td>10(9.4)</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Local farms</td>
<td>93</td>
<td>65(69.8)</td>
<td>28(30.2)</td>
<td>4.1</td>
<td>1.9 – 9.5</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

OR: Odds Ratio; CI: Confidence of Interval; Anim.: Animals; N: Number
The prevalence of each species of gastrointestinal parasite was computed as:

\[P = \frac{n}{d} \]

where: \(P \) is the prevalence, \(d \) is the number of individuals having the gastrointestinal helminth at a particular point in time; and \(n \) the number of individuals in the population at risk at that point [15].

Data obtained were subjected to descriptive statistical analysis using percentages in determining the prevalence rates in the different breeds, sex, and body condition score groups. Prevalence of helminthosis in relation to sex, breed, and body condition score was analyzed using Chi-square statistical test using Epi Info. 7 Centre for Disease Control (CDC) software. The results were considered significant at \(P \) value <0.05.

Results

Coprological examination

From the total of 200 cattle examined, gastrointestinal helminth eggs were detected in 148 giving an overall prevalence of 74%. The prevalence of helminthes in relation to sex revealed no statistical difference (\(p \) value=0.085) by the fact that 90, 3\% (28/31) of the male and 79.8\% (135/169) of the female were infected respectively (Table 1). However, there was a significant difference of the prevalence of helminthes according to the breed whereby the exotic breed presented the highest infection rate of 72.5\% (OR=4.6, 95\% CI: 1.9–11.1; \(p=0.0004 \)) followed by mixed breed 42.1\% (OR=16.8, 95\% CI: 5.3–52.3; \(p=0.0001 \)) when compared to the local breed (Table 1). Similarly the helminths infection varied significantly in relation to the origin of the animal with high prevalence found in cattle from local farms 90.6\% (OR=4.1; 95\% CI: 1.9–9.5; \(p=0.0001 \)) compared to cattle imported from neighboring country (Rwanda). However, no significant difference was observed according to the age group (\(p=0.07 \)) but a higher percentage of gastrointestinal helminth infection of 88.3\% was however observed in cattle belonging to age group between 5 to 10 years and this age group of cattle showed higher likelihood of being infected with gastrointestinal helminth when compared to those that are in age group between 0 to 5 years (OR=0.3; 95\% CI:0.07-1.3) (Table 1).

Diversity and species composition of gastrointestinal helminth in cattle slaughtered at Kankinda and Mugogo municipal abattoirs

After faecal sample examination, a total of 9 gastrointestinal helminth species belonging to 4 genera namely nematode, cestode, protozoa and trematodes were identified. Among them, 4 species of nematodes, 2 species of trematodes, 2 species of cestodes and one species of protozoan (Table 2). The class of nematode represented the most diversity class 44.4\% (4/9), followed by trematode and cestode (22.2\%) each containing each 2 species each out of the nine identified and the lowest class was Protozoa (11.1\%) with only one species identified (Table 2).

<table>
<thead>
<tr>
<th>Helminth classes</th>
<th>Abattoirs</th>
<th>Kankinda (n=100)</th>
<th>Mugogo (n=100)</th>
<th>OR</th>
<th>95% CI</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>67</td>
<td>48</td>
<td>2.21</td>
<td>1.22-3.81</td>
<td>0.003</td>
</tr>
<tr>
<td>Nematodes</td>
<td></td>
<td>63</td>
<td>55</td>
<td>1.39</td>
<td>0.79-2.45</td>
<td>0.127</td>
</tr>
<tr>
<td>Trematodes</td>
<td></td>
<td>45</td>
<td>45</td>
<td>1</td>
<td>0.57-1.74</td>
<td>0.556</td>
</tr>
<tr>
<td>Cestodes</td>
<td>Protozoa</td>
<td></td>
<td>75</td>
<td>73</td>
<td>1.12</td>
<td>0.58-2.08</td>
</tr>
<tr>
<td>Average (%)</td>
<td></td>
<td>62.5</td>
<td>55.25</td>
<td>1.33</td>
<td>0.75-2.34</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Table 3: Helminth distribution and abundance in slaughtered cattle.

OR: Odds Ratio; CI: Confidence in Interval; N: Number
Among the 9 species collected, the most prevalent species was *Eimeria bovis* 74% (148/200), followed by *Schistosoma bovis* 41% (82/200); *Hymenolepis diminuta* 39% (78/200); *Toxocara vitulorum* 32.5% (65/200); *Fasciola gigantica* 18% (36/200); *Strongylus papillosus* 11.5% (23/200); *Trichostrongylus* sp 7% (14/200); *Haemonchus* sp 6.5% (13/200); and *Moniezia* spp giving the least species 6% (12/200) (Table 2).

Discussion

The result of the present study clearly indicates that cattle slaughtered from the Kankinda and Mugogo Municipal abattoirs of Walungu district (eastern of DR Congo) were infected with a wide variety of gastrointestinal parasites including nematodes, cestodes, trematodes and protozoa from the months of January to June. During this rainy season, the higher prevalence observed could be attributed to the high moisture content and lower temperature which favour the growth and development of larvae on pasture, returns favours, contact between the host and parasites. Higher parasitic infection during rainy season was reported in some studies [16,17].

The overall prevalence of gastrointestinal helminth infection was 74% in the cattle examined, thus providing valuable information on the burden of helminths among cattle in Walungu district since animals slaughtered in these abattoirs are representative of cattle in the whole district. This finding was almost in conformity with other studies [18,19] that found respectively 79.9% and 83.7% of helminths infestation in cattle. There is high probability to find high worm burden in cattle on overgrazed communal pastures, leading to severe disease and death [20]. This situation may explain the reason of getting big number of infested cattle as more that 80% of farmers in the study district are small-scale farmers who utilize subsistence farming practices and fed their animal by using communal grazing that is also cited as major cause for the poor veld condition as well as poor livestock production. However, the overall prevalence of helminth obtained from this study was higher than the prevalence obtained by in South-western Nigeria [21] and in South-eastern Nigeria [22] where a seroprevalence of 41.6% and 50.8% respectively were obtained. These differences could be due to the periods or seasons in which the studies were conducted, the management system, topography climatic condition that favors the survival of infective stage of the parasite and intermediate hosts as well as the sources of cattle sampled in the various regions.

Among the different age groups, there was no significant difference found in the overall prevalence of parasites, despite the fact that calves (0-1 year old) were given prophylaxes (dewormed monthly). There was a decrease in infection rate (prevalence) as age increased. This may be due to the result of acquired immunity with age which is manifested by humoral immune response through frequent challenges and expel the ingested parasite before they establish infection [23,24]. The variation in prevalence among the age groups in the present results were similar to some other findings [25,26].

Thus, no association was recorded between sex and parasitic prevalence (p>0.05). The absence of sex related deference agreed with the previous findings [27-30].

However, this finding is indeed in contrast to the finding obtained in Bukavu city (DRC) reporting that male are highly infested than female [31]; other reports showed female animals showed higher parasitic infection than males despite similar management practice due to the fact that female animals are more susceptible than male and hence sex is determinant factor in influencing prevalence of parasites [32,33]. In addition, a study has done indicating that the male cattle were more likely to be infected with helmithin than the female [34]. This was justified by approving that male animals are more aggressive when feeding and thus likely to pick up more ova of helminths on the pasture.

The result of the present study showed that origin of animal has significant effect on the prevalence of parasite helmithin; being higher in animals coming from Rwanda than in animal from local farms (p<0.05); this difference may have resulted from difference in management system used in the region, topography, deworming practices [37] as well as the existence of favorable environmental factors necessary for the prolonged survival and development of infective larval stage of most helminthes [38]. According to this study, the no difference the prevalence of gastrointestinal parasite across abattoir sites may be due to similarity in management system and limit knowledge of the farmers about parasitic diseases. Almost all farmers in the region where both abattoirs are located implement extensive management system and farmers have limit access to anti-helmitic drugs.

Furthermore, our investigation revealed that nematode types were the most diverse helminthes identified; these results are in contrast with previous studies conducted in India, Ethiopia, and eastern Nigeria [39-41] showing that trematodes as the most prevalent helminthes. This dissimilarity could however be attributed to the differences either in geographical or climatic conditions and ecology since the presence of trematode infections is known to dependent on availability of the intermediate hosts.

The most abundant parasite species were *Eimeria bovis*, *Schistosoma bovis*, *Hymenolepis diminuta* and *Toxocara vitulorum* belonging to classes such as protozoan, trematodes, cestodes and nematodes respectively. *Eimeria bovis* was the most prevalent parasite, this is probably related to its high fecundity, which means that it is likely that the larvae are ingested in higher numbers than those of other genera but also under favourable conditions moisturere, temperature of 5°C to 8°C they maintain infectivity for several months and may even survive the winter season [42], whereas the
least prevalent parasites identified in this study was Moniezia spp (6%) which is in agreement with the report obtained in small holder dairy farms [33,39]. Also F. gigantica occurred least probably because the intermediate host might be scarce.

Among the nematodes, Toxocara vitulorum was the predominant species. These results are different with studies carried out in Ghana [43] and in South Africa [44] reporting Strongyles and Haemonchus as the most abundant nematodes in cattle. In addition, the prevalence found in this study is higher than the one reported Adedipe in Nigeria [21].

Conclusion

These findings testify that the majority of cattle brought for slaughter in Kankinda and Mugogo abattoirs were highly infested with several internal helminthes parasites that are known to adapt easily even to harsh conditions. Most of these infected cattle are slaughtered to produce meat that is consumed by human population. These may present a public health problem and an important epidemiological implication since they can serve as source of infection for calves. Therefore, an effective chemotherapy, an appropriate meat inspection, regular control measure are needed as well as famers education in the proper use of anthelminticides to prevent infection of human and to enhance food sufficiency not only in quantity but also in quality.

Acknowledgments

My sincere thanks go to the Université Evangélique en Afrique (UEA) under the faculty of Agricultural and Environmental Studies for providing the reagents as well all required equipments to undertake this study. Special thanks are also extended to Centre de Recherche en Science Naturelle (CRSN/LWIRO) for their technical supports.

References

27. Nkundakoza N. Vaches rwandaises, MINAGRI, Kigali. 2007, 158.