Soil fertility and crop yield variability under major soil and water conservation technologies in the Usambara Mountains, Tanzania

Loading...
Thumbnail Image

Date

2014-12-15

Journal Title

Journal ISSN

Volume Title

Publisher

SCIENCEDOMAIN international

Abstract

Indigenous soil and water conservation (SWC) technologies such as miraba (rectangular grass strip bounds that do not necessarily follow contours) and micro ridges have been used widely in the Usambara Mountains, Tanzania. However, their strengths and limitations to crop productivity have not been investigated. This study aimed to determine soil fertility and crop yield variability under miraba, micro ridges and bench terraces as a way to explore and compare these SWC technologies. A survey was carried out in Majulai watershed (with Acrisols as dominant soils) which is highly affected by soil degradation due to water erosion. Composite soil samples were collected from 0 - 30 cm depth in upper, middle and lower segments within bench terraces, micro ridges and miraba at the upper, mid and lower slopes of the watershed. Contents of most soil nutrients (e.g. + 2+ 2+ available P, K , Ca and Mg ) and maize grain yields varied significantly (P=.05) between SWC technologies, with the trend: bench terraces > micro ridges >miraba>control (fields with no SWC measures). Similarly under all SWC technologies soil fertility and maize grain yields varied significantly (P=.05) with slope position, showing the trend: lower slopes > mid slopes > upper slopes. Moreover, soil fertility and maize grain yields varied significantly (P=.05) between segments of the studied SWC technologies except for bench terraces. The trends for both soil fertility and maize grain yields were as follows: lower segments > middle segments > upper segments under micro ridges; lower segments > upper segments > middle segments under miraba. These observations call for management strategies and technological adjustments that would reduce pattern and magnitude of spatial variations of soil nutrients and crop yields under miraba and micro ridges for improved crop production in the Usambara Mountains.

Description

Keywords

Soil erosion, Soil nutrients, Miraba, Bench terraces, Micro ridges

Citation