Blockchain-based secure storage management with edge computing for IoT

Abstract

As a core technology to manage decentralized systems, blockchain is gaining much popularity to deploy such applications as smart grid and healthcare systems. However, its utilization in resource-constrained mobile devices is limited due to high demands of resources and poor scalability with frequent-intensive transactions. Edge computing can be integrated to facilitate mobile devices in offloading their mining tasks to cloud resources. This integration ensures reliable access, distributed computation and untampered storage for scalable and secure transactions. It is imperative therefore that crucial issues of security, scalability and resources management be addressed to achieve successful integration. Studies have been conducted to explore suitable architectural requirements, and some researchers have applied the integration to deploy some specific applications. Despite these efforts, however, issues of anonymity, adaptability and integrity still need to be investigated further to attain a practical, secure decentralized data storage. We based our study on peer-to-peer and blockchain to achieve an Internet of Things (IoT) design supported by edge computing to acquire security and scalability levels needed for the integration. We investigated existing blockchain and associated technologies to discover solutions that address anonymity, integrity and adaptability issues for successful integration of blockchain in IoT systems. The discovered solutions were then incorporated in our conceptual design of the decentralized application prototype presented for secure storage of IoT data and transactions.

Description

Journal Article

Keywords

Blockchain, IoT, Edge computing, Peer-to-peer, Security

Citation