modelling the water Balance of a small catchment: a CASE STUDY OF MUHU CATCHMENT IN SOUTHERN HIGHLANDS OF TANZANIA

BY

SIPHO SIMEON S. T. SHIBA

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE rREQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (AGRICULTURAL ENGINEERING) OF SOKOINE UNIVERSITY OF AGRICULTURE

Abstract

The water balance of Muhu catchment located in the Southern Highlands of Tanzania in Iringa region was modelled by establishing the empirical relations that exist between storage parameters. rainfall parameters and runofl components. Storage parameters included soil moisture storage and interception. Rainfall parameters included rainfall amount. intensity. duration. throughall. stemflow and evaporation. Runoli components included total runoff. direct runoff and base flow. The Lutchment's phesical and hydrological characteristics that affeet these parameters "tre delemined.

The assessment of hydrological and physical properties showed that the soils were predominantly sandy clay. having high organic matter content. with a moderately rapid hydraulic conductivity (Ks) of $4.2 \mathrm{~cm} / \mathrm{h}$ and infiltration rate of $3.8 \mathrm{~cm} / \mathrm{h}$. The bulk density was generally low with an average of $0.9 \mathrm{~g} / \mathrm{cm}^{3}$ for $0-15 \mathrm{~cm}$ depth: $1.11 \mathrm{~g} / \mathrm{cm}^{3}$ for $15-30 \mathrm{~cm}$ depth and $1.30 \mathrm{~g} / \mathrm{cm}^{3}$ for $30-45 \mathrm{~cm}$ depth. The catchment had a slope steepness of 35% and a varying vegetal percentage cover of about 56%.

The $1097 / 98$ water year was exceptional with high rainfall (1934 mm) mainly due to the El-niño phenomenon. Sixty-seven percent of the rainfall received in the catchment penetrated the canopy to reach the forest floor as throughfall. On average 3.3% of the rainfall reached the forest floor as stem flow while 25.5% of the rainfall was intercepted by the canopy. Throughfall, stemflow and interception were linearly
related to raintall. The regression coefficients of all the relationships were significamly different from zero at 1% level $(\beta \neq())$. With increasing percentage surfice cover. interception increased while throughfall decreased. The storage capacity of the forest cover was estimated to be 0.7 mm .

It has heen found in this study that stream flow and runoff have gradually been increasing since the $1994 / 95$ season. However the rainfall trend does not support this development. A consideration of runofl curve numbers showed that the observed trend was partly due to catchment degradation. Farming activities in the area have gradually been substituting the forest with amble land. thus reducing surface cover. Records indicaled that the lowest recorded daily mean flow was $0.27 \mathrm{~m}^{3} / \mathrm{s}$, while the highest was $1.6 \mathrm{~m}^{3} / \mathrm{s}$.

The water balance was positive during the first tive months of the wet season. The highest water balance was in April. During this period there was more recharge to the soil moisture and ground water storage. Water balance was negative in the remaining seven months of the water year. with the lowest in September. The developed direct runoff model and water balance model were found to be valid and useful in estimating the respective parameters in forested catchments of the southern highlands of Tanzania.

DECLARATION

1. Siphon Semakhwanazi Simeon Thokozane Chiba do hereby declare to the Senate of Sokoine University of Agriculture that this dissertation is my original work and has never been submitted for award of higher degree in any other University.

Signature:

Dance: $19 / 105 / 2000$

(OPYRIGHT

No part of this dissertation may be reproduced, stored in any retrievable system. or transmitted in any form or by any means: electronic. electrostatic, magnetic tape. mechamical. photocopying. recording or otherwise without prior written permission wf the athor or Sokoine University ol Agriculture in that behall:

ACKNOWLED(EEMENTS

First and formost thanks to God the creator of the universe for granting me life. wisdom. intellect. and his tireless intervention to the several attacks of malaria I received while at SUA - Tanzania.

The auhor is deeply indebted to his supervisors. Dr. H. F. Mahoo and Dr. N. I. Kihupi for their guidance and valuable suggestions during the study.

Thanks are due to Iringa Hima Project and Ministry of Water for permission to conduct the study in one of the catchments where they have a water resource monitoring programme. Their support and co-operation during the data collection stage is appreciated. The appreciation is directed to the management and staff of Iringa Hima Project under the leadership of Dr Arif Qaraeen at regional level and Jane Mwalusanya at district level. Special appreciation to all the technicians and support stalf of the hydrology section of the Ministry of Water under the leadership of Alovee Mwitagila. Special thanks to Kavinde. Meshack and Winston for their hard work. commitment and company during field work.

Special thanks to the family of Mr and Mrs Nnko of Kibwabwa in Iringa for inviting me in stay with them in their house, and the support they gave me physically. domestically. spiritually, and financially.

Further I deeply acknowledge SACCAR/ GTZ for the financial support rendered to this study.

The contribution of my colleagues. Kapele. W.. Zisengwe. D.. Nnko. A.. Hammad. J.. Subira. S., Lauwo. L., Kongola, M., Sitali. M., Tembo, M.. Bakari, A., Kingamkhono. R. and all who contributed in one way or the other cannot go without due thanks. Also the contribution of the late Siapondolo Siatembo. the warrior that died of malaria while in the army of education cannot pass without notice. May your soul rest in peace.

Finally the author wishes to express his appreciation to the Queen. princess Nthati Moonyane of Matsieng. and friends: Botle. Futhi. Olivia. Ernest. Kgomotseo, Carol. Jasinta, Chibuye. Nthonyiwa, Munisi, Lugwenza. Mkabenga, Shadrack, Faith, Leonard, Lydia, Love-joy. Tumain-small one. Angel and all other foreign and local students who spiced my stay in Tanzania. May God bless all who contributed to the success of this study (Mungu awabariki wote).

DEDICATION

This work is dedicated to my parents Joyina Absalom Shiba (Mthunzi Wokuphumula Ematjiṭi nemanjongosi - Mkhwanazi, Nabonkhosi. Simemo Lesihle) and Lillian Sibolile Shiba (La-Shongwe Mtimandze Lobhambo).

TABLE OF CONTENTS

ABSTRACT ii
DECLARATION iv
COPYRIGHT v
ACKNOWLEDGEMENTS vi
DEDICATION viii
TABLE OF CONTENTS ix
LIST OF TABLES xv
LIST OF FIGURES xvii
LIST OF PLATES xx
LIST OF APPENDICES xxii
LIST OF ABBREVIATIONS AND ACRONYMS xxiii

1. INTRODUCTION 1
2. LITERATURE REVIEW 8
2.1 Water balance studies 8
2.2 The hydrological water balance 10
2.3 Forest hydrological cycle 10
2.4 The interception process 12
2.4.1 Interception loss and storage capacity 12
2.4.2 Role of interception to water input 14
2.5 Gross and net rainfall 14
2.5.1 (iross rainfall 14
2.5.2 Net rainfall 15
こ.ミ.2.1 Throughiall. 15
2.5.2.2 Stemtlow 17
2.6 Evapotranspiration 18
2.6.1 Factors allecting evapotranspiration 19
2.6.1.1 Vegetation type 19
2.6.1.2 l.and use 19
2.6.1.3 Soil moisture 20
2.6.2 Eapotranspiration from tropical forests. 21
2.7 Runoll 22
2.7.1 Efects of rainfall characteristics on runot yield 23
2.7.2 Efiects of catchment characteristics on runoll yeld 25
2.7.2.1 Surlace ground cover 25
2.7.2.2 Catchments sizc 26
2.7.2.3 Catchment Slope 26
2.7.2.4 Management practices 27
2.8 Modeling 27
2.) Symhesis of the literature review. 30
3.MATERIALS AND METHODS 32
3.1 Description of the study area 32
3.1.1 Location 32
3.1.2 Rainfall 32
3.1.3 Temperalure 32
3.1.4 Evapotranspiration 32
B.1.6 Cicology 34
3.1. 7 Soils 34
3.1.8 Vegetation 35
3.1.9 Hydrology 35
3.2 Instrumentation and measurement 36
3.2.1 Determination of soil textural classes 36
3.2.2 Mcasurement of bulk density 36
3.2.3 Measurement of infiltration 37
3.2.4 Determination of soil hydraulic conductivity 37
3.2.5 Measurement of the surface cover 39
3.2.6 Determination of the slope of the catchment 41
3.2.7 Climatic variables 41
3.2.7.1 Rainfall amount. duration and intensity 41
3.2.7.2. Other climatic data 42
3.2.7.3 Determination of evapotranspiration 42
3.2.8. Throughfall. stemflow and interception 43
3.2.8.1 Throughfall 43
3.2.S.2 Stemfow measurement 43
3.2.8.3 Determination of interception 44
3.2.9 Stream flow measurements 46
B. 3 Model development. 47
$3 .+$ Model evaluation and validation 48
3. RESUITS AND DICUSSION 49
+. I Introduction 49
4.2 Catchment characteristics 49
4.2.1 Texture 49
4.2.2 Bulk density 51
4.2.3 Intiluation 51
4.2.4 Model soil prolile 52
4.2.5Hydraulic conductivity 54
4.2.6 Surlace cover 55
4.2.7 Slope. 57
4.i Climatic variables. 60
4.3.1 Temperature 60
4.3.2 Relative humidity 61
4.3 .3 Wind speed 62
4.3.4 Radiation 63
4.3.5 Rainfall 64
4.3.6 Rainlall intensity 66
4.3.7 Rainfall duration 68
4.3.9 Evapotranspiration 69
+.ラ.10 Comparison of rainfall and exapotranspiration. 70
4. 4 Throughfall. stemtlow and interception 72
t.t. Throughtall 72
4.4.2 Throughtall - rainfall relationship. 74
4.4.3 Comparison between observed throughtall and predicted throughtall 74
+.t.t Stemilow 76
+.4. 5 Stemflow - rainfall relationship 78
4.4.6 Comparison between observed stemflow and predicted stemflow 78
+.4. 7 Interception 80
4.4.8 Interception - rainfall relationship 81
t.t.) (omparison between observed interception and predicted interception. 83
4.4. 10 E:ffect of stem size on stemflow 84
4.4.11 The Effect of surface cover on throughfall 85
4.4.12: The eflect of surface cover on interception. 86
4.5 Stream llow characteristics 87
4.5.1 Catchment water yield 87
4.5.2 Runoff 92
4.5.2.1 Runoff curve numbers 96
+.5.2.2 Relationship between runof and rainfall parameters 99
4.5.2.3 Runoff model 100
4.5.2.t. Rumolt model exaluation and validation 100
4.6 The Water balance 102
4.6. 1 The relationship between water balanee and rainfall - runoffparameers104
4.6.2. Water balance model. 106
4.o.3 Model evaluation and validation. 107
5. (ONCIUSION'S AND RECOMMENDATIONS 110
5.1 Conclusions 110
5.2 Recommendations 111
RLEFERENCIS 113
APPENDICES 130

I.IST OFTABI.F.S

fahke t. $:$ Soil phesical and hydrological properties 50
Tahle t.2: A comparison ol the hydrological properties between sites aidiflerent exture 53
Tihle +.. : Saturated hydranlic conductivity related to soil texture 54
Table t.4: Test statisties for significant difference between observed and predicted throughtall 76
Fable 4.s: Test statistics for significan diference between observed and predicted stemblow 80
「able t. $:$ Test statistics lor significant difference between observed and predicted interception 84
lahk 4.7 : Monthly lotal stream flow ($\mathrm{m}^{3} / \mathrm{s}$) 90
lable $4.8:$ Minimum and maximum stream flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ 91
lable t.リ: Monthly total runoff(TR) (mm) 93
Table 4.10: Monthly hase llow (BF) (mm) 94
Table 4.11: Monthly direct runoff (DRO) (mm) 94
Tible 4.12: Curve numbers for Muhu catchment 98
Table t.13: Correlation coefficients between runolf and rainfall parameters 99Table 4.14: Fest statistics for significant difference between observedand predicted runotif101
Iable +.15: Monthly water balance 104
lahle +. 16: Regresson coeflicients and coefticients of determination 106
lable +.17: Test statistics for significant difference between observed
and predicted water balance 108

LIST OF FIGURES

Figure 2.1: Generation of surface runoff 24
Figure 3.1: Map of Iringa showing the study area 33
Figure 3.2: Inverse auger -hole method 38
Figure 3.3: Muhu catchment 45
Figure 4.1: Soil bulk density measured at 54 different sites at Muhu 53
Figure 4.2: Percent cover by a mixture of vegetation at Muhu catchment 56
Figure 4.3: The percent surface cover for forest and field crops 56
Figure 4.4: Surface cover by various types of vegetation 57
Figure 4.5: Contour map of Muhu catchment 58
Figure 4.6: Section views of the study area 59
Figure 4.7: Mean monthly temperatures at Bomalang mbe 61
Figure 4.8: Mean monthly relative humidity at Bomalang`ombe 62 Figure 4.9: Mean monthly wind speed at Bomalang`ombe 63
Figure 4.10: Mean Monthly Radiation at Bomalang 'ombe 64
Figure 4.11: Mean monthly rainfall at Bomalang ombe 65
Figure 4.12: Annual rainfall at Bomalang'ombe 66
Figure 4.13: Mean monthly rainfall intensity at Bomalang'ombe. 67
Figure 4.14: Mean storm duration over the study area 68
Figure 4.15: Mean monthly evapotranspiration at Bomalang,ombe. 69
Figure 4.16: Annual evapotranspiration 70
Figure 4.17: Comparison between monthly rainfall and evapotranspiration. 71
Figure 4.18: Comparison between annual rainfall and evapotranspiration 72
Figure 4.19: Amount of throughfall recorded at Muhu catchment 73
Figure 4.20: Throughfall - Rainfall relationship 75
Figure 4.21: Comparison between observed and predicted throughfall 76
Figure 4.22: Amount of stemflow recorded at Muhu catchment 77
Figure 4.23: Stemflow - rainfall relationship. 79
Figure 4.24: Comparison between observed and predicted stemflow 80
Figure 4.25: Amount of intercepted rainfall at Muhu catchment 82
Figure 426 : Interception - rainfall relationship 82
Figure 4.27: Comparison between observed and predicted interception 83
Figure 4.28: The effect of stem size on stemflow. 85
Figure 4.29: The effect of surface cover on throughfall 86
Figure 4.30: The effect of surface cover on interception 87
Figure 4.31: Monthly stream flow 90
Figure 4.32: Annual stream flow 91
Figure 4.33: The annual runoff components 95
Figure 4.34: The components of monthly runoff. 95
Figure 4.35: Monthly runoff curve numbers 97
Figure 4.36: Annual runoff curve number 98
Figure 4.37: Comparison between observed and predicted runoff. 101
Figure +.38: Nein mombly water balance 103
Figure +.39 : Annual monthly water balance 103
ligure t. 40 : (omparison beween observed and predicted water balance 108

LIST OF PLATES

Plate 3.1: Sighting frame for short vegetation .. 40
Plate 3.2: Sighting frame for tall vegetation .. 40
Plate 3.3: Sumflow measurement.. 46

LISTO OF APPENDICES

IPPINDAX A: Equations for generating infiltration curves 130
\PPIENDIX B: The sumary of climatic parameters 131
UPINDIX (: Probability of excedance and return period. 133
APPENDIX D: Daily throughfall. stemflow and interception 136

stemblow and interception 140
WPIENDIX F: Comparison of through fall. stemflow and interception 141
MPDENDIN (i: Features of the twentr-four trees 142
APPENDIX H: Potential maximum retention (S) 143
APPINDIXI: Regression ouput for the development of the models 144
APPENDIX J: Parameters of Gendavaki catchment 146

LIST OF ABBREVIATIONS AND ACRONYMS

(a,b)	Regression coefficients
\wedge	Size of the catchment in square metres
Ao	Gravitational infiltration rate
ANOVA	Analysis of Variance
131)	Bulk density
13F:	Baseflow
C	Storage capacity
CN	Curve number of the catchment
1)	Depth of the auger hole
DRO	Direct runoff
E	Evaporation
Ea	The rate of evapotranspiration
Eo	Open water evaporation
Eto	Evapotranspiration
f	Regression function
fi	Infiltration rate
fi^{*}	Infiltration capacity
FAO	Food and Agriculture Organization
For	Forest vegetation
ho	surface retention capacity

$\mathrm{h}(\mathrm{ti})$	Height of water in the auger hole measured from the bottom in the
$\mathrm{h}(\mathrm{tn})$	beginning of the experiment at time ti
Height of water in the auger hole measured from the botton after	
commencing the experiment at time th	

SWMRP	Soil and water management research project.
T	Throughfall
TR	Total runoff
ti	Initial time
th	Any time interval from the initial time
to	Time at which surface reaches saturation
tr	Storm duration
URT	United Republic of Tanzania
W	Water balance or change in water storage
WMO	World Meteorological Organisation
WRM	Water resource monitoring program

1. INTRODOUCION

The profond impact of human ativities on their enviroment through withing or unwitting manipulation of the hydrological eyele is demonstrated by the wide spread disurihuion of saline soils. hreached water impoundment and devastated vallegs. I ess obvious but more insidious, are the effects of changes in land use done w-liberallely then in ighorance of the hydrological consequence) w produce erop Sidde of great immediate value. Most frequenty the changes involde the cuting down ol indigenous forest often in uplands areas w lacilitate agricultural expansion "ith litue regad to the enviroment. Mang new agricultural sehemes being implemented in the evergreen tropical rain forest have fallen short of expectation and cansed considerable damage to the emviroment This is mainly so because of incomplete knowledge and understanding on how to manage the land and water resources of such fingile ecosstems.

In E:ast Africa there are many examples of disastrous crosion brought about by the removal of liofest in favour of over - enthusiastic cultivation on steep slopes and "Wergazing by herds of catle. sheep, and goats. Examples include Kericho in Kenya. where the forest was cleared in favour of tea plantation. Mbeya in Tanzania where the forest was cleared in favour of vegetable and crop production and Kimakia in Kenga where the indigenous bamboo forest was cleared in favour of pine plantation (Dereira. el al. 1962: Edwards and Blackie. 1975). The intensive cultivation of steep
shopes under a subsistence economy relying predominanty on anmal crops has led in turn 10 severe erosion and deterioration of water sieds in terms of quality and fuantity (lemple and Sundehorg. 1972).

In many parts of Kenya. Tanzania, and Uganda, peremial streams originate in the high - raintall momatainous areas. The interference with the ecosystem of these mountanous areas poses a serious threat to future water supplies. It is therefore important wanderstand the exosystem. begether with the interation of the human activilice with the system.

Whough it is establisthed beyond doubt that the removal of the forest cover in virtually all emiromments leads to instability in the soil cover. changes in the hedrological regime soil erosion and loss of productivity. there are still few studies of water. sediment. and nutrient redistribution following disturbance and recovery within tropical forests (Anderson and Spencer. 1989). It remains a challenge to narow this gap in knowledge

The challenge facing the governments of East Arica in these areas is therefore to develop methods of land use which will give a livelihood to the maximum number of people and set will cause minor deterioration in the river regimes. The thrust should he to develop appropriate and socially acceptable management interventions for improving the soil water availability and use. In order to meet such challenges more
nudice should be embarked upon wassess the hydrological regime of the calchments.

According to Rusel (1962) only + on the East African land surfaces reliably.上ecice a mean ammal rainfall greater than the mean annual potential Crapormapiration. Such areas include the highlands of Tanzania, with altitude of zono m and abose. Therefore most of the remaining parts in Tamzania receise unreliathe raintall of less than 1000 mm (Gififth. 1972). The nature of rainfall chamateristics in Tanzania has necessitated efforts to capture conserve and chiciently uilise the searce ramwater. Such elforts include rainwater harvesting in houh small and larger catchments. and encouraging practice of conservation tillage. Proper managemen of the catchments especially those found in the highland areas is erucial. This is due to the fice that these water catchments represent the major source "f water for the surrounding areas of mareinal rainfall where water maty be extremely scarce during the dry season.

There are many processes taking place in water catchments that need understanding helone developing any catchment management plan. The processes are part of the water halance which consider both flow processes and storage parameters and hydrological cycle, a concept that considers the processes of motion. loss and recharge of earh's waters. Processes such as interception. stemtlow, evaporation in catchment ecosystems act on the water input (rainfall) before any water output (for
instance. surlace rumoff) is produced. This gives an indication of the effectiveness of a calthoment system in controlling the water input and also. the amount of water that replenishers soil moisture.

Interception is a process in which rainfall is caught by the regetation canopy and redisuributed as absorption. stemflow and evaporation into the atmosphere (Zinke. 1967: Hamilton and Rowe. 1949). It is a function of biomass and spatial arrangement whe vegetal cover. Nodification andion removal of the regetal cover influence the magnitude of the interception loss which plays a significant role in water balance. Interception losses should be distinguished from evapotranspiration losses. The latter is the loss of water that has been absorbed by plants in the soil and the former is the loss of water that has been intercepted during rain. Both processes take place at the lealf surface.

Stemflow is that part of rainfall that moves down the tree stem until it reaches the ground. It plays a significant role in replenishing the soil moisture around the root zone. There has been controversy concerning the contribution of stemflow the water halance. Some have claimed that its contribution is not significant while others have claimed that it is signilicant (Leonard. 1961: Jackson, 1971: Lull. 1964). There are lew studies in the tropics that have been done to justify its contribution.

Baporation is a process by which water received in the form of rainfall by the camopy. carth"s surfice . soil and water bodies is taken back to the atmosphere. It is considered as water loss from hydrological point of view and as an input to the anmosphere from the meteorological poin of view.

Surlace runoli is the portion of rainfall that moves on top of the earth. part of which intiltates the soil while the other part joins streams as stram flow. From a consideration of the water balance equation runof is shown to be a residual which is dependent upon the magnitude of losses. Removal of vegetation increases surface rumoti athough the resuling yied varies from one ecosestem to another. The study of surlace runofi is of great practical significance for various estimates of water coonomy. and its relation with rainall is one of the important indices for expressing the hydrological behaviour of a watershed (Malchanov. 1963).

The ytamity of water avalable from a strean at a given point orer a specified duration of time is relerred to as basin yield. It is a consequence of all hydrologic ceents resulting in flow. including storms of all duration and intensities. and the climatic. geologic and land use factors in a given enviromment. Other factors such as terrain configuration. size of the watershed, vegetation cover and erosion processes also alliect basin yield. Any human activity which impinges on these factors will affeet the watershed storage and stream flow.
(areful measuremen of the parameters related to the components of the water halance is crucial in developing a catchment model. Models are useful tools in future plaming. Most of the catchment models developed originated in advanced countries of temperate regions. The models have been transerred to developing countries especially in the tropics and equatorial regions. However problems have been (encommered in the applicability of such models (WMO. 1979). According to the IVM()(1979) report. problems were encountered due to the following:
(i.) Litule had been done in investigating the applicability of such models
(ii.) Temperate conditions where most models were developed differed from the conditions in the tropics.
(iii.) Wrong assumplions that provision and supply of technical instruments to developing countries will solve all potential problems.

It is therefore important to investigate the applicability of the catchment models in the tropies. It is also crucial to develop models that will have tropical origin. The present study is part of the ongoing endearour on this subject.

The Iringa Soil and Water Conservation Project or Hima has a long-term objective of helping farmers to practise and benelit from improved sustainable agricultural and natural resources management (HIMA. 1997). The project encompasses four catchments. mamely Mgera. Gendavaki. Muhu and thaka. The project incorporates a water resources monitoring (WRM) programme which has been going on since 1993. The major aims of the WRM are:
(i.) To develop a better understanding of the influence of land use practices in the project area. including afforestation and soil water conservation measures. on hedrological regime.
(ii.) To facilitale quantification and assessment of soil erosion. sedimentation. runoff collection. water resources and soil water halances.
(iii.) To promote soil and water conservation.

However. to date, a detailed study has not been undertaken to assess the effect of the changes in land use on the hydrological regime of the catchment. It is envisaged that the present study. emploving the water balance approach will characterise the catchment and provide information on the trends of all the important components wer time. Such information will be useful in providing a base for future planning and management of the catchment. It is against this background that this study was initiated with the general objective of developing an empirical water balance model for the Muhu catchment in Iringa region. The specific objectives were as follows:
(i.) To identify and take inventory of the major catchment characteristics.
(ii.) To take inventory of climatic and meteorological data.
(iii.) To assess throughfall, stemflow and runoff in the catchment

2. I.ITERATURE REVIEW

2.1 Water balance studies

Viminus studies have been conducted in catchment areas in the temperate regions to fuamily the effects of changes in land use and cultural practices in the water balance (Edwards. 1977). Human activity processes causing forest clearing has been reported (1) increase annual stream flow by many researchers (Wilcock. 1979: Clarke and Me((ulloch. 1979). Reasons for increased stream flow as a result of clearing has been atributed to reduced tamspitation from vegetation (Hibbert. 1967) and the increased anodyamic resistance from the clear felled surface compared to the forest falder. 1979). Afforestation, on the other hand. has resulted in decreases in stream flow due 10 increased water use (Eschner. 1905: Wicht. 1967). However in some instances these activities failed to yield expected results due to other interactive processes in the catchment ecosystem responsible for the generation of stream llow (Dagg and Blackic. 1965: Edwards and Blackic. 1975).

So far water sield augmentation through vegetation manipulation by altering the ratio of vegetation types has been a popular. though somewhat controversial subject. Part of the controversy is a result of little knowledge backed up by empirical research (Harr. 1976: Edwards and Blackic, 1975). Increase of knowledge in this subject will increase the effectiveness of planing in protecting the soil and water resources (lrsic. 1986).

Wilewek（1979）studied the effed of channel basin chatance on water balance orer a period ol tive sears in Northern Ireland．He found that the variations in water balance ＂ere more obrious immediately following the charance with more depletion．
（lathe and MeCulloch（1979）found that in Inited Kingdom water losses from loresed catchments was greater than in catchments with herbacens regetation．In the study of Serem forested catchment and We upland pasture．Clarke and Meculloch（1979）found that Severn had losses of 717 mm while Wie had losses of filmm．The explamation was that the additional losses from the forest were a result いだいaporation of raindrops intereepted by the tree canopies．

Research conducted in Tanzania and Kenya has shown that replacing indigenous lores by alterative forms of land use produces increases in stream flow depending on the type of regetation chosen（Dagg and Blackie．1965：Edwards and Blackie． 1975）．Pereita et al．（1962）found that clearing indigenous bamboo forest at Kimakia in Kenya resulted in an increase of 16 percent in annual stream flow compared with the one not cleared．In a study conducted in Mbeya by Edwards（1977）．annual stream flow from cultivated catchment was 652 mm while stream flow from forested catchment was 522 mm ．The studies in East Africa were an effort to assess the effects of changes in land use in the tropical region．It was anticipated that experience from these experiments would have provided useful reference for other similar experiments（Pereia et al．，1962）．

2.2 The hydrological water balance

Sconter et al. (1979) suggested a simple water balance equation :

$$
\begin{equation*}
\|=I-E-\underline{O} \tag{2.1}
\end{equation*}
$$

where:
$\mathrm{P} \quad=$ precipitation
F = evapotranspiration
() = runoff
$\mathrm{W}=$ change in the water storage

According to Merle (1973). water balance in practice is computed from two factors. (P-E: and W. which are sufficient to gite an approximate description of hydrological esele. Merlet (1973) separated the water balance into four stages as follows:
(i.) Ground water storage build up stage: ($\mathrm{P}-\mathrm{E}>0$)
(ii.) Runoll stage: the soil is saturated or at the saturation limit: $(P-E>0)$
(iii.) Restitution stage: return of water to the atmosphere from the reserve in the ground ($P-E<0)$.
(iv.) Deficit stage: insufficient water for vegetation ($\mathrm{P}-\mathrm{E}<0$).

2.3 Forest hydrological cycle

The distribution and transport of rain water obey a fundamental law of equilibrium, the hydrologic cycle (Forbes and Meyer. 1965).

$$
\begin{equation*}
R()=I-(T-E)=S \tag{2.2}
\end{equation*}
$$

where:
$R()=$ runolf
$\mathrm{P}=$ precipitation
$T=$ transpiration
$\mathrm{F}:=$ evaporation
$S=$ soil moisture and ground water storage

The rain falling on a forest is subjected to interception by vegetation canopy. Some whe intercepted water evaporates. while the remainder falls to the forest floor. The latter may reach the ground by falling as throughfall. or by running down the stems as stem flow. Together these make up the net rainfall.

On the forest llow water may be subjected to a number of processes such as infiltration, evaporation from the soil surfaces and from the upper most soil layers. and surlace runoff. All these are controlled by vegetation and dependent on its density. The regetation cover on a given piece of land will also influence the soil through the processes of interception, transpiration. shading. and wind modification (Ilerring. 197()). Once in the soil, water is subject to gravitational and capillary forces What causes it to restrict its movement. Because of the slope on most forest lands and beciuse soil conducivity generally decreases with depth. water entering the soil begins to move down slope as it moves deeper into the soil.

2.f The interception process

Interception represents the part of precipitation that is caught temporarily by forest c:mopies. which include foliage twigs. branches of trees and lesser regetation or by -urface debris. It is then redistributed sither whe atmosphere by exaporation from the exposed surfaces or is absorbed by the foliage wigs and branches of trees or chameled to the forest floor. The result is a reduction in the precipitation reaching the ground (Forthes and Meyer. 1965: Brown et al. . 1972: Szabo. 1975).

In the past. interception was considered as part of evapotranspiration. and therefore litule attention was given to this subject. There is a general consensus today that interception should be treated as a separate part and this makes interception studies important (Haldin. 1988). A study by Singh and Szeics (1978) showed that exclusion of interception resulted in an error of 100 mm in the water balance. More studies are needed to justify its role in the forest water balance especially in the tropics.

2.4.1 Interception loss and storage capacity

The amount of rainfall reaching the ground surface is largely dependent upon the nature and density of the vegetation cover (Wigham, 1970). This cover intercepts part of the falling rainfall and temporarily stores it on its surface from where the water is either evaporated back into the amosphere or falls to the ground. The factors aflecting interception include. canopy storage capacity, leaf area index, stand characteristics. climatic conditions. and leafy and leafless periods.

Intereption loss is consenienty calculated as the diflerence between gross and net raintall (Reynolds and Henderson. 1967). Bringielt and Harsmar (1974) calculated the amount of interception (1) for each forest stand from measurements of rainfall (P) . semblow (S) and throughfall (T) using the following equation:

$$
\begin{equation*}
I=I-(T+S) \tag{2.3}
\end{equation*}
$$

Ile aremed that the threshold value of P abowe which T commences is nearly always less than that at which S commences. Therefore the storage capacity (C) can be derived from slope and inlercept of a linear regression of T on P (equations 2.4 and 2.5 below using data of individual storms or data of individual days of precipitation (13ringielt and Harsmar. 1974).

$$
\begin{align*}
& r=h: l-a \tag{2.4}\\
& c=a / h \tag{2.5}
\end{align*}
$$

where:

$$
\begin{aligned}
& "=y \text {-intercept } \\
& \mathrm{b}=\text { slope of the regression line } \\
& \mathrm{T}=\text { throughtall } \\
& \mathrm{P}=\text { precipitation } \\
& \mathrm{C}=\text { storage capacity }
\end{aligned}
$$

In most forest regions tree cover intercepts ten to about thirty per cent of annual precipitation before it reaches the ground (Eschner, 1967). Bringfelt and Harsmar (1974) finund that the amount of intercepted water by forest in Velen was 74 mm (26%) compared to a total rainfall of 288 mm .

2.4.2 Role of interception to water input

Wincrine opininns exists as to the role ol intereption in the hydrologic evele (\%inke. 10(27). Some investigators have treated intereption as total loss of water in terms of yelds from the calchments (I.eyton et al. . 1967). However. an opinion of this kind makes litle or no allowance for the interaction between exaporation of the intercepted water and transpiration.

Intereption losses in forests are of considerable quantitative signiticance in the water batance. The rate of exaporation of intereepted water can be of the order of 5 to 10 times that of transpiration with untestricted water supply. Alhough wetting of the foliage certainly results in appreciable reductions both in water uptake and trampiration. the ne imerception loss is usually 90\% of the amount of water intercepted (1.exton et al.. 1967).

2.5 Cross and net rainfall

2.5.1 (;ross rainfall

Precipitation in tems of rainfall is one of the most variable meteorological elements that an approximate idea of its large scale distribution can only be obtained by a network of ganges in a given region (Todorov. 1977). There are generally two ways of measuring gross rainfall in forested catchment areas. It can be determined by the use of: a rain gauge positioned either a couple of meters directly above the canopy or
near the ground in an open area close to the catchment area under investigation. For cither case problems in measuring gross rainfall abound and care is required in the installation of rain ganges (Jackson. 1971.1975). One of the major problems is the variation caused by the elfect of wind especially when the collector is above the ground (Corben. 1967).

2.5.2 Net rainfall

lisemtally. ne rainfall is the quantity of precipitation that actually reaches the Erinmad. It is the sum of throughtall and stemflow. Whas of the studies done on the net ramball have tended to ignore the stemflow component on the pretext that it is usually: negligible and. hence of insignificant contribution to net rainfall (Jackson. 1971: Reyonods and levton. 1963). These two parameters are further diseussed in the following subsections.

2.5.2.1 Throughfall

The cuamtity of throughfall as a function of incident rainfall is mainly influenced by the cimopy closure of different types of forest. and the canopy pattern of species and their values of camopy storage capacity (Szabo.1975). For a given gross rainfall. throughfall values are much higher or more in open woodland than for forest. ('anopy storage capacity values are smaller in the former (open woodland) than in the latter vegetation type (Leyton et al.. 1967: Thompson. 1972: Jackson. 1971.1975).

The value of precipitation corresponding to a acro throughtall value is regarded as an estimate of the depth of water needed to saturate the canopy, that is. the canopy storace capacity (Rumer. 1963). However. Revolds and Leyton (1963) argued that this revult is likely to be a hiased estimate since the data will almost certainly hate comained an inflection. For most forest stands allowance should he made for even the lowest measurable precipitation to fall unhindered to the ground.

In a study by Willis et al. (1975) in Alberta. Canada. it was shown that low intensity storms produced less throughtall than high intensity storms. Storm duration was also lound whate a pronounced effect on throughfall. Storms of high intensity but with short to moderate duration resulted in the greatest throughfall.

A study by Pathak et al. (1985) at Kamaun Himalaya indicated throughfall of 74 91.5 percent. Nalon and Vellardi (1993) reported throughfall of 89.6% in Sao Paulo. Sond et al. (1993) reported throghfall of $70.6 \% .69 .8 \%$ and 78.1% respectively for Quercas lemsorriphora. Rhododerdron arboream and Azadirachata indica. Throughtall under beech forest at Donak Creek. New Zealand. averaged 69\% (Rowe. 1963). A study by Jackson (1971) in Tanzania yielded areage throughfall of 84%. while a study by Kayambazithu (1990) in Morogoro yielded a throughfall of 78%. The variation in throughfall with vegetation necessitates more studies in the tropics especially because of the great diversification in tree species in this region.

2.5.2.2 Stemflow

Sicmllow is that part of ne rainfall that raches the ground by ruming down the sem. The water flowing down the stems concentrates at their bases. where the soil is apt to be most highly receptive to the water (lull.1964).

Seneral insestigators have reported stemflow from large diameter trees wh bess than that from smaller stemmed trees (Bruijn\%el. 190)). This may be ascribed to difierences in branching patterns. The amount of stemflow in forested areas depends Iatrely upon the roughness of the bark (Lull. 1964). Rowe (1941) found that in the case of some smooh barked trees. like beech. stemtow could amount to 15 percent whe net rainfall. The stemflow component of net rainfall has been determined in some of the carly and most recent studies on precipitation reaching the forest floor (Douglas. 1967: Revolds and Leyton. 1963: Forton. 1919). In some cases it has been shown to be a negligible amount. Working under the tropical forest of Tanzania. Jackson (1971) reported that stemflow was unimportant as it comprised only about 1.5% of the annual rainfall. However, in some instances. the contribution of stemflow to net rainfall has been significant, if not too large to be ignored (Lull. 1904. Rowe (1941). Moreover there is still little information on the contribution by stemfow in the tropics to support its negligence (Hamiton and Rowe, 1949: Leonard. 1961). Therefore, Rowe (1941) and Bruinzell (1990) have cautioned that when
carrying out measurements of ne rainfall in untamiliar areas. the examination of stomblow must he done and difliculties concerning its measurement be orercome.

The results of Willis et al. (1975) on stemnow indicated that there was litte semfon during stoms of 7.6 mm and less for all study trees. They explained that this could be due to absorption of the water by the bark. However stemtlow increased geometrically during rainfall of more than 7.6 mm . Small trees womomatad the most rapid incerase. They attributed this to the relatively smooth hark and ascending branches of small trees as opposed to the sealy bark and wide spreading branches of large trees.

2.6 Evapotranspiration

Eatpotranspiration is a process by which water is transferred back to the atmosphere as vapour. It contributes to major losses in the water balance. It is affected by a mumber of factors which include meteorological conditions. availability of water to meet the atmospheric demand. and regetation (Kijne, 1974). The water losses from a large area in which soil moisture is not a limiting factor is at potential rate. The actual evapotranspiration is the actual amount of vapour transferred to the amosphere under any preailing moisture conditions. and it is also affected by the same factors as above (Penman. 1963).

2.6.1 Factors affecting evapotranspiration

2.6.1.1 \egetation type

The differences between regetation types in relation to absorptivity: albedo. rooting depth and leal area index cause the variability in exapotranspiration. It has been wherved that deep rooted plants hate high exapotranspiration than shallow rooted plants under the same conditions. Forests have low reflectivity for short wave radiation. hence making more energy available for exapotranspiration to take place. (: V !estom. 1925: Monteith and Szeicz. 1961. Stanhill. 1966). The magnitude of Hamsmitted short wate radiation depends upon forest structure. composition and density. These factors imply that cover changes have large effects on energy budgets. which limit evaporation and transparation (Rutter. 1972: Pemman. 1963: Sharma. (V8か)。

The type of vegetal cover affects soil moisture depletion and influences soil moisture storage. Apart from the absorptivity and albedo differences. the major variables intluencing difierential evapotranspiration losses resulting from vegetation cover. are the rooting depth of the cover crop and the depth of the soil mantle (Douglas. 1967).

2.6.1.2 Land use

I and use modification results in a different hydrological equilibrium of a catchment. The new equilibrium is achieved by altering the proportions of the water balance
components. which give rise to water manament problems (Hibbert. 1967: Calder. (970). According to lat (1976). land use utilisation types include arable land. pasture land. range land. forest land. urban land. water bodies. irrigated land. recration and geme reserves and land for roads. The changes in land use have signilicam impact on our enviroment. The clearing of the natural forest to accommodate expansion of agriculture has disturhed the hedrologieal equilihrium. the lew of lechnology changes with changes in land use has resulted in maximised soil tillage. comstruction of dams and ponds to facilitate irrigation and supply of Water to whan areas. Exapotranspiration and oher parameters such as streamflow. wil movisure stonge hatse been affeed by such land use changes (Borman and I Wens. 1979). The alteration of exaporation has resulted to water management prohlems. Quantitatice knowledge of evapotranspiration is therefore basic to most Water management problems (Pereira. et al.. 1962: Dagg and Blackie.1965).

2.6.1.3 Soil moisture

Soil moisture supports tegetation to meet its water requirements. Depletion of soil moisture with litule or no recharge. reduces the amount of water available for evapotranspiration. creating a soil moisture deficit. Thus at high soil moisture lension. evapotranspiration rate will drop below the potential rate even if other conditions are favourable. The relationship between evapotranspiration rate and the soil moisture tension depends upon a number of factors such as soil texture. moisture
temsion chamateristics. hadraulic conductivity of the soil. rooting depth. crop density and atmospheric conditions (Shaw. 1988).

2.6.2 Evapotranspiration from tropical forests

A sudy conducted by Sharma (1984) on evapotranspiration from different plant communities (i.e. Eucalypus. Pine. indigenous trees. etc) in Australia showed that werall exapotranspiration was more than 70 percent of the annual precipitation. ('mbup intereption played a significant role in the exapotranspiration process.
1)unin and λ ston (1984) using weighing lysimeter supporting eucalyptus re-growth. reported higher amual evapotranspiration rates compared to pine. The leal area index played a major role in these differences which affected the transpiration and心apobamspiration regimes of the eucalypus re-growh.

In tropical Africa. studies on forest evapotranspiration have been carried out in the Congo basin (Bernard. 1945: Sengele. 1981) and in East and Central Africa (Pereira et al.. 1962). Sengele (1981) measured evapotranspiration of the Loweo catchment and lound that it amounted to 79 percent of the rainfall received. In catchment studies conducted in Kenya at Kericho and Kimakia. it was observed that mean annual evapotranspiration of forested control and of tea plantation was relatively the same. However initial clearing gave 11% reduction in water use which was accounted for
hy waporation from bare soil and was estimated to be about 45% of the open water Naporation (0.45 Eo)(1:dwards. 1977).

Hhere are eflorts to dewetop new methods and models for predieting forest crapotranspiration in the tropics. Rose (198t) has developed a new theory for predictine tamspiration from an isolated tree. This allows the estimation of ratio of the transpiration rate from such a tree to that of a tree with the relevant chamacteristics exposed to similar ensiromment. Such techniques provide undersamding of the process. However the tropical rain forests are characterised by a "dide range of diversified tree species. canopies. and under storey which makes crapotranspiration to be quite variable.

2.7 Runoff

Ramball - runoff relationship is a process that reflects the release and retention of "ather from and in the soil of any given catchment (Jackson. 1987). Linsely et al. (1988) stated that runofl is generated where and when rainfall intensity exceeds the inliftration rate at which water enters the soil. Runoff is a component of rainfall which appears in surface streams of either perennial or intermittent form (Gupta. 1979). There are three main mechanisms that have been suggested for the way in which the major part of total runoff from a catchment is produced. These are subsurface, ground water and surface runolf (Pilgrim and Klaassen. 1975). The
gromation of surface rumof during a typical stom is illustrated in Figure.2.1. and cyuation 2.6.

Rumoli can be allected by catchment chanateristics and rainfall characteristics (1 incily et al. |98s). Ramball characteristics that affet runnif include mintall amonnt. intensity and duration while catchment chameristies include surface slope. - Cexation cover. suil inliltation and water holding capacity (Linsely et al. 1988 and Klemer. 1982). The intiltration rate is influenced by a numher of factors that include soil cexture porosity. hydralic conductivity and soil moisture retention chanderistios. These factors have an indired effed on runotit. Since these factors var: from catchment to catchment, it would appear that the variation in surface runolf can be accounted for when a satistactory statistical analysis is made on surface rumblit and forest type data. According to L. midgren (1980). available information demonstrate the need for more research work for greater understanding of the rainfall - rumbir relationships with respect to forest tepe on a regional scale and more so. at a local scale.

2.7.1 Effects of rainfall characteristics on runoff yield

sudies hate shown that rains of big amomat. high intensity and longer duration yield more surface runolf compared to rains of small amount. low intensity and shorter daration (Shanan and Tadmor. 1979: Pacey and Cullis. 1986). A study by Pandey et al. (1983) showed a positive relationship between overland flow and rainfall quantity
and intensity. However. Hewlet and Fortson (1977) showed that hourly and minuter rainfall intensities during storms had no significant effect on runolf volume delisered by the basin. Such an observation indicated the effect of the interactive factors such as regetation. soil and topography.

Figure 2.1: Generation of surface runoff (After Dunne, 1978).
$R . j^{*}=\left(i-I^{*}\right)(t-10) .1>10$
where: $f \mathrm{i}=$ infiltration rate $(\mathrm{mm} / \mathrm{hr})$

$$
\begin{aligned}
& f \mathrm{f}^{*}=\text { intiltration capacity }(\mathrm{mm} / \mathrm{hr}) \\
& \mathrm{i}=\text { precipitation rate }(\mathrm{mm} / \mathrm{hr}) \\
& \text { R.ja* = storm raintall excess }(\mathrm{mm})
\end{aligned}
$$

```
Ir = storm duration(hr)
to = time at which surface reaches saturation during precipitation(hr)
1- ime(hr)
Ao = gravitational infiltation rate as modilied by capillary rise from water nable
ho = surface retention capacity(mm)
```


2.7.2 I:ffects of catchment characteristics on runoff yield

(atchment characteristics that aftect runoff yield from a catchment include the fiollowing: ground cover. size. slope and management practices. These are discussed in the following sub-sections.

2.7.2.1 Surface ground cover

The removal of vegetation and conversion to a farmand increases runoff although the resulting sield varies from one ecosystem to another. (Gupta. 1979: Shanan and Talmor. 1979). Jones et al. (1991) observed that in areas where adequate amount of ground cover were produced either by natural vegetation or crops. the effect had been an increase in the intiltration rate and reduced runoff. A study by Kayambazithu (1900) indicated that surface runoff in Miombo woodland in Morogoro. Tanzania was significantly ($p<0.05$) higher than at dry semi- evergreen forest. This was attributed partly to the differences in thickness of vegetation cover. The more thickly the vegetation cover is the less the runoff yield.

2.7.2.2 Catchments size

(ondralls. larec catchments generate higher runoff than small catchments (Shanan and Tadmor. 1979: Lal.1992: Reif et al.. 1988). Howerer. a study by Shanan and fadmor (1979) showed that the rumof yedd generated per unit area of eatelment for relatively small catchments wats higher than the runoff sield generated from reltively bin catchments. lal (1992) reported that forests areas of +4.3 ha and 10.6 ha an a slope of $2.8^{\prime \prime}$ discharged runolf of 3.5 mm and 0.9 mm from 199.2 mm of raintall. respectively. A study by Ojesi (1997) in Kisangara indicated that the total mean runoff yodd from a 6 m lengh water harvesting plot was 9% more than a 12 m phet. In Morogoro, Mahoo et al. (1994) observed a 10\% increase in total runoff yield generated from a 5 m length plot compared to 10 m lengh plot.

2.7.2.3 Catchment Slope

(atchments which are steep have high velocity of tlow and runofl takes less time to reach the lower end of the catchments resulting in higher runoff yields than gente slope catchments. In Morogno it was observed that there was significantly ($\mathrm{p}<0.05$) higher runof yields generated from catchments whose slope was 6-8 \% than those whose slope was $3-4 \%$ (SWMRP. 1993: Mahoo et al., 1994). In a study conducted at Kisangara. Ojesi (1997), observed that catchments with 18\% slope generated significantly higher mean runoff yields than the catchments with 6% slope. However the runoff from 18% slope and 15% slope were not significantly different from each wher $(P<0.05)$.

2.7.2.4 Management practices

Nanderment sysems or practices done on the land have an important intluence on the rimoll generated. SWMRP (1993) reported that bate and bare compacted catchments at Kisangara gencrated up 1026% runolf higher than natural regetated callehments during the hirst short rainy season or Vuli in October Xovember. 1993.
 produced the least runolf yield on average than all the other tillage treatments in all the rainfall events. Compacted soils have higher runofl yield than loose soils due to decreased water holding capacity as a resulh of decreased tetal porosity in the compacted soils.

2.8 Modelling

In hydrology and other related disciplines. various models have been developed ranging from stochastic models. deterministic models. conceptual models to empirical models. Such efforts have been expended to facilitate understanding. prediction and proper decision making (Walkman and Skages. 1941: Sheridian. 1994 : Parkes et al.. 1989). Some of the models developed include the Cream model (Kinsel. 1980). SWIM model (Ross. 1990). RUNOFF models (Sheredian. 1994: Boers et al.. 1986: Lundren. 1980: Haldin. et al.. 1979). SWATRER model (Dierchx et al.. 1986). INTECEP model (Leonard. 1967). CANOPY model (Parkes et al.. (989), and Inliltration Model (Birtles. 1978)

1:mpirical models primarily hased upon relationships derived from regression analysis have heen useful in many hydrological related tields. Application of the mokels take into account assumptions that are geverned by these models. These models apply only in the regions where they are developed or areas of simitar conditions (Walkman and Skagss. 1994: Erikson and Grip. 1978). Some examples of cmpirical models include:
(i.) Intecep model

$$
\begin{equation*}
I=\left(C^{\prime}\right)(I-E x p l-P / C)+(L . A I)(E(1)(1) \tag{2.7}
\end{equation*}
$$

where:
$1=$ interception
($\cdot=$ storage capacity
I.is| = |eal area index

Ea = rate of exapotranspiration
$1=$ rainfall duration
$P=$ precipitation
(ii) Rumolf model

$$
\begin{equation*}
R=\frac{(p-0.2 S)^{2}}{P}+0.8 S \tag{2.8}
\end{equation*}
$$

where:
$R=$ runolf from a site following rainfall event
$\mathrm{P}=$ rainfall amount
$S=$ relation parameter.
(iii.) Rumali model

$$
\begin{equation*}
\underline{O}=a l^{\prime}-c \tag{2.9}
\end{equation*}
$$

where:
(1)= amual runolif
$\mathrm{r}=$ mean basin precipitation
a and e are regression constants.

The tropical region has been dragging behind in developing models which has resulted into importing models from countries of the temperate regions. In trying to use these models, problems have emanated since conditions differ between the wo cevins (W:A().1979). It remains a challenge to do more work on this subject in the ropics ceprecially East Africa.

Whowling repuites increased accuracy in the specification of the water balance clements. This inevitably leads to more reliable hydrological maps and improved hydrohgical forecasting. It enhances improvement in numerical prediction of the hydrokgical processes which facilitates better management and planning (Harr. 1776: WM(). 1979).

2.9 Synthesis of the literature review

The preceding literature review shows that land use changes have effects on the "aller balance of a catchment. All human activities that interfere with vegetation in cilthoments will disturb the hydrological equilibrium. Each of the individual components of the water balance would be alfected differenty by these changes. The direction. magnitude. and duration of probable changes will vary with catchments.

Vegetation clearance has led to increase of some of the water balance components. Some components of the water balance. on the other hand. have decreased. Increases hate been recorded with stream flow. surface runofit and throughall. Intiltration. evapotranspiration. interception. recharge to ground and soil moisture have been reported to decrease with vegetation clearance. Alforestation and regeneration have heen reported to have opposite eflects compared to regetation clearance. The magnitude of change in water balance depends on the interactive processes and Factors within the catchment ecosystem. This includes: type. composition and density of regetation: chemical. physical and hydrological properties of soil: soil conservation measures: topography of the catchment: interception process: runoff: crapotranspiration: and storage related parameters.

Altering the proportion of the water balance components has led to hydrological and management problems. It has been difficult to address this problem due to the
agricultural oriented nature of economy and litle knowledge backed up by empirical rescarch in the tropics. It is apparent that more work is required to understand the processes and their interaction in these ecosystems in order to provide better manigement of the water resource. The present study is part of this endeavour.

3. MATERIALS AND METHODS

3.1 Deseription of the study area

3.1.1 Location

lhe study was carried out at Muhu catchment within Bomalangombe village in Iringa region. The catchment is 4.87 square kilometres. located 80 km south of Tringa 1mwn. He location is at latude 8"21' South and longitude 35"35' Fast (Figure 3.1) The altitude is abou 2000 meters above sea level.

3.1.2 Rainfall

The alfea is within the southern highlands of Tanzania and receives an anntal rainfall ranging from 1200 to 1400 mm (URT. 1976). The area has wo distinct seasons. The "el season which hegins in December and extends to May. The dry season extends from June to November.

3.1.3 Temperature

The temperature has been modified slighty compared to other tropical regions due to allitude. The area is cool with mean monthly temperatures ranging from $10.7^{\prime \prime} \mathrm{C}$ to $17.5^{\prime \prime} C^{(11 I M A .1997)}$. The area experience a maximum temperature in January and a minimum temperature in July. The rainy season months are warm compared to dry season months.

Figure 3.1: Map of Iringa region showing the study area

3.1. E Eapotranspiration

The annual exapotranspiration ranges from 995 mm to 11.38 mm . Cienerally it exceeds raintall only during the dry scason months. Relative humidity. wind speed and radiation. factors known to have effect on evapotranspiration. are respectively 80%. 103 km /day, and $1175 \mathrm{~W} / \mathrm{m}^{2}$ on average (HIMA. 1997).

3.1.5 Topography

The catchment has a steep ruged terrain (i.e. dissected steep convex slopes). The area has a range of small hills arranged in an undulating fashion. Such terrain makes the area to have a wide range of altitude. from 1880 m to $20+0$ above sea level. The escarpments are very steep and covered by vegetation.

3.1.6 Gcology

The deep layers of this catchment consist of the pre-Cambrian metamorphic rocks. These rocks are mainly composed of gneiss. amphibolites. granulates. schists. quartzite and migmatites. They form the bed rock in the catchment (i.e. origin of the soils).

3.1.7 Soils

Soils in this area are weathered. leached. and are classified as sandy clay loam. Such soils are casy to work with and do not form very stable aggregates. Generally they are darkish in colour. They have high organic mater content which helps improve
the ageregates. The soils are deep and well drained supporting a variety of crops and legetation. The soil profile is well layered (i.e. mature soil)(URT. 1976).

3.1.8 Vegetation

The area in covered by various types of vegetation. The human activities such as cultivation. limber production and fuel (charcoal) have put pressure on the forest. This has resulted to a misture of vegetation which consists of plantation forest. patches of matural forest with shrubs and grasses and cultivated crops. The predominant tree species include Eucalypus. Pine and Black watte. The main crops cultivated are maize beans. Irish potatoes and sweet potatoes. There is more surbice cover in the middle of the wet season as a result of growth from the crops.

3.1.9 Hydrology

The catchment has lite tributaries contributing to the main stream - Muhu. Muhu is a small peremial strean supporting the Bomalangombe village and other small villages downstream. The catchment does not receive external runoff. The stream drains into a small river called Lukosi. The catchment is part of the source area for this river (i.e. part of Lukosi river basin). The Lukosi river drains into the Great Ruaha river.

3.2 Instrumentation and measurement

3.2.1 Determination of soil textural elasses

The catchment was divided into square grids of 300 m by 300 m resulting in a total of it plots. A systematic composite sampling plan as outined by Peterson and Calvin
 site. A total of 54 soil samples were obtained for determination of particle size distribution and organic carbon. The pipette method and the sieve test method as outined by Kemper and (hepil (1985) were used to determine particle size distribution. The Walkey - Black dichromate method (Peterson and Calvin. 1985) "an used to determine organic carbon. The percentage of the various soil particles as ohtained firm the particle size distribution analyses, was used in the textural triangle to obtain the textural class of each sample. The data from organic carbon analyses "ere used to estimate the organic matter content in each sample. After compiling the data the modal soil profile was classified according to the FAO-UNESCO Legend (108゚)

3.2.2 Measurement of bulk density

Samples for bulk density determination were obtained in the 54 sites described in section 3.2.1. The core method as described by Blake (1985) was used to determine the bulk density. Core samples were taken at three different depths: $0-15 \mathrm{~cm}$. 15 -

Shem and $15-4.5 \mathrm{~cm}$. in each site. The cores were oren dried until a constant weight

> BD) (gem) = weight of oven dry soil volume of core

3.2.3 Measurement of infiltration

Intiltation tests were conducted in 54 sites within the catchment. The catchment was divided intu it plots as explained in section 3.2.1. A sestematic sampling plan as oulined hy Peterson and Calsin (1985) was adopted whereby a central position in each of the $5+$ plots was used as a site. The intiltation rate was determined using the method by Wigham (1970) whereby the double ring infiltrometer which consisted of an inner ring (27.8 cm diameter), and an outer ring (54.5 cm diameter) was used.

3.2.4 Determination of soil hydraulic conductivity

The same sites used for intiltation were used for hydraulic conductivity. The Gaturated hadratulic conductivity was determined using the inverted auger hole method as outlined by Landon (1991). An auger hole was dug to a depth (D) of 0.7 meters. The hole was filled with water till sulticient water had seeped into the survonding soil to create a fairly saturated zone. and this took two to three hours on average depending on the soil type. The rate of the falling water in the hole was recorded (Figure 3.2). The data was used to calculate hydraulic conductivity (Ks) using the equation below:

$$
\begin{equation*}
K s=1.15 r\left[\frac{\log (h(t i)+r / 2)-\log (h(t n)+r / 2)}{m-t i}\right] \tag{3.2}
\end{equation*}
$$

where:
$h(t i)=$ height of water level in the auger hole at time ti measured from the bottom.
$h(t n)=$ height of water level in the auger hole at time to measured from the bottom.
$r=$ radius of the auger hole.

Figure 3.2: Inverse auger -hole method

3.2.5 Measurement of the surface cover

I wo sighting frames were used for measuring surface cover for both tall and short Weseation as recommended by Elwell and Wandar (1977) (Plates 3.1 and 3.2). A 1.: meter tall vighting frame (Plate 3.1) with a lengh of one meter was used to meantre surtace coter for shor regetation (i.e. less than 1.3 meters in height, Nong the one meter kength there were ten holes placed at equal distances which were used fir sighting the vegetation. The legs were flexible to move and sharpened at the end. making it casy to level the frame using a sprit level. A 0.7 meter tall sighting frame Wint the same length as ahove (Plate 3.2) was used to measure surface cover for tall legetation. It was having an additional arrangement of a mirror in the central pusition. with the upper section being flexible to be tifted to an angle of ten degrees in either direction. The mirror reflected the canopy of the tall regetation. and measurements were taken at a tilted position of the upper section to avoid interlerence from the face of the observer. For both frames. if the hole was having half or more coverage, the surface was considered to be covered. If less than half. the surfice was considered as not covered.

A total of forty stations were selected using a stratified random sampling procedure. The stratification was based on land use and vegetation type (i.e. forest. cultivated. grassland and shrubs). In each station there was a $1 \mathrm{~m} \times 1 \mathrm{~m}$ plot. where measurements Were taken (Elwell and Waandar, 1977).

Plate 3.1: Sighting frame for short vegetation

Plate 3.2: Sighting frame for tall vegetation

The sighting frame was mored at intervals of ten cm along the sides of the sybare pho resulting in a what of 100 sightings. The measurements were done every it days

3.2.6 Determination of the slope of the eatehment

1 contour map was used to calculate slopes for the catchment. An arerage slope for the eallehment was calculated using the method by (how (196t):

$$
\begin{equation*}
s=\frac{1 / M}{.1} 100 \tag{3.3}
\end{equation*}
$$

where:

```
\(S=\) Slope \((\%)\)
\(M=\) Total lengit of contours within the calchment (m)
\(\mathrm{N}=\) Contour interval (m)
\(\Delta=\) Sisw of the catchment (m)
```


3.2.7 Climatic variables

3.2.7.1 Rainfall amount, duration and intensity.

The standard rain galle with $12.7 \mathrm{~cm}(5$ inch $)$ diameter was used during the course wh the catchment experiment to measure rainfall. Three standard rain gauges were placed within the catchment in an open area to measure the gross rainfall of the catchment. The gauges were placed using stratified random sampling procedure. The widest width across the main stream was divided into three strata, each being
appoximately one kilometre wide. One rain gatge was randomly placed in each of these strata and their location is shown in Figure 3.3. The measurements were taken al 9.01 a.m. every day using a standard rain gauge measuring eylinder. The rainfall data from the standard rain gate was compared with that ohtained automatically by the automatic recording rain gauge. The recording gauge was in the weather station. the data from the automatic rain gauge was used to calculate the rainfall intensity and duration for cach storm.

3.2.7.2. Other climatic parameters

Oher chmatic parameters recorded from the catchment included temperature. relative humidity. wind speed and solar radiation. These were recorded automatically from the automatic weather station using sensors that detected changes of the respective parameters. and sent the data to a data logger. A computer was used to download the data from the logger for processing. Location of the weather station is shown in ligure 3.3.

3.2.7.3 Determination of evapotranspiration

The climatic data from the automatic weather station was used to determine evapotranspiration. The INSTAT (Stern et al.. 1991) package was used to calculate potential exapotranspiration using the following climatic parameters: temperature. relative humidity, wind speed, solar radiation and rainfall.

B.2.8. Throughfall, stemflow and interception

3.2.8. 1 Throughfall

He ateal was divided into square gride of $300 \mathrm{~m} \times 30 \mathrm{~m}$ as shown in Figure 3.3. crabtine in a total of 5 t plots. A survey was done to make a quick notion of tre daration and density within cach plot. This formed a basis for placing plots for measurement of throughtall and stemflow. Throughtall was measured by standard 12.7 cm diancter) rain gateres which were placed within the experimental area. The lixed area plot method as deseribed by Kulow (1906) was used whereby 0.1 ha plots were located on the basis of tree tariation and density. A total of four plots were and in the experimen (figure 3.3). Fach of these plots were divided into ten grids. A whal of six raing gages were randomly allocated per plot. The measurements were taken an 9.00 am. wery day using a standard rain gauge measuring eylinder. It was not possible to take readings afier erery storm due to double storms at night.

3.2.8.2 Stemilow measurement

The method used by Bruijnzeel (1990) was employed in this study. In the same plots where throughfall measurements were taken, a total of six trees with varying stem siたe were randomly selected for stemflow measurements. An ordinary garden hose Was stit into halses. wrapped spirally wice around the trunks. and secured to it with mails. The hose drained into a 20 -liter container. An adhesive (puty) was used to chose the gap hetween the hose pipe and the trunk to ensure that there was no leakage
(Plate $3 . \begin{aligned} \text {) } & \text { The volume of water collected in the container was conserted to depth. }\end{aligned}$ in man dividing it with the crown area. The measurements were taken at the same fime as throughtall. for cach tree used for stemflow the following data were collected: diameter at heast height (m). spread of crown. and name of tree species.

3.2.8.3 Determination of interception

Fir each of the plots where throughfall and stemfow measurements were being conducted, a nearby site in an open area was used to place a standard raing gatere to meature gross raintall. The amount of water intercepted was determined by getting the difference hetween gross rainfall and net rainfall (throughtall and stemtlow) as described in section 2.3.1 and by equation (2.3). The intercepting capacity (C) was derived from the slope and y-intereept of a linear regression of throughfall (T) versus ramball (1) usin! data of individual storms as described in section 2.3 .1 and by cyuation (2.5).

Figure 3.3: Muhu catchument (HIMA, 1997) with location of sampling sites, experimental plots, stream gauging station, weather station and standard rain gauges.

Plate 3.3: Stemflow measurement

3.2.9 Stream flow measurements

The stream flow from the catchment was gauged using an automatic water level recorder and staff gauges to generate stream flow data. The water level was conserted to discharge using an established rating curve for the strenm.

In order to obtain direct runoff, the mean daily discharge was plotted against time to get the monthly hydrographs. A technique by Linsely et al. (1988) was used to separate monthly base flow and direct runoff. The technique involved extending the recession that existed before the stom to a point under the peak of the hydrograph.

A staight line from this point was drawn to an arbitrary point on the lower portion wf the recession seemen of the hedrograph. In case of complex hydrographs. disision between bursts of rain was usually accomplished by projecting the small

3.3 Model development

The rumolf and water balance models were developed empirically using multiple linear regression. For each year the monthly runoff was regressed against throughtall. semblow. infiltration rate. evaporation. raintall intensity. rainfall duration. and precipitation as shown in equation (3.4). From this. regression coefficients for each parameter were obtained. Also the estimated water balance for each month was regressed against throughtall. stemflow. evaporation. runoff and precipitation as shown in equation (3.5). Change in water storage was estimated using equation (2.1) as outined in section 2.1.1 above Water balance empirical models for the calchments were developed based on multiple regression coefficients:
$D R()=f($ T. S. I. E. Ri. Rel P.)
$W=f(T . S, I . E . D R(), T R . R i . R C l . P)$
where:

$$
\begin{aligned}
& \mathrm{DRO}=\text { runoft } \\
& \mathrm{W}=\text { change in water storage } \\
& \mathrm{F} \\
& =\text { function }
\end{aligned}
$$

3. 4 Model evaluation and validation

The nearby (iendavaki catchment was used to test and validate the models. The runofl and water batance model were used to predict the runoff and water balance rexpectively. The predicted parameters were compared with observed parameters using a t-test. This was done to assess whether the predicted and observed parameters were significantly different from each other or not. This indicated the capability of the model to predie the respective parameters.

4. RESUITS AND DICUSSION

4. 1 Introduction

His chapler presents the results and discussion in relation to the four specific ohicelites: idemitication of the major catchment characteristics shich include soil wivire bulk densits. intiltration. hydraulic conductivity. surface cover, and slope: tahing incentory of the climatic parameters which include temperature relatise humidity. wind sped. radiation. rainfall amomat. rainfall intensity. rainfall duration. and waporamspiration: assessment of throughfall. stemflow. interception. and runoff in the catchment: and development and validation of an empirical water balance model.

4.2 Catchment Characteristics

4.2.1 Tenture

The soils gencrall howe high proportion of sand and clay particles as shown in Table 4.1. The propertions varid across the locations as shown by the standard deviations fiom the :ambernls. with a range of 7 to 56°, clay. 3 to 19% silt. and $\equiv 2$ to 82%
 ari rlos. \therefore are :andy lown and one loam sand. The catchment, therefore is grinminanly samdy rliy and sandy chay ham. Such texture suggests moderate

Table 4．1：Soil physical and hydrological properties

Silu	＂．4 lis	＂ ＂itil	＂ưilnd	＂，${ }^{\text {d }}$	\％n（）M	$\begin{aligned} & \text { lovt. } \\ & \text { l lion } \end{aligned}$	$\begin{gathered} 1-15 \\ \text { cim } \end{gathered}$	lhulk 15．3．3 cII	ensity ： $11-45$ cill	Sıil Maist ＂n	K， －in hr	［11］ cill lir	\qquad
1		11	52	： 1	5 is	1.4	1 ：	1：	15	1N2	18－	$1-5$	11，
2	41）	1：	17	こ！	1112	\backslash	11．1）	11	1：	11．1	－：	2.4	こり ${ }^{\text {¢ }}$
；	517	12	12	$\therefore 6$	12	（	（1．）	1．2	1.1	3－4，	1.2	12	13：
1	IS	14	：	50	131	6	$11)$	11	1.1	351	1.2	1.1	ミ2．
5	211	1.1	I	1.1	SH	（	111	1.2	1.	－1016	15	1.1	567
f	52	12	If	＋1	N4	C	（1）	1.1	14	38．2	1.1	11.8	147
－	15	111	45	5.3	＇1	（	（1） S	1.1	1.7	3311	1.7	1.4	－10．$=$
S＇	in	8	Si	3.5	6.1	S	11	11	1.3	2311	3.7	3.2	221
1）	$1 ;$	12	15	1.9	85	SC	（1）	13	15	325	23	22	20.1
111	is	119	5	4.6	7.9	SC°	019	1．：	17	23．	31	2.8	21.11
11	1：	111	47	51	8.7	SC	0.8	116	111	25．1	32	2.6	31.1
1.	If，	11	15	55	9.1	S	1.11	11	13	34． 9	≥ 1	22	511
$1:$	$: 1$	11	－	三：	9.2	SCl	11.7	019	11	29．3	48	42	$\therefore 1.1$
1.1	3.1	1.1	こ？	52	911	Scl	119	1.2	1.4	29．${ }^{\text {2 }}$	$3{ }^{1}$	3	511.8
1\％	13	10	.17	52	411	SC	1.11	1.1	1.1	2i．6	S． 4	20	38.4
16	$\because 2$	8	611	54	43	SCl．	（1．）	1.1	1.1	25．11	511	43	23．
$1 ?$	is	1）	53	54	！	SC	11． S	10	1.1	22.5	3.2	311	28．5
IS	$\div 1$	111	3	$5:$	41	Scl	11.1	1.2	1.1	29．5	4.1	：	ご，
14	27	12	65	5	9.1	SI	118	12	1.4	$2+5$	15	4.4	：3；
$\underline{11}$	if：	111	51	$5:$	40	S\％	（1．）	（1）	12	22 2	：－	： 11	ご！
21	1.1	12	4	$\div 7$	リ．5	Sc°	0.7	1.1	13	33.6	2.4	2.4	：1．7
21	111	5	5	52	SU	SC	6.1	1.11	1.4	22．6	3.1	28	29．11
23	：11	リン	5\％	6.3	119	SCl．	0.6	1.11	1.2	25．9	4.3	4.2	39.9
21	45	8	17	54	4.3	SC	0 N	111	1.3	25.4	3.1	2.6	52．4
25		6	5 s	53	4.1	\bigcirc	1.9	11	1.2	22．0	3.15	－2	53．
20	－17	S	45	52	5.9	$8{ }^{\circ}$	0.4	1．2	1.2	33.3	2.4	24	E®0
27	3 S	10	52	52	S．！	SC＇	1.11	1.7	1.3	22．9	31	28	58 S
28	$\therefore 1$	11	51	54	$9:$	SCl	1.11	1.3	$1 .-1$	28.8	511	12	50.4
29	41	12	47	51	＜ 7	SC＇	111	1.1	1.3	25.1	30	2.6	17.7
311	II	${ }^{1}$	Sil	36	62	Sl．	111	1.3	1.5	18.7	1SU	17.2	158．6
：1	$1:$	16	.17	$5:$	1）？	SC	111	12	$1:$	$2+1$	33	2.6	SN．
： 2	$\therefore 1$	12	54	57	9.8	S 3	1.1	12	1.3	29.7	$4.1)$	3.4	46.5
\cdots	\cdots	12	± 6	47	51	SCl	011	1.1	1.3	29.1	41	3.8	55.7
$\therefore 1$	is	11	51	4.2	72	SC	1.1	1．i	1.3	23.1	2.8	2.4	56.6
is	I2	12	30	52	！ 11	Sl	11.9	10	1.3	29.2	3.4	$\because 2$	27.4
is．	－i－1	1.1	52	！	57	SCl	1．2	$1:$	$1:$	311．1	：x	$\div 2$	＋2：
77	if．	111	54	55	リ1	SC	119	1.1	1.2	22．3	37	5．1）	51.11
\therefore	$: 1$	12	5.1	97	リS	8	11.1	118	12	$22+4$	：	$\cdots 11$	0.16
י1	$\therefore 2$	S	131	53	リ1	S\％	1.11	1.2	1.4	27.6	55	4.4	59）
－111	3 S	（1）	53	52	リ．0）	SC	119	1.2	1.4	23.2	2.8	2.8	20.2
41	－19	10	47	52	9.11	\xrightarrow{C}	（1）．	1.2	1.3	23．3	79	2.7	66.3
12	in	（1）	45	5.1	8.7	SC	I．I	1.2	1.3	．1．8	2.4	2.2	17.1
43	111	19	51	5.8	11.10	SCl．	0.8	$1 . \frac{7}{7}$	1.3	30.1	3.7	3.2	54.1
4	27	12	61	5.1	8.7	SCL	1.1	1.2	15	$\underline{2} 4.3$	4.4	4.4	71.4
15	38	N	54	5.3	9.12	SC	0.9	1.1	1.3	22．4	3.7	3.0	45.5
46	25	10	05	57	9.7	SCO．	1.8	1.1	1.3	24．6	3.8	4.4	61.3
.17	311	14	56	52	4． 0	SCL	0.9	1.1	1.4	29.3	4.0	3.8	67.8
48	$\therefore .1$	12	5－1	53	9.1	4 Cl	0.9	1.11	13	29.6	1.0	3.4	88.0
．19	I5	17	5 s	5	9.1	SCL	（1．）	1.1	13	29.4	＋．9	4.2	56．6
511	2 S	IS	5	53	1）．2	SCl．	1.11	1.2	1.3	20.5	3.9	3.4	G（1） 1
51	i－1	14	57	57	9.8	SCL	0.7	（1．）	1.3	30.1	3.8	3.2	37．2
こ！	i．t	5	58	5.1	9.3	SCL	118	11	1.3	28．2	5.3	4.3	31.1
5	32	12	56	5.1	8.6	SCL	1.1	1.2	1.4	20.4	4.0	3.6	6－1．8
$\underline{3.1}$	11.	111	S11	－．）	6.7	SL.	1.1	12	1.3	2ミ． 0	17.9	17.10	1855
い	35	11 ：	53.3	51	5 S		（1）	1.1	17	27.5	4.2	3 S	51．2
（1）	9.1	2.8	9.6	11.6	1.1		0.1	1.1	0.1	4.8	3.6	3.4	31.0
にた！ （ $5(1$ $4{ }^{\circ}$ Si 1s	$\begin{aligned} &:(1.1) \\ &- \text { Sind } \\ &=\text { Sindy } \\ &- \text { Sinds } \\ &-1 . a n m 1 \end{aligned}$	－ 5 sil Cly las－ 2 ． $1 \mathrm{alll}=$ ind $=1$	aill $=22$ siles 2 sites sitc	sites	N13：So $0 \mathrm{C}=0$ OM	ambist	repor boll iller＝	d wals 72	ken all （）${ }^{\circ}$	しime	of simp	lin！	

4.2.2 Bulk Density

The hall density results are presented in ligure t.I and Table t.I. It ranged from
 $1.46 \geq \mathrm{cm}$ for $30-4.5 \mathrm{~cm}$ depth. There was litule variation between sites within the reppective depths. This is shown by the relatisely small standard deviation of o. $1+$ 0.1 : and 0.10 for the respective depths (Table t.1). Generally, the bulk density increased with depth with an oreall areage of 0.9 gem for $0-15 \mathrm{~cm}$ depth. $1.11 \underline{0} \mathrm{~cm}$ for 15 to 30 cm depth. and $1.30 \mathrm{~g} / \mathrm{cm}^{5}$ for 30 to 45 cm depth. Similar results hate heen wherred by various researehers (tal and (oumming. 1979: Mahoo. 1992). According to Taylor et al (1966) the observed range of bulk density is suitable for root penetration. The low bulk densities are party due to high organic matter content which is indicated in Table t.1.

4.2.3 Infiltration

The steady state and cumulative intiltation were $3.8 \mathrm{~cm} / \mathrm{h}$ and 51.2 cm respectively (Table 4.1). The equations for generating both intiltration curves for each site are presented in Appendix A.

Tahle 4.2 shows a comparison of the average steady state infiltration and cumblative infiltration between the different textural classes. The variation between sites was mainly due to the differences in soil texture. It can be seen from Table 4.2 that sites with sandy loamy and loamy sand texture had extremely high steady state infiltration
ralle $17.8 \mathrm{~cm} / \mathrm{h} .17 .2 \mathrm{~cm} \mathrm{~h} .17 \mathrm{~cm} / \mathrm{h})$ and cumulative intiltration $(18.3 .5 \mathrm{~cm} .158 .6 \mathrm{~cm}$. 10.3.m. 1 compared to the rest. This is attributed to the high sand fraction of 80% and above. The lowest steady state infiltration $(0.8 \mathrm{~cm} / \mathrm{h})$ was from sites with clay suils. According to sugeseded intiltation categories by B.A (1979) the sites had a moderate to rapid infiltration rate. The trend of increasing infiltration with respeet to cexure (i.e. from chay to lomes sand depieted in Table 4.2 is in aceordance with the guide h Istaclsen and Hansen (1962) and FAO (1979). Many studies have shown that infiltation rates from forest soils or soils of ateas that were previously forests is gencrally high. Dunne (1978) reported intiltration rates of $8.0 \mathrm{~cm} / \mathrm{hr}$ and above in a pasture that was previously pine woodland. The high infiltration rates are associated with the high organic matter content and surface cover.

4.2.4 Modal soil protile

The modal soil prolite was classified as Humic acrisols according to FAO INFSCCO Legend (1989). It was generally having weathered leached soil containing large amounts clay minerals, high organic carbon. rich in organic matter content and farly Ertile.

Figure 4.1: Soil bulk density measured at 54 different sites at Muhu

Table 4.2: A comparison of the hydrological properties between sites of different texture

Textural class	No. of sites	Av. Ks $(\mathrm{cm} / \mathrm{hr})$	Av. Inf. $(\mathrm{cm} / \mathrm{hr})$	Av. Cum. Inf. (cm)
Clay	5	1.31	1.17	31.70
Sandy Clay Loam	22	4.30	3.80	52.20
Sandy Clay	24	3.08	2.69	41.76
Sandy Loam	2	18.00	17.1	171.6
Loamy Sand	1	18.70	17.8	109.3
Total / Av.	54	4.2	3.8	51.2

4.2.5 Itydramic comductivity

lable +.1 shows the values of hydraulic conductivity as measured from 54 sampling
 from one location to another as shown by the standard deviation of 3.0 (Table +.1). I he range was from $18.7 \mathrm{~cm} / \mathrm{h}$ to $1.1 \mathrm{~cm} / \mathrm{h}$. Table 4.2 shows that the soils with high day content were generally having fow saturated hydratic conductivity. get in those "ith high sand fraction it was moderately rapid. These results are in agreement with He gerneral guide by Smedema and Ryeroli (less) shown in Table t. . Howerer. the catchment can be generally classified to hase moderately rapid hydratic conductivity according to the classification by FAO(1963).

Table 4.3: Saturated hydranlic conductivity related to soil texture

ノ-vime	Ks	
	$\mathrm{cm}^{\prime} \mathrm{h}$	m/day
(ounse gravel sand	42-208	10-50
Medium sand	4.2-20.8	1-5
Sandy loam / line sand	4.2-12.5	1-3
L oum Clay loam - well structured	2.1-8.3	0.5-2.0
Very line sand	0.8-2.1	0.2-0.5
C'ay loam clay - poorly structured	0.08-0.8	0.02-0.2
1)ense clas, not cracked and no bio-pores	<0.008	<0.002

4.2.6 Surface cover

The percent surface cover increased as the season progressed (Figure 4.2). At the bewiming of the ramy season. surface cover was 48% and increased to 84% after I Or, dins from the beginning of the season. The gradual increase of the surface cover "als allmibuted to plamt growth. The increase in foliage resulted in higher proportions ol the surface being covered. The forested vegetation has high percent cover compared to Field crops (Figure 4.3). Among the types of regetation at Muhu catchment. grasses had the highest overall percent cover followed by trees. shrubs. potances. beans. maize and swee potatoes respectively (Figure 4.4). It can be shown from the results that among other things surface cover is influenced by climate and type of vegetation. During the dry season. surface cover reduced due to senescence and reduced growth as a result of litte soil moisture.

Figure 4.2: Percent cover by a mixture of vegetation at Muhu catchment

Figure 4.3:The percent surface cover for forest and field crops

Figure 4.4 : Surface cover by various types of vegetation

4.2.7 Slope

A opographic map is shown in Pigure +.5 . The contour interval is 0.2 meters. The acrage catchment slope was calculated using Equation 3.3. The catchment in general has step slopes with an areage slope of 35%. Figures 4.6 (a) to (d) show deselopment of sections $11 / 22$, B1B2. ($1(2$ and D1D2 respectively. Slope variation across and along the escarpment is depicted in these ligures. Figures 4.6 b and 4.6 c show typical steep slopes of the catchment while $4.6 a$ and 4.6 d show slopes slighty above and below the average slope. The valley along the tributaries. and the plateau
at the peak are very narrow. According to Chow (1964) , the steep slopes increase the velocity of water llow with consequent short time of concentration. The steep slopes combined with high rainfall intensity results in high runoff yield and soil loss (Ogrosselky and Mockusi. 1984).

Figure 4.5: Contour map of Muhu catchment

Figure 4.6: Section views of the study area

4.3 Climatic variables

Ite climatic variables considered and presented in this section include temperature. relative humidity. wind speed. radiation, rainfall amount, rainfall intensity, rainfall duration. and exapotranspiration. A summary of all the climatic variables is presented in Appendix B.

4.3.1 Temperature

The mean monthly temperature for the study area is shown in Figure 4.7. The mean temperature ranged from $10.7^{\circ} \mathrm{C}$ to $17.5^{\circ} \mathrm{C}$ over the past six years. July is the coldest month with a range of $10.7^{\prime \prime} \mathrm{C}$ to $11.9^{\prime \prime} \mathrm{C}^{\prime}$. January is the hottest month with a range of $16.8^{\prime \prime}\left(\mathrm{C}\right.$ to $17.5^{\circ} \mathrm{C}$. The area is generally cool due to the high altitude of about 2000 meters above sea level. The cause of the vertical temperature change is explained by the "lapse rate" theory which state that there is a decrease in temperature with height in the free atmosphere due dry and saturated adiabatic lapse rates. Crops such as maize take a long time to mature due to the cool temperatures.

Figure 4.7: Mean monthly temperatures at Bomalang'mbe (1993/94 to 1998/99)

4.3.2 Relative humidity

Pigure 4.8 shows the mean monthly relative humidity for the study area. It ranges from $6.3 .2 \%$ to 92.9%. The lowest relative humidity is recorded in September which is the middle of the dry season. The highest is recorded in May the last month of the wet seaton. The amospheric condition in this catchment is generally humid. This can be atrihuted to the existence of four tributaries within the catchment contributing to the main stream. and light showers evenly distributed during the dress.

Figure 4.8: Mean monthly relative humidity at Bomalang'ombe (1993/9+ to 1998/99)

4.3.3 Wind speed

The mean monthly wind speed ranges from $0.79 \mathrm{~m} / \mathrm{s}$ to $1.79 \mathrm{~m} / \mathrm{s}$ (Figure 4.9). Wind speed is generally high between August and November with a range of 1.6 to 1.79 m / s. and low between January and March. with a range of 0.79 to $1.0 \mathrm{~m} / \mathrm{s}$. Wind speed has influence on evapotranspiration (ETo). In general the wind speed is low in this area. Percira (1962) observed that wind speed was generally low in the highlands ol Last Arica.

Figure 4.9: Mean monthly wind speed at Bomalang'ombe (1993/94 to 1998/99).

4.3.4 Radiation

Figure 4.10 shows the mean monthly radiation at the Muhu catchment in Bomalang ombe. It ranged from $140 \mathrm{~W} / \mathrm{m}^{2}$ to $240 \mathrm{~W}^{2} / \mathrm{m}^{2}$. Radiation is high between September and Jantary with November having the highest radiation. Radiation is lowest in May: Radiation is the most important energy source for the earthatmosphere system having major influence on evaporation. According to the observation made in this study mean monthly evapotranspiration was highest in Nowember. the same month in which temperature, wind speed and radiation were highest. and relative humidity was lowest. This agrees with the general concept that exapotranspiration is a function of radiation. temperature. saturation deficit and wind speed (Shaw. 1988).

Figure 4.10: Mean Monthly Radiation at Bomalang'ombe (1993/94 to 1998/99).

4.3.5 Rainfall

Mean monthly rainfall and amual rainfall at Muhu catchment for the six years of monitoring are shown in Figures 4.11 and 4.12. The mean monthly rainfall ranged from 8.7 mm to 256.1 mm (Figure 4.11). The mean monthly rainfall was highest in April and lowest in June (Figure 4.11). The highest recorded monthly rainfall during this period was 494.6 mm in February 1997/98 with probability of exceedance of 7.7% and a return period of about 13 years (Appendix C1).

The annual totals ranged from 1071.1 mm to 1933.9 mm with an annual average of 1.364 .23 mm (Figure 4.12). The highest annual rainfall was recorded in 1997/98. The
"eltest sear was 1997:98 due to El-Niño phenomenon that occurred. bringing anustal heary rains.
the dry season is between June and November with mean monthly raintall ranging from 8.7 mm in 42.4 mm (Figure 4.11). The wet season is between December and Vay with mean monthly rainfall of 105.8 mm to 256.1 mm . The dry season and wet seaton are well contrasting and distinct. The catchment can be categorised as moist sul-humid since it has a wet period of six (6) months and annual aterage of $13+6$ mm(Rales. 1996).

Figure 4.11 : Mean monthly rainfall at Bomalang'ombe (1993/94 to 1998/99).

Figure 4.12: Annual rainfall al Bomalang'ombe (1993/9+ tol998/99)

4.3.6 Rainfall intensity

The monthly areage raintall intensity results ranged from $2.02 \mathrm{~mm} / \mathrm{hr}$ to $4.7 \mathrm{~mm} / \mathrm{hr}$ While the 30 minutes maximum intensity (130) ranged from 3.2 to $107 \mathrm{~mm} / \mathrm{hr}$ (Figure f.|3). Ramall intensity is generally low during the dry season (i.e. June to November). Iligh rainfall intensities are recorded between December and April. The highest recorded monthly average rainfall intensity over the past six years was 49.43 $\mathrm{mm} / \mathrm{hr}$ with probability of exceedance of 7.7 percent and a return period of 13 years (Appendix (3). When comparing the rainfall intensity with infiltration rate and hydratulic conductivity, it can be observed that on average rainfall intensity is only higher than the respective parameters between December and April. The rains of high intensity between December and January especially the 130 pose an erosion threat
silne it is immedially aller the dry season a period in which wesed sere is minimal.

Figure 4.13: Mean monthly rainfall intensity at Bomalang'ombe) (93/94 to 98/99).

4.3.7 Rainfall duration

Figure f. 1+ shows the mean monthly storm duration. It ranges from 1.4 hours to 8.4 hours. The lowest storm duration was recorded in June - the beginning of dry season. The highest was recorded in August - in the middle of the dry season. Some wet seasom months have relatively the same storm duration as dry season months even thotoh ramfall amoun is cuite diflerent. This is explained by the high rainfall intensin! during the we season. The highest recorded monthly storm duration over the past six years was 28 hours with the same probability of exeedance and return period as the highest intensity above (Appendix (4).

Figure 4.14: Mean storm duration over the study area (Rd) (93/94 to 98/99).

4.3.9 Evapotranspiration

Wonthly and annual erapotranspiration (ETo) is shown in Figures 4.15 and 4.16. The maximum mean monthly ETO of 114.1 mm was observed in Nowember. The minimum ETo of 63.1 mm was observed in June (Figure 4.15). Both months where maximum and minimum [ETo were observed are dry season months. Therefore Nowember. the last month of the dry season. has a greater soil moisture deficit. The highest monthly ETO of 138.84 mm was recorded in December 1998/99 with probabilits of exceedance of 7.7% and a return period of 13 sars (ippendix C2). The lowest monthly FTo was 55.86 mm with probability of exceedance of 92.3% and a return period of about 1.1 years. The annual ETo ranged from 995 mm to 1138 min with an anntal average of 1038 mm (Figure 4.16).

Figure 4.15: Mean monthly evapotranspiration at Bomalang,ombe.

Figure 4.16: Annual evapotranspiration (199394 to 199899)

4.3.10 Comparison of rainfall and evapotranspiration

 shown in ligures 4.17 and 4.18. On monhly basis ETo was higher tian santall sor all the dry seasom monhs (June to November) (Figure $\div .17$. Dating the wet season 1/n is, lower than rainlall (i.e. all surplus months). Theretore a greater soil moisture delicil was expected in September while a greater recharge was expected in Aprii. Hue are: is: among the 4 行 of the East Arican land suriace descrired by Russe! (I\%,?) as receiving a mean annal rainfall greater than the ETO. On annual basis the
rainlall was higher than ETo for all the years except 199607 (Figure +18). In 109697 . the ETo was 11 mm higher than raintall.

Figure 4.17: Comparison between monthly rainfall and evapotranspiration

Figure 4.18: Comparison between annual rainfall and evapotranspiration (ETo)

t. 4 Throughfall, stemflow and interception

4.4. 1 Throughfall

l:igure 4.1^{6} gives a summary of throughfall for the four months of data collection during the $1998 / 99$ wet season at Muhu catchment. The throughtall (T) was 128.5 mm .199 .49 mm .205 .38 mm , and 88.477 mm for February. March. April and May respectively. The mean monthly rainfall (P) for the respective months was 180.55 mm . 300 mm . 309.75 mm . and 133.55 mm respectively. Therefore throughfall was $71.17 \%, 66.5 \%, 66.31 \%$ and 66.25% of rainfall for the respective months. On areage throughfall was 67.31% of rainfall in this catchment. In a study conducted
in Kenya with hamboo forest by Pereira (1962). an overall average of 80% throughfall was observed. Mahoo (1992) observed a throughfall of 59 to $7+\%$ in a study conducted in Nigeria. Okhlayabin (1913) observed a throughfall of 77% with Sproce. is: "\% with Beech and 67.5% with Pine. When comparing this study with wher studies it can be shown that throughiall varies with type of stand which depends on the tree species and vegetation. The results of this study fall within the range of common values observed bey other researchers.

Figure 4.19: Amount of throughfall recorded at Muhu catehment

t.4.2 Throughfall - rainfall relationship

The relationship belween throughfall and rainfall is depicted in Figure 4.20 . There is a high correlation between rainfall and throughall $\left(\mathrm{R}^{2}=0.98\right)$. The relationship is dencribed by the regression equation below which was fitted to daily data shown in Ippendial:.

$$
\begin{equation*}
r=0.71 .30 r^{\prime}-0.49+46: \quad R^{2}=0.98 \tag{+.1}
\end{equation*}
$$

Whou gs percent of the variances were explained by the regression equation. indicating a high potential of the equation to predict throughfall. The coefficient of
 N(N) \backslash in Appendix E1. The storage capacity calculated according to Equation 2.5 which reguires the slope of the regression line and intercept relating throughfall and ramball was 0.7 mm . It is estimated that rains of 0.7 mm and below will be intercepted. thus no throughtall will be realised. According to Hamiton and Rowe (10+9). storage capacity amounts range between 0.25 mm and $9.1+\mathrm{mm}$.

4.4.3 Comparison between observed throughfall and predicted throughfall

l:quation 4.1 was used to predict throughfall. A comparison was made between the two data sets (i.e. observed and predicted) as shown in Figure 4.21. A reference to Figure 4.21 and Table t. 4 shows that there was no significant difference between wherred and predicted throughfall at 5% level. Therefore equation 4.1 can be used to
predict throughfall. This will facilitate in determing the effect of throughfall on water balance.

\square

Figure 4.20: Throughfall - Rainfall relationship

Figure 4.21: Comparison between observed and predicted throughfall

Table 4.4: Test statistics for significant difference between observed and predicted throughfall

$D!$	12	Stat	Crictical	Significance
146	0.05	-0.024	1.98	n.s.d.

4.4.4 Stemflow

The results of stemflow are presented in Figures 4.22. Stemflow was 5.97 mm $(3.31 \%) .8 .60 \mathrm{~mm}(2.87 \%), 11.213 \mathrm{~mm}(3.62 \%)$ and $4.40 \mathrm{~mm}(3.30 \%)$ for February,

March. April and May respectively. The highest propotion of stemflow was recorded in April and the lowest propotion in March. The overall percent stemflow in this catchment was 3.27% (Figure 4.22). Kitridge (1948) observed stemflow of 2103% fior rough barked pine. Rowe (19+1) observed that in case of some smooth barked trees. like beech. stemflow can go up to 15%. In some studies it has been neglected due to the clam that it contributes 1% or less (Jackson. 1971). There is sariation of the reported stemflow among researchers and it is erroneous to ignore it as it is significant in some instances.

Figure 4.22 : Amount of stemflow at Muhu catchment

4.4.5 Stemflow - rainfall relationship

The relationship between stemflow and ramball is depieted in Figure 4.23. Details of the bitted line are shown in Appendix F2. The correlation between stemflow and rainlall was fairly high $\left(R^{\prime}=0.68\right)$. The relationship is explained by the equation +.2 :

$$
\begin{equation*}
S=0.03 .35 P-0.014: \quad R^{2}=0.68 \tag{4.2}
\end{equation*}
$$

Sixty-cight per cent of the variances were explained by the regression equation. From Figure 4.23 there are lew points that fall on the regression line for bigger storms. thus thirty wo percent of the variation is not explained by the regression. However the cyuation can be used to prediet stemflow since its coefficient of determination (R^{2}) is calleorised as moderately high. In addition the coefficient of regression (β) was significantly different from zero $(\beta \neq 0)$ at 1% level as shown by ANOVA in Appendix E2.

4.4.6 Comparison between observed stemflow and predicted stemflow

P:quation 4.2 was used to predict stemflow. The predicted stemflow was compared with observed stemflow using a t-test at 95% confidence interval to evaluate and validate the capability of equation 4.2 to predict stemflow. Results are shown in Figure 4.24 and Table 4.5 below.

It can be shown from Table 4.5 that observed and predicted stemflow are statistically not different from each other at 5% level. Therefore equation 4.2 can be used to predict stemflow. Also this will facilitate to determine the effect of stemflow on water balance.

Figure 4.23: Stemflow - rainfall relationship

Figure 4.24: Comparison between observed and predicted stemflow

Table 4.5: Test statistics for significant difference between observed and predicted stemflow

(!	p	Sitat	1 Crictical	Significance
$1+6$	0.05	0.088	1.98	n.s.d.

4.4. 7 Interception

The results of interception are presented in Figure 4.25. The amount of rainfall intercepted was 46.08 mm (25.52%), 91.91 mm (30.64%), 93.15 mm (30.07%) and 40.67 mm (30.45\%) For February, March, April and May respectively. The highest
percent of intercepted rainfall was recorded in March and the lowest was recorded in February. The overall percent interception in this catchment was 29.42% (Figure 4.25). Λ study by Edwards (1979) conducted in Kenya in a bamboo forest showed that 20\% of the rainfall was intercepted. According to Eschener (1967). tree cover of most forest regions intercept 10 to 30% of the annual precipitation. A study hy Mahoo (1992) in Nigeria showed that about 26 to 32% of the rainfall was intercepted. Although there is quite variation of interception. there is a commen range of $10-30 \%$ and results reported in this study are within this range.

t.4.S Interception - rainfall relationship

ligure 4.26 shows the relationship between interception and rainfall. Details of the litted line are shown in Appendix E3. There is a high correlation between interception and rainfall ($\mathrm{R}^{2}=0.84$). The relationship is explained by the regression equation 4.3:

$$
\begin{equation*}
I=0.2533 P-0.5079: \quad \mathrm{R}^{2}=0.84 \tag{4.3}
\end{equation*}
$$

Eighty four percent of the variances were explained by the regression equation. Only sixteen per cent of the variation is not explained by the regression. The coefficient of regression (β) was significantly different from zero $(\beta \neq 0)$ at 1% level as shown by ANOVA in appendix E3.

Figure 4.25: Amount of intercepted rainfall at Muhu catchment

Figure 426 : Interception - rainfall relationship

4.4.9 Comparison between observed interception and predicted interception

Equation 4.3 was used to predict interception. The predicted interception was compared with interception calculated using measured variables (i.e. rainfall, throughfall and stemflow). A t-test was used at 95% confidence interval to evaluate and validate the capability of equation 4.3 to predict interception. Results are shown in Figure 4.27 and Table 4.6.

Figure 4.27: Comparison between observed and predicted interception

Tahle 4.6: Test statistics for significant difference between observed and predicted interception

df	p	1 Stat	Criclical	Significance
$1-16$	0.05	-0.162	1.98	n.s.d.

From Table 4.6, the observed and predicted interception were statistically not difierent from each other at 5% level. Therefore equation 4.3 can be used to predict interception. It will facilitate to determine the effect of interception on the water balance.

4.4.10 Effect of stem size on stemflow

Trees with small diameter at breast height yielded higher stemflow than those with larger diameter at breast height (Figure 4.28). The results showed that there was a negative association between stem size and corresponding stemflow. A significant diflerence was observed between various stem sizes on stemflow yield at 1% level (Appendix G1). The features of trees used for stemflow measurements are shown in Appendix G. The difference in stemflow yield can be attributed to the difference in the level of branching. Big trees have a lot of branches, resulting in less rain water reaching the bottom of the tree as stemflow. Another factor is the thickness of the
hath and its potential to absorb water. Generally big trees have thicker rough barks. ahsorbing more water. Bruinzell (1990) made a similar observation whereby smaller stemmed trees had higher stemflow.

Figure 4.28: The effect of stem size on stemflow

4.4.11 The Effect of surface cover on throughfall

Throughfall and surface cover are inversely related with a negative slope (Figure 4.29). The fitted regression line shows that 95% of the variation between throughtall and surface cover is explained by the regression equation. Therefore reduction in surface cover increases net rainfall. This may have both positive and negative effects. It may increase the amount of water infiltrating into the soil thus increasing the
contribution to ground water storage and soil moisture storage. On the other hand it can result in water being lost as surface runoff thus increasing crosion.

Figure 4.29: The effect of surface cover on throughfall

4.4.12: The effect of surface cover on interception

Surlace cover and interception are positively correlated with a positive slope as shown in Figure 4.30. Increase in percent surface cover leads to an increase in interception. Ninety seven percent of the variation could be explained by the fitted regression line. The increase in interception as a result of increased vegetal cover was due to increase in the number of leaves which increase the amount of rain water
stored on the leal blades. This leads to reduction in throughfall and increase in interception as shown in Figure 4.30.

Figure 4.30: The effect of surface cover on interecption

4.5 Stream flow characteristics

The stream flow characteristics analysed were monthly and annual water yield: minimum. maximum and mean stream flow: and runoff. The results are presented in the following subsections.

4.5.1 Catchment water yield

The variability in monthly and annual water yield is shown in Table 4.7 and Figures 4.31 and 4.32 respectively. Mean monthly stream flow ranged from $1.6 \mathrm{~m}^{3 / \mathrm{s}}$ to 2.5
m / s. The highest meim monthly tlow of $2.5 \mathrm{~m} / \mathrm{s}$ was observed in A pril while the lowest mean monthly flow of $1.6 \mathrm{~m}^{3} / \mathrm{s}$ was observed in November (Table 4.7). The lowest stream flow had a 7.7% probability to be exceeded while the highest had a probahility of 92.3% to be exceeded (Appendix (4). Stream flow increased between Xovember and April. deelined between April and September and stabilised between September and November (Figure 4.31). The dectine between April and September indicated the recession period of the stream atter the wet season. During this period there was lithe rainfall. however. there was high evapotranspiration. Therefore stram llow during this period was sustained mainly be ground water (base flow) contribution.

Amual total stream flow ranged from 19.13 to $26.49 \mathrm{~m}^{3 / \mathrm{s}}$ (Figure 4.32). Stream flow decreased between 1993/94 and 1994/95. increased gradually from 1994/95 to $1998 / 99$ and peaked in 1997/98. The variability was due to combined effects of climatic changes and catchment degradation processes. In terms of rainfall. the lowest annual rainfall was recorded in 1996/97 which was a drought year in Tinzania. The highest rainfall was recorded in 1997/98, the year of El-Niño rains. Annual rainfall increased between 1993/94 and 1995/96. Therefore rainfall alone is not enough in explaining the variability in stream flow. However when the processes of eatchment degradation are integrated. a better explanation can be given. Many studies have shown that catchment degradation has a significant effect on stream How over time (Pereira. et al., 1962; Malongo. 1997: Anderson and Spencer, 1989;
1.al. 1981: Temple and Sundeborg. 1972). The decrease in stream flow between $10939+$ and $199+95$ can be associated with the planting of tres and adoption of conservation measures promoted by the catchment conservation project under HMA (11IMA. 1994). However stream tlow started to increase gradually in subsequent ?ears. Which meamt that degradation processes such as forest clearance began to increasic as observed by HIMA (HIMA. 1997).

The maximum. minimum and mean daily flows for the past six years are shown in Table 4.8 . The lowest $110 w$ of $0.27 \mathrm{~m} / \mathrm{s}^{7}$ was recorded in December. 1994/95. The highest llow of $0.31 \mathrm{~m}^{3} / \mathrm{s}$ was recorded in February. $1997 / 9 \mathrm{~S}$ - the wettest year. There is a lot of variation between dry season flow and wet season flow.

Table 4.7: Monthly total stream flow ($\mathrm{m}^{3} / \mathrm{s}$)

Year/Month	93:94	0.1/95	95/96	96;97	97798	98/99	Average
Inac	2.51	1.62	1.50	1.74	1.97	2.17	1.92
luls	2.99	1.60	0.88	1.61	1.92	2.17	1.87
Abeust	2.41	1.52	1.42	1.70	1.85	1.7.4	1.77
sopren	1.79	1.44	1.38	1.60	1.58	1.91	1.62
()01	1.86	1.49	1.44	1.68	1.65	1.9 .4	1.68
Nov	1.91	1.38	1.33	1.53	1.64	1.88	1.61
1)ec	1.93	1.52	1.74	1.67	2.61	1.59	1.86
lan	1.79	1.64	1.53	1.88	3.33	2.23	2.17
lich	1.6 .4	1.46	1.94	2.33	2.10 .4	2.14	1.93
Mall	2.40	1.88	1.85	2.56	3.04	2.50	2.37
April	1.91	1.84	2.84	2.78	2.39	3.26	2.50
May	2.01	1.74	229	2.20	2.38	2.70	2.22
Smis Stamathen	25.13	19.13	20.15	23.35	26.49	26.246	23.42

Source: HIMA, 1997

Figure 4.31: Monthly stream flow

Figure 4.32: Annual stream flow

Table4.8: Minimum and maximum stream flow ($\mathrm{m}^{3} / \mathrm{s}$)

Yemamomb	93/94		94/95		95/96		96/97		97/98		98/99	
	Min	Max										
Junc	0.079	0.086	0.054	0.057	0.048	0.056	0.0 .54	0.066	0.061	0.075	0.069	0.075
Suly	0.072	0.106	0.050	0.054	0.027	0.029	0.054	0.056	0.061	0.066	0.065	0.071
August	0.063	0.090	0.047	0.052	0.044	0.051	0.054	0.055	0.054	0.061	0.058	0.065
Sept	0.056	0.063	0.047	0.049	0.043	0.053	0.051	0.057	0.048	0.055	0.059	0.102
()at	0.049	0.069	0.044	0.067	0.043	0.049	0.053	0.057	0.048	0.066	0.060	0.069
Nov	0.058	0.076	0.043	0.060	0.044	0.048	0.049	0.057	0.044	0.147	0.055	0.076
Dec	0.049	0.140	0.028	0.039	0.043	0.126	0.051	0.067	0.046	0.168	0.041	0.062
Ian	0.047	0.083	0.043	0.130	0.039	0.074	0.045	0.155	0.058	0.247	0.042	0.153
Feb	0.052	0.092	0.047	0.065	0.044	0.117	0.040	0.148	0.065	0.314	0.061	0.124
Mar	0.039	0.048	0.031	0.043	0.049	0.099	0.056	0.167	0.063	0.138	0.057	0.119
April	0.056	0.077	0.049	0.094	0.062	0.217	0.066	0.165	0.062	0.149	0.080	0.206
May	0.057	0.084	0.052	0.085	0.065	0.096	0.063	0.084	0.065	0.156	0.070	0.122
Lowest	0.039	0.048	0.028	0.039	0.027	0.029	0.040	0.055	0.04	0.06	0.04	0.06
Highest	0.079	0.106	0.054	0.130	0.065	0.217	0.066	0.167	0.07	0.31	0.108	0.21

Source: HIMA, 1997

4.5 .2 Rumofl

Monthly and annual total runolf, base flow, and direct runoff are presented in Tables 4.9. 4.10 and 4.11 respectively. Appendices $(5.56$ and $C 7$ show the prohability of excedance and return period for the monthly total runolf. base flow and direct runoff respectively. Direct runoff (DR()) increased gradually from July to April. reaching its peak in Ianuary. This is also shown by the distance hemeen wat rumof curse and the base flow curve (Figure 4.33). DRO was relatively stable between leboruary and April but there was a sharp drop between April and May. Generally the wet season had a higher direct rumoff as expected than the dry season due to differences in rainfall. However base flow and total runoff did not show the same response. This was due to differences in the time of response by the catchment to yield the various components of runoff. Direct runoff is quickly generated during a rainfall event and an instantancous increase in the stream flow is realised. When DRO declined . base now hegan to increase gradually as it took a longer time to reach the stream outlet (Figure 4.33). Base flow continued to increase even when DRO had ceased. The decline in base llow was gradual, and it took longer time - extending to the dry season of the following water year. Such a characteristic gives an indication about the catchment hydrologic propertics of the soil. Water movement in the deeper layers of the soil is relatively moderate indicating a moderate saturated hydraulic conductivity. This makes it possible for the flow to be perennial with base flow supporting the dry season flow.

Iotal runolf. balse llow and direet runoff decreased beween 1993/94 and 1904/95: increased gradually hetween 1904'95 and 1998:99 with highest peak in 199798We wellen sear figure $4.3+$). The decrease between $1993 / 9+$ and $199+95$ can not be altributed to rainfall since the rainfall was 1193 mm and 1182 mm in both years respectively. Rather the explanation could be due to improvement in catchment manasement. This is can be explained by the lact that forest cover increased. thes reducing surlace runolit. This is in line with what some researchers have reported in Wat increase in regetal cover reduces surface runoff (Tischendorf. 1969: Rewitz et al. 1971: Kirby and Chorley. 1967). However the forest cover was gradually cleared in the subseguent years. resulting in gradual increase in runoff.

T:alle 4.9 : Monthly total runoff (TR) (mm)

Year Month	199364	1994/95	1995/96	1996:97	1997/98	1998/99	Average
hille	+4.54	28.76	26.69	30.02	32.93	36.38	33.22
July	53.02	28.29	15.58	30.03	32.02	32.03	31.83
August	+2.71	26.91	25.25	29.35	30.95	31.80	31.16
Supror	31.71	25.54	24.51	27.64	26.57	30.37	27.72
(1)0	32.94	26.40	24.91	29.02	27.69	30.07	28.51
Now	33.82	24.51	23.55	25.57	27.50	33.42	28.06
Dec	34.26	27.02	30.10	28.01	45.09	28.28	32.13
Itill	31.66	29.12	26.40	31.55	59.20	39.60	36.26
にい	29.14	25.95	33.56	31.19	51.17	37.98	34.83
Mar	42.50	33.29	31.88	41.92	42.82	44.25	39.44
April	33.91	32.65	49.01	49.23	40.08	57.87	43.79
May	35.65	30.86	39.58	36.77	39.83	47.98	38.45
Ammal TR	+45.86	339.30	351.02	390.30	455.85	450.03	405.39

Table 4．10：Monthly base flow（BF）（mm）

Yian Manh	109394	199495	199506	199697	199798	199899	Aserage
Iunc	43.37	28.72	26.06	29.27	31.51	35.03	32.33
Iusy	51.46	28.18	15.31	29.82	31.55	30.75	31.18
入ぃバイ	＋2．07	26.60	24.01	29.35	30.36	29.99	30.40
Sup	30.59	25.17	22.47	27.00	26.16	26.88	26.35
0 Ol	26.07	23.58	24．08	28.70	24.64	28.56	25．94
Vow	27.50	19.01	23.32	24.88	21．82	31.20	2＋．62
De	26.86	22.46	23.41	26.66	27．10	26.81	25.55
Jall	16.33	18.40	22.11	24．72	27.73	2－4．2－4	22.25
Cun	17.44	22.35	18.60	16.23	30.59	31.0 .4	22.71
Mir	19.47	2 4 .99	25.97	27.42	3.8 .81	32.64	27.38
Spril	29.30	21.72	33.11	33.71	30.16	$+1.87$	31.65
Man	31.21	25.59	33.96	34．53	35.63	40.39	33.55
Ammal $13 F^{\circ}$	361.67	286.77	292.41	332.29	351.06	379.40	333.93

Tahle＋．11：Monthly direct runoff（DRO）（mm）

Yeill Month	1993.94	$199+65$	199596	199097	1997.98	199899	Average
Tune	1.17	0.04	0.63	0.75	1.42	1.35	0.89
luty	1.56	0.11	0.27	0.21	0.47	1.28	0.65
August	0.64	0.31	1.24	0.00	0.59	1.81	0.77
Sup	1.12	0.37	2.04	0.64	0.41	3.50	1.35
OCl	6.87	2.82	0.83	0.32	3.05	1.51	2.57
Nor	6.32	5.50	0.23	0.69	5.68	2.22	3.44
Dee	7.40	4.56	6.69	1.35	17.99	1.47	6.58
Jan	15.30	10.72	4.29	6.83	31.47	15.36	14.00
Feb	11.70	3.60	14.96	$1+.96$	20.58	6.94	12.12
Mar	23.03	S． 30	5.91	14.50	9.01	11.61	12.06
April	＋．61	10.93	15.90	15.52	9.92	16.00	12.15
May	4.44	5.27	5.62	2．24	4.20	7.59	4.89
Ammal DRO	84．18	52.53	58.61	58.01	104.79	70.64	71.46

Figure 4.33 : The components of monthly runoff

Figure 4.34 : The annual runoff components

4.5.2.1 Runoff curve numbers

Runolf curve numbers were calculated using Equation 4.4 below:
$C O=-\frac{1000}{10+5 / 2.54}$
where: ($\mathrm{N}=$ runoff curve number
$S=$ potential maximum retention after runoff begin

$$
\begin{equation*}
S=5 / 1+2 \underline{Q}-\left(+()^{2}+5 P()^{0}\right)(0.5) \tag{4.5}
\end{equation*}
$$

where: $\mid=$ raintall (mm).

$$
()=\operatorname{runoff}(\mathrm{mm}) .
$$

The results are shown in Figures 4.35 and 4.36. and Table 4.12. The calculated values of S are shown in Appendix H. The monthly curve numbers ranged from 25.89) (0 91.94 (Figure 4.35). June had the highest runoff curve number while April hatd the lowest. Curve numbers indicate the soil cover complexes and level of runoff. Iligh values indicate either high soil cover or low runoff or a combination of the two. The high runoll curve numbers after the wet season are a result of high surface cover. This is reasonable as growth is encouraged during the wet season . and run off is low during the dry season as rainfall is low.

The annual curve number was maximum in 1996/97- the drought year and lowest in $1097 / 98$ - the wettest year (Figure 4.36). The differences in curve numbers between the two years was due to rainfall. Comparing 1993/94. 1994/95 and 1995/96. runoff curve numbers decreased gradually, indicating an increase in runoff. The annual
rainfall in the respective years did not provide enough basis for this trend. Therefore the increase was due to decrease in the soil coter complexes as a result of gradual forest chanance.

Figure 4.35: Monthly runoff curve numbers

Figure 4.36: Annual runoff curve number

Table 4.12: Curve numbers for Muhu catehment

Y'an Month	93/94	$9+95$	95:96	9697	97/98	98/90	Average
1111	95.26	98.16	99.27	99.09	63.83	96.03	$91.9+$
Inl	9.4 .40	85.97	9.58	$9+.35$	83.95	94.08	91.22
A!	89.80	83.87	65.57	100.0	85.99	75.19	83.40
sip	96.86	93.53	88.84	99.44	94.23	65.58	89.75
O10	82.61	68.75	\$2.01	81.55	53.41	92.50	76.86
Nor	87.09	73.01	92.98	83.85	$3+03$	96.67	77.94
1ec	51.89	29.34	35.01	56.98	16.80	22.17	35.37
IIIn	3503	34.03	37.07	32.53	26.07	29.62	32.39
Feb	34.22	37.85	23.30	31.49	14.22	33.01	29.01
Mar	21.29	25.99	29.74	22.11	35.62	22.95	26.29
Apr	35.27	23.80	18.43	26.92	28.66	22.25	25.89
May	32.96	47.84	32.89	64.11	72.77	39.52	48.35
Neim	63.06	58.51	58.31	66.04	50.80	57.49	59.03
$\mathrm{SD}=$	30.15	28.23	31.64	31.02	28.59	32.15	

4.5.2.2 Relationship between runoff and rainfall parameters

The degree of association that exists between runoff and rainfall parameters which include rainfall amount, rainfall intensity, storm duration, throughfall and stemflow was assessed using a correlation test. This was done as a preliminary exercise to determine parameters that can be used to develop a runoff model for the catchment. Correlation coefficients between runoff and the rainfall parameters are shown in Table 4.13.

Table 4.13: Correlation cocfficients between runoff and rainfall parameters
Parameter Correlation coefficientr

Rainfall (P)	0.96
Intensity (Ri)	0.78
Duration (Rd)	0.54
Throughfall (T)	0.96
Stemflow (S)	0.96
Interception	0.96

From Table 4.13, duration had the lowest correlation coefficient ($r=0.54$) while rainfall, throughfall, interception and stemflow had the highest correlation coefficient ($r=0.96$). Generally runoff was closely associated with the rainfall parameters.

4.5.2.3 Runoff model

from section 4.5.2.2. it is clear that runoff is related to a mumber of climatic variables What call be used to estimate runoff. A multiple regression based model which included the climatic parameters above was developed. The output from the regression analysis is shown in Appendix $1-1$ and Appendix $[-2$. The slope for stemblow and interception had high standard errors of 38.91 and 35.90 respectively. The lwo parameters with such standard errors reduce the level of precision if included in the model. Throughtall had a standard error of zero indicating that the cochicient of regression (β) for throughtall is not useful in predicting rumofif(Appendix I-1). Therefore the model was based on those coefticients of parameters in Appendix I-2.

$$
\begin{equation*}
1) R()=0.0559 l^{2}+0.3+1+R d-0.0740 R i-0.671: \mathrm{R}^{2}=0.94 \tag{4.6}
\end{equation*}
$$

where: $\mathrm{DRO}=$ direct runoff
$\mathrm{Rd}=$ Rainfall duration
$\mathrm{Ri}=$ Rainfall intensity
$P=$ Rainlall amount
$\mathrm{R}^{2}=$ coefficient of determination

4.5.2.4. Runoff model evaluation and validation

(iendavaki catchment was used to validate the model. The developed model. esuation 4.6. was used to predict DRO. and a comparison was made between
predicted DRO and calculated DRO using observed or measured parameters. The comparison was done using t-test and the results are shown in Figure 4.37 and Table t.1t.

Figure 4.37: Comparison between observed and predicted runoff

Table 4.14: Test statistics for significant difference between observed and predicted runoff

$!!$	p	1 Stat	1 Cricical	Significance
22	0.05	-0.0 .25	2.07	n.s.d.

It is evident from Table 4.14 that observed and predicted DRO are not significantly different from each other at 5% level. The ANOVA from Appendix $\mathrm{I}-2$ shows that
the corlifient of regression (β) was significanty different from zero (0) at l\% level. The above evidence sugests that the model is useful in estimating runoff.

4.6 The Water Balance

The mean monthly and annual values of the calculated water balance are shown in 1 Pemen 4.38 and 4.99. Positive water balance is experienced between December and May (Figure 4.38). The highest water balance is recorded in April while the lowest water halance is in September (Figure 4.38). Table 4.15 shows the monthly water Balance over the past six years. The positive water balance is experienced during the wet season months. The annual water balance ranged from -401.18 mm in 1996/97 to 453.8 mm in $1997 / 98$ (Figure 4.39). The water year $19966^{\prime \prime} 9$ is the only one where annual evapotranspiration exceeded the annual rainfall. and it was a drought year in Timzinia with a negative effect on crop yield. The water year 1997/98 was the wellest one as explained in the previous sections. The probability of exceedance and relurn period for the mean monthly water balance is shown in Appendix C8.

Figure 4.38: Mean monthly water balance

Figure 4.39: Annual water balance.

Table 4.15: Monthly water balance (mm)

YearMonth	$1093 / 94$	1994,95	1995/96	1996/97	1997/98	1998/99	Average
1111	-93.40	-97.45	-90.68	-8S.00	-45.04	-100.64	-85.87
Jul	-102.80	-80.61	-74.25	-91.79	-80.91	-93.20	-87.26
Aug	-94.01	-80.68	-62.18	-121.15	-102.54	-65.33	-87.65
Sep	-132.61	-108.98	-101.87	-119.13	-119.26	-48.81	-105.11
()al	-141.34	-73.79	-117.44	-106.08	-39.86	-122.01	-100.09
Now	-116.88	- 84.19	-142.00	-134.97	22.56	$-1+2.98$	-99.74
Dec	-49.65	46.88	18.10	-85.94	279.55	48.18	$+2.85$
Jill	51.85	51.09	2.56	18.94	151.94	64.78	56.86
Fob	76.99	15.34	172.32	97.95	$36+.70$	23.31	125.10
Mar	218.98	90.50	56.09	158.93	23.01	131.63	114.19
Apr	30.66	160.49	255.07	125.20	75.52	153.73	133.45
May	61.t+	3.56	$6+.23$	-55.15	-75.86	-0.18	-(1.32
Ammal	-290.77	-151.84	-20.01	-401.18	+53.80	-151.52	-93.59

4.6.1 The relationship between water balance and rainfall - runoff parameters

According to equation 2.1 rainfall, evapotranspiration and runoff have an effect on the water balance. However the equation does not imply a linear relationship between water balance and these factors. Therefore regression analysis was done to assess linearity between water balance and each of these parameters. Other parameters related to rainfall and runolf were included to increase the prediction ability of the model.

Table 4.16 shows the regression coefficients and coefficients of determination of the respective equations relating water balance and rainfall. evapotranspiration, intensity,
duration, throughfall, stemflow, interception, total runoff, direct runoff and base flow. It can be observed that the water balance is linearly related to rainfall, throughfall, stemflow, interception, direct runoff, total runoff, and intensity. This is evidenced by the regression coefficients which are statistically different from zero ($\mathrm{P}<0.05$) and moderately high coefficients of determination for the respective equations (Table 4.16). There is a poor linear relationship between water balance and duration of rainfall $\left(\mathrm{R}^{2}=0.37\right)$. Water balance and evapotranspiration and base flow are not linearly related in this catchment. This is evidenced by the regression coefficients which are not statistically different from zero at 5% level and very low coefficients of determination for the respective equations (Table 4.16). Therefore the relationship between water balance and evapotranspiration can be pegged on other kinds of relationships. Since in this study the model was based on multiple regression which imply a linear relationship, evapotranspiration and base flow were not included.

Table 4.16: Regression cocfficients and enefficients of determination of respective

Equations

Paramelers (ladependent valiables)	Regression equations (Dependant variable: W = water balance)	Coeflicient of Determination (R^{2})	Significance at 5% level of regression coelficient $(\beta \neq 0)$
Raimliall (I)	IW $=0.72 \mathrm{P}-112.4$	10.97	Signiticant
Fiaporranspiration (E)	$W=1.5 E-51.37$	0.01	n.s.d.
Intensily (Ri)	$W=5.24 R i-118.6$	0.91	Signilicant
1) uration (Rd)	$W=7.28 R \mathrm{~d}-128.4$	0.37	Signiticant
Throughtall (T)	$\mathrm{W}=1.28 \mathrm{~T}-111.5$	0.97	Signiticant
stemilow (S)	$W=27.3 \mathrm{~S}-111.7$	0.97	Signiffant
Interception	$W=3.61-113.95$	0.97	Signilicant
latal runofl (TR)	$W=16.17 \mathrm{R}-549.5$	0.67	Signilicant
Orrect runoti (DRO)	$W=17.4 D R O-111.3$	0.86	Signiticant
Basc llow (BF)	$W=134.8-5.13 \mathrm{BF}$	0.04	n.s.d.

4.6.2. Water lalance model.

It has been shown in section 4.6 . 1 that the water balance is linearly related to a number of rainfall - runoff parameters that can be used to estimate the former. A multiple regression based empirical model which included the parameters above was dereloped. The output from the regression analysis is shown in Appendix 13 and Appendix 14. The slope for stemflow and interception had high standard errors of 36.33 and 33.64 respectively (Appendix 13). The two parameters with such standard errors will normally reduce the level of precision if included in the model. Throughall had a standard error of zero indicating that the coefficient (β) of throughtall is not useful in predicting water balance (Appendix I3). Although interception. stemflow and throughfall had a linear relationship with water balance
when analysed singly, their effectiveness in predicting water balance when combined with wher factors tend to reduce. Therefore the three parameters. interception. semblow and throughall were eliminated to increase the level of precision of the model. Therefore the model developed is shown below (Equation 4.7). The corficients are shown in the regression output in Appendix It.
$\|=10.7855 l^{\prime}-5.3641 R d+5.0175 T R+0.628 R i-2.2199 D R()-231.25:$
$R^{2}=(0.97$
where:

$$
\begin{aligned}
& W=\text { water balance } \\
& \mathrm{DRO}=\text { direct runolf } \\
& \mathrm{TR}=\text { total runoff } \\
& \mathrm{Rd}=\text { Rainfall duration } \\
& \mathrm{Ri}=\text { Rainfall intensity } \\
& \mathrm{P}=\text { Rainfall amount } \\
& \mathrm{R}^{\prime}=\text { coefficient of determination }
\end{aligned}
$$

4.6.3 Model evaluation and validation.

The (iendaraki data was used for the validation of the model. The calculated water halance using measured parameters was compared with predicted water balance using Equation 4.7. The results are shown in Figure 4.40 and Table 4.17.

Figure 4.40: Comparison between observed and predicted water balance

Table 4.17: Test statisties for significant difference between observed and predicted water balanee

$l f$	D	1 Sita	C Crictical	Significance
22	0.05	-0.00 .25	2.07	n.s.d.

The results show that there was no significant difference between predieted water balance and ohserned water balance at 5% level. In addition regression coefficient (β) Was signilicantly different from zero at 1% level as shown by ANOVA in Appendix

It Therefore the model can be useful in estimating the water halance.

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The following conclusions can be drawn from this study:

1. The soil phesical and hydrological properties of the catchment suggest good drainage and permeability. This is indicated by the predominance of the sandy clay kexture high organic matter content. moderately rapid hydratic conductivity of $4.2 \mathrm{~cm} / \mathrm{h}$ and a moderately rapid infiltration rate of $3.8 \mathrm{~cm} / \mathrm{h}$.
2. As expected, the bulk density increased with depth with an overall average of 0.9 $9 / \mathrm{cm}^{\prime}$ for $0-15 \mathrm{~cm}$ depth. $1.11 \mathrm{~g} / \mathrm{cm}^{\prime}$ for $15-30 \mathrm{~cm}$ depth and $1.30 \mathrm{~g} / \mathrm{cm}^{\circ}$ for 30 -45 cm depth. It falls within the acceptable range for root penetration. The high oramic matter content contributed to the low bulk density of the top layer.
3. Surface runolf is mainly generated from the sites with clay and sandy clay texture Which have an intiltration rate that is lower than rainfall intensity, and this occurs during the first live months of the wet season.
t. The catchment is characterised by a shorter time of concentration due to steep shopes of about 35% resulting in rapid response of the stream in case of a rainfall event.
4. The area can be categorised as moist sub - humid with six months of rainfall. The wet season is distinct from the dry season. The distribution of rainfall throughout the season gives better support to crops.
5. Rainfall is linearly related to throughfall. stemflow, and interception as depieted hy the respective regression equations. Seventy percent of the rainfall reaches the forest flow as net rainfall (throughfall and stemflow) while the remainder is intercepted by the forest canopy. Throughtall. which is realised with a rainfall crent of more than 0.7 mm decreases with increasing vegetal cover while the opposite is true with interception. Trees with small stem sizes had high amount of stemflow.

7 B:ncllow plays a significant contribution to total runoff compared to direet runolit: This is evidenced by the peremial nature of the main stream - Muhu inspite of the fact that there is evidence of catchment degradation in terms of lorest claring.
8. Water balance was only positive during the first five months of the wet season. This period is considered adeguate to support a crop without the expense of irrigation.
4. There is bairly good agrement between observed and modelled direct runoff and water balance with correlation coefficients $\left(\mathrm{R}^{2}\right)$ of 0.94 and 0.99 respectively. This shows that the developed models are valid and useful in estimating the respective parameters in the highlands of Tanzania with sub-humid climate.

5.2 Recommendations

1. Given that cultivation is done on steep slopes without erosion control measures, it is recommended that extension officers in collaboration with other rural development projects should put more effort in encouraging farmers to use
terracing in their cultivation. It will help to conserve water. minimise runof and soil erosion.
2. As the HMMA project phases out. it is recommended that government should chate that the water resource monitoring programme continues for the next wo decades. It will facilitate generating more data that can help to better assess the cllects of changes in land use.
\therefore (iovernment should take strong measures against the interference with the forests and vegetation cover in the highlands of Tanzania since most of the large rivers originate from these highlands. The action is necessary because the highlands play a major role in water supply. and hence the need to manage the highlands properly.
t. Covermmenthould use the motivation approach to ensure that the land users become stewards of the catchment resources for the present and future gemerations.
3. Models developed from this study should be tested in other catchments in Ianzania for possible adoption.

REFERENCES

Daderson . I. M. and Spencer. T. (1989). Carbon. numient. and water balances of Tropical rain forest ecosystem subject to disturbance :An implications for management In: Procededings of the Man and Biosphere workshop on Ecology. and Sustanahility of Tropical rain forest management. (held in Paris. Seplember (OSO).
\ngwrom. A. (1925). The albedo of various surfaces of ground. (icografisker annaler $7: 321-3+2$.

13:N. (1979). Kamo River Project phase II. Limphlishod soil and Lamal Capahility Rep. 'ol. I Summary and Main report. Vol. 2 annexes. BAI. London.

Bernad. E . (1945). I.e climate ecologique de la curette centrale congolaise. Brussels Publ. Inst Nat. Agronomy. Congo.

Birtles. A. B. (1978). Identification and separation of major base flow components from a stream hydrograph. Water Resonrees Research. If(5):791-803.

131ake. (i. R. (1985). Bulk density. In: .Methods of soil anclusis. Part I Phersical and mincralogical properties. including statistics of measurement and sampling (İds. Black. C. A. . Evans. D. D. . White. J. L. . Ensminger. L. E. and Clark. F. E.) Madison Publishers. Wisconsin. pp 374-399.

Bocrs. Th. M. . Graaf. D.. Feddes. R. A and Ben-Asher. J. (196). A linear regression model combined with soil water balance model to design micro-catchment for harresting water in arid zones. Elservier Science Publishers B. I. Amsterdam. The Vetherlands 11: 187-206.

Borman. F. H. and Likens. G. E. (1979). Pattern and Process in a forested constem. Sipinger lorlag. Now York 25.3p.

Bringfelt. B. and Harsmar. P. (1974). Rainfall interception in a forest in the Velen hydrological representative basin. Aordic Hedrologe 5: 146-165.

Bumw. (i. W'.. Burg. R. H.. Harr. R. D. and Riky. I. P. (1972). Hydrologic Modelling in the coniferous forest biome In: Proceedings of the symposium on research in coniferous forest ecosestems. March 23 - 24. Bellingham. Washingtom. pp 49-70.

Bruiinzeel. L. A. (1990). Hydrology of moist tropical forest and effects of conversion : A state of knowledge review. Published by support of I.H.P.. I.T.C. . I.A.H.S.. V.U.A.. Netherlands. 224pp.
(alder. I. R. (1979). A model of transpiration and interception loss from a spruce forest in Plymimon. central Wales. Jownal of hadrologe 33: 247-265.
(how. V. T. (1964). Runoff . In: Handhook of Appliced hydrology. (Ed. V. T. Chow). Med (raw-Hill. New York.
(larke. R.T. and MeCullock J. S. G.(1979). The effect of land use on the hydrology of small upland catchments: Mans impuct on the hedrolegical cacle in the linited Kingedom (Ed. Hollis, G. E).Geo-Abstracts Ltd. Norwich. England. 278pp.
(iorbhert. E: S. (1967). Measurement and estimation of precipitation on experimental Watersheds.In: International Symposium on forest Hyelrologe: (Eds. Sopper. W. E. and Lull. II. W.). Pergamon press. Oxford. ppl79-185.
1)ag. M. and Blackic J. R. (1965). Studies on the effects of changes in the land use in the hydrological eycle in East Africa by means of Experimental catchment areas. $1: / H S$ 10: 6.3-75.

Dicleman. P. I. and Traford B. D. (1976). Drainage testing. lrvigation and Drainase paper 2x. 32pp.FAO. Rome.

Dierchs. J. . Belmans. C. and Pauwels. P. (1986). SIFATRER. a compuer package for modelling the field water balance. Reference mamal 2. Laboratory of Soil and Water Engineering. K.U. Leuven. Belgium.
1)owglas. J. E. (19(77). Effects of species and arrangement of forests and evaporation. In:Intcrnational Simposium on forest Hyatrologr: (Eds. Sopper. W. E. and L.ull. II. W.). Pergamon press. Oxford. ppl79-185.

Dumne. T. (1978). Intergration of hillslope flow processes. In: Hillslope Hychrology (Ed. Kirkby. M. J.). John Wiley and Sons. Chichester. pp 227-293.
1)unin. F. λ. and Aston. A. R. (1984). Evaporation from Eucalyptus growing in a weighing lysimeter . Agric: For: Mencorology 31: 2+1-251.

I:dwards. K. A. (1977). Cultural practice and changes in catchment hydrology: A review ol hydrological research techniques as aids to development planning in the humid tropics. In: Soil C'onservation and Management in the Humid

Tropics. (Eds. Greenland. D. J. and Lal. R.) John Wiley and Soms. (hichester. prin-46.

Bdwards. K. A. and Blackic. J. R. (1975). Hydrological Researeh in 1:ast Mrica. ()uoted by Edwards. K. A. (1977). Cultural practice and changes in catehmem hadrology: A review of hydrological research technigues as aids wo development planing in the humid tropics. In: Soil conservation and Mennegement in the Ihwnid Tropics. (Eds. Greenland. D. I. and 1.al. R.). John Wiley and Sons. Chichester. ppi3-46.

P:Well. H. A. and Wendelaar F. E. (1977). To initiate a wegetal coner data hank for will lows extimation. Institute of Agric. Eng.. Dept. of Conservation and Extension. Harare. Zimbabwe. Rescarch Bulletin No. 23.

Prikson. F. and Grip. H. (1979). Comparison of intereeption models In: Procedings from I. U. F. R. (). on comparison of forest water and Exchange Models. (I:d. Halldin. S.) Uppsala. Sweden. pp 213-244.

Fschner. A. R. (1965). Porest Protection and Stream llow from an Adirondack watershed. Quoted by Edwards, K. A. (1977). Cultural practice and changes in catchment hydrology: A review of hydrological research technicpucs as aids to development plaming in the humid tropics. In: Soil Conservation and Menagement in the Humid Tropics. (Eds. Greenland, D. J. and L.al. R.). John Wiley and Sons. Chichester. pp.3-46.

FAO (1963). High dam soil survey project. Aswan - Deb BC. FAO, Rome.

FAO(1989). FA()-UNES(O) l.cgend Soil map of the world. Technical paner . .io. 20 . ISRIC: Wageningeni. Rome. ISspp.

Forhes. R.I). and Meyer A.B. (1965). Foresfry Hand Book. The Ronald press Co. New York.
(ivilliths. I. I: (1972). (limenes of dfricu. its people and resources. (I:d. Morgan. T.W.). Elseviers. New York. pp107-11S.
(iupta. B. L. (1979). Wider resources engineering and bigdrology. Standard Publishers Distributors. Calcutta. India. pp 456.

Haklin. S. (198S). Swedish evaporation rescarch: A review. .iordic Ifadrologer 10:303-340.

Itamilton. E. L. and Rowe. P. B. (1949). Rainfall interception by chapanal in (california. California Forestry and Range experiment station in co-operation with division of forestry. 43pp.

Harr. R. D. (1076). Ihalrology of small forest streams in western (oresom. USI)A For. Serv. Gen Tech. Rep. PNN - 55. Pac. Northest For. And Exp. Sin. Portland. Oregon. 15pp.

Hewlett. I. D. and Fortson. J. C. (1977). The effect of rainfall intensity on storm How and peak discharge from forest land. Water Resources Research 13:259266.

Helsey J. D. and Patric. J.H. (1965). Design criteria for interception studies. Symposium on Design of hydrological net works. WMO.'IAIS. L.aral liniv. Quebec C'ity.

Herring. H. E. (1970) Soil moisture trends under three different cover conditions. ISDA Forestry Service Rescarch.Note PNW - 114. 8pp.

Hiblert. A. R. (1967). Forest treatment effeels on water yied on water batance ba: Proceedings of the International Simponian on fores lhadrolog! (I:ds. Sopper. W. E. and Lull. H. W.). Pergamon press. (Oxford. pp527-543.

IIIMA, (1994). Anmal report of the Hima Soil and Water Conservation Project (Eds. Mwitagila. A.. Ngowi. S. . Sanga. P.. Pira. and Mwalusanya. J). Iringa. pp 68

HINA. (1997). Anmal report of the Hima Soil and Water (ionservation Project (Eds. Mwitagila. A.. Ngowi, S. . Sanga. P.. Pira. and Mwalusanya. J). Iringa. pp 80.

Horton. E. P. (1919). Rainfall interception . Monogrph on Weather Review :47: 603623.

Isractson. (). W. and Hansen, V. E. (1962). Irrigation principles and practices (3'1 ed). John Wiley and Sons. Chichesteer, pp227-293.

Jackson, I. J. (Ed.) (1987). Climate, water and agriculture in the tropics. John Wiley and Sons Inc New York. pp377.

Jackson. I. I. (1971). Problems of throughfall and interception assessment under tropical forest. . ommal of hactrologe 12:234-254.

Jatkson. I. I. (1075). Relationship hetween ramball parameters and intereption in

Iones. (). R. . Hamser. V. L. and Pophan. T. W. (19)l). No tillage eflects on intiltration. rumofit and water conservation on dry land. Trans. Amer. Soce of Isric: ling 37:(1)+11-419.

Kiyambazinthu. D. (1990). Effects of selected foress tipes in the water inpur. . Wind forest reserve Morogroro. M.Sc. Forestry. Slin. 26spp.

Kemper. W. D. and Chepil. W. S. (1985) Size distribution of aggregates In: Merhods of soil anclussis. P'art I Physical and mineralogical propertics. inchuding statistics of measurement and sampling (Eds. Black. C. A. . Exans. D. D. . White. I. L. . Ensminger, L. E. and Clark. F. E.). Madison Publishers. Wisconsin. pp4)9-510.

Kijnc. J. W. (1974). Determining evapotranspiration In: Drainage Principles and Applicutions. Vol III. ILRI. Wageningen. Section 19.

Kinsel. A. (Ed) (1980). ('reams: A ficld model for chemicals, rumoff. and erosion firom agricultural management sysfems. Conservation Research Report No 26. Washington D.C.pp5-35.

Kirby. M. J. and Chorley R. J. (1967). Throughfall. ()verkend flow and Erosion. Bull Int Ass. Sci Hydrol. 12: 5-21.

Kiluridge. J. (1948). Forest influences. MeCiraw-Hill, New York. Pp.3)4.
Klemer. V. (1982). Stochastic models of rainfall-runoff relationship. In: Stutisticol analy:is. of rainfall and rumoff. (Edited by Singh. V.P.) Water Resources Publicalions, Michigan. ppl39-154.

Komal. J. M. and Kassam. A. H. (1976). Bnergy load and instantancous intensity of rainstorms a Samaru. Northern Nigeria. Trop. Agric (Trinadad 5:3:185-105.

Kulow. 1 : I. (1960). Comparison of forest sampling designs. Journal of foresiri. $64: 461)-474$.
1.al. R. (1981). Soil physical properties In: (haractorisation of soils (Greenland I). J. Eid.). Clarenden Press. Oxford.
1.al. R. (1992). Tropical Agricultural IIgdrology and sustainahility of agricultural shstems. John Wiley and Sons Inc New York. Ohio. pp 61-109.
I.al. R. and Cummings. D. J. (1979). Clearing the tropical forest I: Effects on soils and micro-climate. Field (rops Research 2:91-107.
I.andon. J. R. (Ed.) (1991). Booker Tropical Soil Manual - A handloook for soil survey and agricultural land Evaluation in the tropic:s and Sub tropics. Longman Scientific \& Technical Inc., New York. pp465.

Leonard. R. E. (1967). Mathematical theory of interception In: International Symposium on Forest Hydrology (Eds. Sopper, W. E. and L.ull, H. W.). P'ergamon Press. ()xford. pp131-136.
I.conard. R. F. (19(1). Interception of precipitation by northern hardwoods. North castern forestry Ixp. Sitn. Paper Nol.59.16pp.
L.insley. R. K.. Jr. Kohler. M. A. and Daulhus. J. I.. II. (1988). Mrarohoge for Fingincers. Mc (ianw-Hill Book Company. I.ondon.
L.evton. L.. Revolds. E. R. S. and Thompson. F. S. (1967). Rainfall interception in lorest and moorland. In: International symposium on forest hadrologer.(I:d.

I.ull. II. W. (19(4). Fcological and sivicultural asper. In Handbook of applied hydrology. (Ed. V. T. Chow). McGraw Hill Inc. New York. Section 6.
I.undren. I. (198(0). ('omparison of surface ranoff and soil lows from remoff plon in forest and small scale agriculture in lisamhsara mountains. Forskningrapport is Naturgeagrliska inst. Uni. Stockholm. 97pp.

Mahoo. 11. (1092). Deforestation of a tropical humid rain forest and rexulting effects on soil properties, swfice and sulhwifface flow: water yuchit! and (rop) (valoforcmspiration. PhD Thesis. SUA. 220pp.

Mahoo, H. . Gowing. J. W. . Hatibu. N. , Kayombo. B. . Ussiri. D. A. N. . Wesseure. (i. (. L. and Young. M. D. B. (19)4). Rainfall-runoff model for rain water harvesting design in Tanzania I: Effect of surface and rainfall characteristics on runoff yield: In SADCC Land and Water Management Research Iroggram Conference Proceedings. pp 11.

Malchanov. A.A. (196.3). The hedrological role of forest. Isamel Program lor Scientilic Translations I.ad. S. Monson. Jerrusalem.
 Lisangu village irrigation project. Unpublished M.Sc. Dissertation. SUA Tamzania. 136 prp.

Merlec. M. (107.). Daily monitoring of the major lench dramage basins hy the water balance methed. WM(1) Bullerin 23:AN゚-5/.

Monteith . . L. and Szeicz (i. (1961). The radiation batance of bate soil and vegetation Quart. .Journal Roy. Metcorological Socicty 87:159-170

Mtakwal. P. W. , Lal. R. and Sharma. R. B. (1987). An evaluation of the universal soil loss equation and field techniques for assessing soil erosion on a tropical alfisol in Western Nigeria. Hydrological processes 1: 199-209.

Nalon. M. A. and Vellardi. A. V. C. (1903). Water budget study in the slopes of -Sera do Mar". Cubatao, Sao Paulo. Revista do Instituto - Florestal. 5(1): 3958.
()grossky. H. O. and Mockusi. V. (1964). Hydrology of Agricultural Lands In: Handhook for Applied Hydrology (V. T. Chow, Ed). McGraw-Hill Book Company. New York.

Okhlyabinin. S.D. (1913). Interception by tree crowns: Lesnoi - Zhurnal. No. 5.
Ojesi. S. O.F. (1997). The effects of rainfall and catchment characteristics on runoff pield in semi-arid areas of Tanzania. M.Sc. Agric. Eng. SUA.

Pacey. A. and ('ullis. A. (1986). Rain water harvesting: Rainfall and collection of runoff in rural areas. IT publication. Londen. I.K. pp458.

Pandey. A. N.. Pathak. P. ('.. and Singh. J. S. (1983). Water. sediment. and nutrient monowements in lorested and non forested catchment in Kumam limalaya.

I'rlices. M. . Naysmith. 1) and Me Dowall. (1989). Accoming lor slow drainage and hysteresis in irrigation scheduling. Irr. ici. 10:127-140.

Prathak. P. (C.. Pandey, A. N., and Singh. J. S. (1985). Apportionment of raintall in central I limalayan forests. Journal of Hadrologer 76: 310-3.32.

Pemman. H. L. (1963). Fegetation and Mratrologe: Tech. Comm. No. 53. Commonwealth Bureau of Soils. Harpenden. pp 124.

Pereira. H. C.. MeCulloch. J.S.G.. Hosegood. P. H.. Dagg. M.. Kerfont. (). and Pratt. M.A.C. (1962). Hydrological effects of changes in land use in some least Arican catchment areas. East Africon Agricultural Fores .Jomrnal. 27: 42-75.

Petersen. R.G. and Calvin. L. D. (Eds.) (1985). Soil sampling methods. In: , Wetherts of woil andlysis. Part I Physical and mineralogical properties. including statistics of measurement and sompling (Edited by Black. C. A. . Evans. I). D.. White. J. L. . Ensminger. L. E. and Clark. F. E.) American Society of Agronomy. Inc. . Madison Publishers. Wisconsin. pp 499-510.

Pilgrim, D. H. and Klaassen, B. (1975). Hydrograph recession constants for New South Wales streams. Civ. Eng. Trans. Inst. Eng. Aust. CE 17(1):43-49.

Racs. D. (1096). Incer liniversity Programme in Water Resonces engincering:
 1.cwen. 14.5pp.
 for examining the role of soils in combrolling wethershed performance Witer Resonvers Research $6(4): 115-123$.

Reii. (… Muller. P. and Begeman, L. (1988). Wener harvesting for phant production World Bank Technical paper no. 91. World Bank Washington I).(.ppl-1).

Reyonds. E. C. R. and Leyton. L. (1963). Measurement and significance of throughall in forest stands:In :Forest ecology und society symposinm No. 3 on Hater relations of plands. Oxford. pp 127-141.

Revolds. E. R. C. and llanderson. C.S. (1967). Rainfall interception by Beech. Larch and Norway Spruce. Forestry Jowrnal 40: 165-184.

Rose. I. (1984). Modelling evapotranspiration on hasis of individual trea. Nust. Division of Soils. Townsville.

Ross. P. J. (1990). SWIM: A simulation model for soil watar infiltration and monemem. C.S.I.R.O. Aust. Division of Soils. Townsville.

Rothacher. J. (1963) Net precipitation under Douglas fir forest. Forest Science ()(40:423-429.

Rowe. P. B. (1941). Some factors of the hydrologe of the Sierra Nevala food hills. Trans Amer Geophys. Un. 1: 90-100.

Rowe. 1'. 13. (190.3). Stram how increases alter removing woodland riparian regetation from a southern Califomia watershed. Jenmal of lomexty 61:36.5. 70.

Russel. I: W. (1962) Foreword in Hydrologieal D:fects of changes in land use in
 27 (special issue):1-2.

Rutter. A. I. (1972). Evaporation from forests. In: Resecherh papers in forest meremolugy. (Ed. Tayor. A. I.). Aberystwyih. pipis-9).

Ruter. A. S. (1963). Studies on the water relations of pinus relvertris in plantations conditions: I Measurement of rainfall and Interception. .Journal Ecolugs: 51:191-203.

Seotter. D. R.. (lothier B. F., and Turner. M. A. (1979). The soil water hatance in a Fragiapuarf and its effer on pasture growth in central New \%ealand. .has. . . Soril Rescerrch 17:455-465.

Singh. 13. and Szeics. G. (1978). The effect of intercepted rainfall on the water balance of a hard wood forest. Wetter Resources Research 15(1):1.31-138.

Sengele. N. (1981). Estimating potential evapotranspiration from a watershed in the I.oweo region of Zaire. In: Tropical Agricultural Hydrology: (Eds. Lal. R. and Russell, E. W.) John Wiley. New York. pp S3-95.

Shanan. L. Y. and Tadmor N. H. (1979). Micro catchments systems for arid zones development. Hebrew University. Jerusalem. pp 38
 I:hesivier. ()xford.pp33.
 539 p.

Sherodian. J. N. (1994).. Hydrograph time paramelers for tat land watersheds. Tirmsaction AS:1E: 37(1):103-113.

Singh. K. P. and Stall J. B. (1971). Derivation of hase flow recession curves and

Smedema. I.. R. and Ryerofi. D.W. (1983). Land Drainage. BT Bastford L.d... Iondom. 28.?p.

Sood. V. K.. Singh. R. and Bhatia, M. (1993). Throughfall. Stemflow. and Canopy interception in three hardwood tree species around Shimila. Indian .Journal of Forestry 16(1):30-44.

Soil and Water Management Research Project (SWMRP). (1993). Fvaluation and promotion of rain water harvesting in semiarid areas of Tanzania. 1" interim ammal report. SUA. Morogoro. pp 44

Soil and Water Management Research Project (SWMRP). (1905). Field and laboratory mamual. SUA. Morogoro. pp 44

Stamhill. (i. (1961). A comparison of methods of calculating potential evapotranspiration from climate data. Isrocel .Journal of Agric: Research. 11: 159-171.
 Statistical Service (entre, University of Reading. Whiteknights. Reading. IK. 380.

Šabo. M. (1975). Net precipitation in a Hungarian oak forest ceosestem. Acfa. Bor. Acd. Sci Hums Tomus 21(1-2):151-165.

I:alor. II. M.. Robersom. (i. M. and Parker. J. I. (190) Sail strength - roon pentration for medimn to conarse cextured soil materials. Soil Sci 1022: 18-22.

Temple. P. II. and Sundeborg. A. (1972). The Rufiji River. Tanzania: Itydrologe and Sediment transport studies of soil erosion and sedimentation in Tanzania. (icografiska Amaler. $54 \mathrm{~A}(3-4)$: 345-368.

Tinchendord. W. (i. (1969). Tracing storm flow to varing sonnce area in a small forested watershed in South Eastern Predmom. Unpublished PhD I Dissertation. University of (ieorgia 114pp

Thompson. F. B. (1972). Rainfall interception by oak cappice (()uercus rohur (.) In: Research papers in Forest meteorology. An Aheswstwyth swmposiam (hased (m sumpoximm FIll) (Ed. Taylor, J.A.). Abesystwyth.

Thornthwaite. C. W. (1944). Report of the committee on transpiration and evaporation. 1943-1944. EOS Trams. AGU 25:686-693.

Tindorov. A. V. (1977). Guide book for Meteorological observations. East African Meteorological Department. Nairobi. pp 46.

Ursic. S.I. (19S()). Water management - an integral element of forest management planing. In Procesdinge of Souharn Forextry Simposinm. Nowember 19-21. Alanta. ()klahoma state (iniversity.

URI. (197()). Nalas. linited Republic of Tanzania. (2me 1 :d). (iosermment of Tanzania, Dar es Salam.

HsbA. Soil Conservation Service. (1972). National Engincering llandhook.

Walkman. S. R. and Skages. R. W. (1994). Sensitivity of water management models For determining soil hydraulic properties. Transaction ASAE: 37:37: (1) 9 -10.

Wigham. I. M. (1970). Interception. In :Ihandhook on the Principles of My. Wrology.(Ed. Gray, D.M) Water Information centre. Inc., Port Washington .IISへ.

Wikeock. D. (1979). The hydrology of peatand catchment in Northern Iretand following channel clearance and land drainage. In: Xans impote on the hedrological cyche in the Linited Kingelom. (Ed. Hollis. G. E.) (ien-Abstracts L.td. Nowwich. England. pp278.

Willis. G. L... Bourdo. E.A. and Crowther. C'R. (1975). Throughfall and stemflow in a Northern hardwood forest. In: Research Note 16. Michigen Techmolagical Liniversity: Ford forestry centre. Lanse. Michigan 49946. 12p.

Wilm. II. (i. (1943). Determining net annual rainfall under conifer forest. Journal of Agric: Resectrch. 67: 501-502.

Wich. (. I.. (1967). Conclusion from South African multiple watershed experiments. In: Inconational sympasiam on forest llydrologey . M:diled hy Sopper, W.İ, and I.ull. II. W.), Pergamon press. ()xford. ppos-178.
 R. M.) Vol 23:38-3\%.

Wi.l(). (1979) Report on the application of catchment models and flood risk in contral America In: ItMo hullefin (İds. Taba. H. and Pery. R. N.) Vol. 28:56-59.
/inke. P. J. (1ツ67) Forest Intereption Studies in the United states. In: International Nimposium on forest hydrologl:((Fdited by Sopper. W.E: and Lull. II. W.). Pergamon press. Oxford. ppl63-178.

APPENDICES

Appendix A：Equations for generating infiltration curves

SIIC	lintiluthmon tile	Cumblatise inliluration	Sile	Intiluralimerate	Cimmatame imiltraturn
1	\bigcirc ソ5 5パ－11103		28	Y－9．4（10－1）．1227	
\geq		Y－15 $511 \mathrm{n}(\mathrm{N}) \cdot 1 \mathrm{~K}$－ 0	2）	Y－312．3c－01125	
；			31	Y－1160－10009，	
1	Y $011: 36-110715$		il	y－リリ．7c－0．0．	
；	Y－79．1．ic－11） 122 x	$\mathrm{Y}=1.1 .961 . \mathrm{n}(\mathrm{S})-20.07$	32	$Y=01.270-1) .021$	Y－11011n（い）－9 8
（	$Y=26670-1100035$	$\mathrm{Y}=2.91 \mathrm{n}(\mathrm{N})-12$	31	$Y=76.6 S c-0.0223$	
7		$Y-116.671 n(x)-11.7$	i4	$Y=9.4 .250-10.122010$	$y-15241 \mathrm{~m}(\mathrm{~s})-1 \mathrm{x} 15$
\cdots	$y=11110-1018 \mathrm{x}$	$y-7.451 n(x)-7 \mathrm{sz}$	35	$\boldsymbol{Y}=305 \mathrm{Sc}-0.117 \mathrm{y}$	
1）	$y=4.060 .1102 \mathrm{x}$		\cdots	Y－J99960．015	
111	$y=28$ cisc－11．019		37	$Y=55.460-0.025 x$	$\boldsymbol{Y}=\mathrm{S}+2 \mathrm{ln}(\mathrm{N})-7.5$
11	$Y=42.8 x-10023 x$	$Y=7.501 . n(x)-6.11$	38	$Y=6.940-0.016$	$广=15.37 \mathrm{n}$（1）－1943
17	$y=0.1 \leqslant 10.0 .02 \mathrm{x}$	ソ－1211nパー1302	3）	$\boldsymbol{Y}=76$ S®e－1）	Y－15－81 m（ ）－
1 ；	）－ $11.0 .10-11021 \mathrm{x}$	Y－7．171n（い）－5．1	41	$Y=30.64 e^{-10.12)}$	Y 15
11	\cdots \％ 01.47 c －11019x	$Y=12181 \mathrm{n}(\mathrm{l})-1293$	41		
15	$y=50(070-1) .1025 x$	$Y=0+4 \mathrm{nc}(\mathrm{l})-600$	42	$Y=324 \leq-0.025$	
16	$y=3510 \times-1022 x$	$y-5.521 n(x)-+15$	43	$Y=87.560-11.0125 x$	$\mathrm{r}=1+411.0(0)-16.14$
17	Y f（ 6 （0．4－$-10124 x$	$y=6.701 .11(x)-4.8 .3$	14	$Y=82.715-0.018$,	r－ $182010 n(v)$－ 2.494
18		$y=14161 . n(x)-15.36$	45	$Y:=65.07 c-0.022 \mathrm{x}$	$Y=11621 n(x)-1.13$
11		$y=7.941 . n(x)-7$（ 0	41	$Y=52.17 c-0.012 \mathrm{~V}$	$Y-14.151 n(v)-1951$
20	Y－ 3 B．02－1019x	$y=5.4 L 01(x)-3 \mathrm{~S}$	47	$y=93.50 c-6.0214$	Y－175（1）n（v）－2125
≥ 1	Y－45 $710-10.022 \mathrm{x}$	$Y=7910(x)-8.16$	45	$Y=91.440-0.017 \times$	$Y=21701 n(\bigcup)-2625$
12	$y^{\prime}-48.440-11025 x$	$Y^{\prime}=7.151 n(x)-6.2$	．19	$Y=98 . S k$－0．0127x	$y=150.31 . n(1)-1 \times 24$
$2:$	$Y=474(5-1) 016 x$		50	$\mathrm{Y}=70.35 \mathrm{c}-11.018 \mathrm{x}$	$y=105.46 .17(x)-21.92$
2.1	$y-(4.35 \mathrm{c}-1019 \mathrm{x}$	$y=12681 n(x)-1+.27$	51	$Y=70.100-0.022 \mathrm{x}$	Y－ $14501 n(x)-15077$
25	Y Y（10．78c－0．010x	$Y=12.771 . n(x)-13.35$	52	Y－．11．77e－0．018x	
2		$Y^{\prime}=15.731 \mathrm{n}(\mathrm{x})-19.21$	53	$Y=6.312 c-10.015 \times$	$\boldsymbol{r}=15$（ral．10（v）－219．4
27	Y－75 IScolor	$r=14.3+1.11(x)-14.11$	5.1	Y $=00.330-0.0075 \mathrm{~s}$	$r=4: 501010$－Ki．i． 7

Appendix B: The Summary of Climatic Parameters of Bomalang'ombe Weather Station

Year	1993/94											
Climatic parameters	Jun-93	Jul-93	Aug-93	Sep-93	Oct-93	Nov-93	Dec-93	Jan-94	Fcb-94	Mar-9.4	spr-9.4	May-9.4
Mean Temp (oC)	11.8	10.7	13.5	14.5	15.4	16.2	16.6	16.9	16.2	16.1	15.0	13.6
Mean RH\%	89.1	87.8	84.6	84.0	86.0	84.9	89.3	88.1	90.7	92.4	92.3	92.9
Mean radiation W/m2	159.8	159.3	166.3	228.2	231.2	24.4.2	204.7	199.4	149.5	169.1	167.6	117.8
Mcan wind speed (m / s)	1.29	1.52	1.87	1.93	1.82	1.71	1.30	1.09	1.01	0.66	1.25	1.34
Total rainfall (mm)	7	8.7	10.4	5.3	33.6	26.4	92.7	187.2	179.3	3.46 .8	1.42 .0	153.5
ETo. (mm)	55.86	58.5	61.7	106.2	142.0	109.5	108.1	103.7	73.2	85.3	77.4	56.4
Duration (hr)	0.73	4.29	4.0	2.42	7.0	3.8	3.0	4.70	4.42	8.90	3.56	5.21
Intensity ($\mathrm{mm} / \mathrm{hr}$)	9.65	2.03	2.61	2.25	4.80	6.90	30.97	39.92	40.58	38.87	39.87	29.45
Ycar						1994/95						
Climatic parameters	Jun-94	Jul-94	Aug-94	Scp-94	Oct-94	Nov-94	Dec-94	Jan-95	Feb-95	Mar-95	Apr-95	May-95
Mean Tcmp (0C)	12.0	11.5	12.0	13.4	15.1	15.8	16.4	17.0	16.6	16.3	15.4	13.9
Mcan RH \%	88.3	88.6	90.0	86.3	88.3	84.5	90.4	88.6	88.3	89.0	916	89.8
Mcan radiation W/m2	181.6	146.1	146.4	195.3	172.9	209.9	20.4 .9	181.9	171.3	193.3	$1+1.1$	128.7
Mean wind speed (m / s)	1.39	1.54	1.62	1.81	1.81	1.59	1.33	1.04	0.91	0.75	1.10	1.31
Total rainfall (mm)	1.4	10.5	13.8	6.3	42.6	14.4	177.5	176.7	12.40	226.4	262.5	96.3
ETo. (mm)	70.1	62.8	67.6	89.7	90.0	10.4.1	103.6	96.5	82.7	96.6	69.4	61.9
Duration (hr)	0.16	5.02	5.42	3.05	10.95	6.34	+. 49	4.1	2.95	5.65	6.9	3.55
Intensity (mm/hr)	8.52	2.09	2.15	2.06	3.89	7.02	39.5	40.02	41.91	40.01	38.35	27.40
Year						1995/96						
Climatic parameters	Junl-95	Jul-95	Aug-95	Scp-95	Oct-95	Nov-95	Dec-95	Jan-96	Feb-96	Mar-96	Apr-96	May-96
Mean Temp (oC)	12.4	11.5	12.6	13.5	15.0	16.4	16.8	16.8	16.5	16.6	14.7	13.8
Mean RH\%	87.1	89.2	88.3	87.0	86.7	85.3	88.1	88.4	90.3	88.7	91.2	91.3
Mcan radiation W/m2	171.2	146.6	171.9	208.4	228.3	258.3	20-1.6	200.1	16.1 .5	185.6	126.4	114.5
Mcan wind speed (m / s)	1.09	1.43	1.65	1.67	1.80	1.85	1.27	0.82	$0.6-4$	0.83	1.28	1.28
Total rainfall (mm)	1.8	5.0	40.2	15.5	18.4	6.1	153.9	131.5	286.8	182.6	366.8	160.5
ETo. (mm)	65.8	63.7	77.1	92.9	110.9	12.4 .5	105.7	102.5	80.9	9.46	62.7	56.7
Duration (hr)	0.2	2.7	16.08	6.25	3.79	0.89	3.87	3.36	6.86	4.67	9.1	5.92
Intensity (mri/hr)	8.87	1.85	2.50	2.48	4.86	6.80	39.8	39.69	41.85	39.92	38.87	27.64

APPENDIX C: Probability of exceedance and return period.

Appendix C-1: Monthly Rainfall probability of exceedance and return period

p	Tr	93/94	94/95	95.96	96i97	97,98	98,90
0077	12987	34678	26254	366.78	300.33	49.46	30975
0154	6.4935	18721	22639	286 79	24942	4112	3019
0231	4.329	179.33	177.51	18257	20923	3112	225
0.308	32468	153.49	176.71	160.54	168.84	210 S	2153
0.385	2.5974	141.97	123.99	1539	55.124	1608	18055
0462	2.1645	92.71	96.32	13146	47.44	154.3	13355
0538	1.8587	33.60	44.424	40.174	15.952	71884	50.06
0.615	1.626	26.44	42.602	18.37	15.944	43814	3002
0.692	1.4451	10.40	13.823	15.538	4.941	412	102
0769	1.3004	8.70	10.884	6.05	2216	1.4726	8.4
0846	1.182	7.00	6258	5034	1614	1352	$7+1$
0923	1.0834	530	1.41	1814	0	585	66

P. Probabilitv of excecdance
Ir Return Period
Appendix C-2: Monthly evapotranspiration probability of exceedance and return period

p	Tr	$93 / 94$	$94 / 95$	$95 / 96$	$96 / 97$	97.98	$98 / 09$
0077	12987	142	1041	1245	12535	10424	13884
0.154	6.4935	1095	1036	1109	11835	10006	120.62
0231	4.329	108.1	966	105.7	11305	9854	11697
0.308	3.2468	1062	96.5	102.5	9948	952	10521
0.385	25974	103.7	90	946	931	9497	10214
0.462	2.1645	85.3	89.7	92.9	93	8656	10012
0.538	1.8587	77.4	82.7	809	91.8	85.11	934
0615	1626	73.2	70.1	77.1	80.09	84.06	88.2
0.692	1.4451	61.7	69.4	65.8	74.99	7873	7086
0769	1.3004	58.48	67.6	63.7	66.7	77.23	69.57
0846	1.182	56.4	62.8	62.7	65.82	63.62	68.5
0923	1.0834	$55 . S 6$	619	56.7	60.2	55.92	63.55

P : Probabilitv of excecdance
Tr : Return Pcriod

Appendix C- 3: Monthly rainfall intensity probability of exceedance and return period

P	Tr	$93 / 94$	$94 / 95$	$95 / 96$	$96 / 97$	$97 / 98$	$98 / 99$
0.077	12.987	40.58	41.90	41.90	39.00	45.40	48.30
0.154	6.4935	39.90	40.00	39.90	38.60	39.90	41.90
0231	4.329	39.80	39.20	39.80	38.50	39.80	4090
$0.30 S$	3.2468	38.90	39.00	39.60	38.30	39.70	4080
0.385	2.5974	30.90	38.40	38.80	37.80	35.70	3870
0.462	2.1645	9.40	27.40	27.60	25.30	27.40	27.40
$053 S$	1.8587	6.90	7.50	8.90	8.70	6.70	8.70
0.615	1.626	2.60	2.20	6.80	6.70	5.90	6.70
0692	1.4451	2.30	2.10	2.60	2.80	4.70	2.90
0.769	1.182	2.20	2.08	2.40	2.80	4.60	2.80
0.846	1.0834	2.00	2.05	1.90	0.10	2.10	2.00
0.923						2.00	1.80

P: Probabilitv of exceedance
Tr : Return Period

Appendix C-4: Monthly rainfall duration probability of exceedance and return period

P	Tr	93/9.4	94/95	95/96	96/97	97198	98/49
0.077	12.987	8.90	10.90	16.08	7.70	26.15	27.83
0154	6.4935	700	6.90	9.42	6.60	12 IS	102.1
0.231	4.329	5.20	6.40	691	550	1101	830
0308	32468	4.70	63.4	631	4.40	1030	7.35
0) 385	2597.4	4.40	5.70	5.95	330	780	535
0462	2.16 .45	4.30	5.21	4.72	240	700	490
05.38	1.8587	400	4.52	3.91	230	650	450
0.615	1.626	380	4.41	380	1.92	600	430
0692	1.4451	3.60	360	3.45	1.55	5.10	120
0769	13004	300	3.15	275	065	4.00	210
0846	1.152	240	3.02	0.90	0.35	1.55	080
0.923	1.0834	0.73	0.16	0.15	0.00	132	020

P. Probabilitv of excecdance

Tr Relurn Period
Appendix C-5: Total runoff (TR) probility of exceedance and return period

Prob of Exc	Tr	93/94	94/95	95/96	96,'97	97,98	98i99
0077	12.987	53.02	3329	49.01	4923	592	5787
0)154	64935	4.54	32.65	39.5	41.92	51.17	47.98
0.231	4.329	42.71	30.86	33.56	36.77	4509	4425
0.308	3.2468	42.5	2912	31.88	3155	4282	39.6
0385	25974	35.65	28.76	301	31.19	40.08	37.98
0462	21645	34.259	28.29	26.69	3003	3983	36.38
0.538	1.8587	3391	27.02	264	3002	3293	33.42
0615	1.626	33.82	26.907	25.25	2935	3202	32.03
0692	1.4451	32.94	26.4	24.91	2902	30.95	31.8
0.769	1.300 .4	31.706	25.95	24.51	2801	27.69	3037
0.846	1.182	31.66	25.54	23.55	27.6 .1	27.5	3007
0.923	1.0834	29.14	24.51	15.58	25.57	2657	2828

P : Probabilitv of excecdance
Tr Return Period
Appendix C-6: Direct Runoff (DRO) probability of exceedance and return period

Prob of Exc	Tr	$93 / 94$	$94 / 95$	$95 / 96$	$96 / 97$	$97 / 98$	$98 / 99$
0.077	12.987						
0.154	6.4935	23.03	10.93	159	15.52	31.47	16
0.231	4.329	1533	10.72	14.96	14.96	20.58	15.36
0308	$3.246 S$	11.7	8.3	6.69	14.5	17.99	11.61
0.385	2.5974	7398	5.5	5.91	6.83	9.92	7.59
0.462	2.1645	6.87	5.27	5.62	2.24	9.01	6.94
0.538	1.8587	6.32	4.56	4.29	1.35	568	3.495
0.615	1.626	4.61	3.6	2.04	0.75	4.2	222
0692	1.4451	4.44	2.82	1.24	0.69	305	1.81
0.769	1.3004	1.56	0.37	0.83	0.64	1.42	1.51
0.846	1.182	1.17	0.31	0.63	0.32	0.59	1.47
0.923	1.0834	1.12	0.11	0.27	0.21	0.47	1.35

P: Probabilitv of exceedance
Tr : Return Period

Appendix C-7: Base flow (BF) probability of excecdance and return period

Proh of Exc	Tr	93/94	9.1/95	$05 / 9 \%$	96/97	97\%)	$98 / 90$
0.077	12.987	51.16	2872	.33\%	3.4.53	3563	.1187
01.54	6.4935	43.37	28 IK	33.11	3.3.71	. 3181	41031
0.231	4.329	42.07	26.597	26.16	29.82	3155	350.3
0.308	3.2468	31.21	25.59	25.97	29.35	3151	32.6 .4
0.385	25974	30.586	25.17	24.08	29.27	3059	31.2
0.462	21645	29.3	24.99	2.1.01	28.7	3036	310.4
0.538	18587	27.5	23.58	23.41	27.42	3016	3075
0615	1.626	26.861	22.46	23.32	27	27.73	29.90
0692	14451	2607	2235	2247	2666	27.1	28.56
0769	1.3004	19.47	21.72	22.11	24.58	2616	26.875
0.846	1.182	17.44	1901	18.6	2.4.72	246.4	26.81
0923	1.083.4	16.33	18.4	1531	16.23	21.82	24.24

P Probability of execedance
Tr . Renurn Period

Appendix C-8: Water balance probility of exceedance and return period

Prob of	Tr	$93 / 94$	$94 / 95$	$95 / 96$	$96 / 97$	$97 / 98$	$98 / 99$	Average
0.08	12.99	21898	160.49	255.07	158.93	364.70	153.73	218.65
0.15	6.49	76.99	96.50	172.33	125.20	279.55	131.63	1.47 .03
0.23	4.33	6144	51.09	6426	97.95	151.9 .1	64.78	81.91
0.31	3.25	51.85	46.89	5609	18.94	75.52	48.18	49.58
0.39	260	30.66	15.34	18.10	-55.15	23.01	23.31	921
046	2.16	-49.65	356	2.56	-85.94	22.56	-0.18	-17.85
054	186	-9340	-7380	-62.18	-88.00	-39.87	-4881	-67.68
062	163	-94.01	-80.61	-74.25	-91.79	-45.04	-65.33	-75.17
069	1.45	-102.80	-80.68	-90.68	-106.08	-75.86	-93.20	-91.55
0.77	130	-116.88	-84.19	-101.87	-119.13	-80.91	-100.64	-100.60
085	1.18	-132.61	-97.45	-117.44	-121.15	-10254	-122.01	-115.53
0.92	1.08	-141.34	-10898	-142.00	-134.97	-119.26	-142.98	-131.59
P								

P: Probability of excecdance
Tr : Return Period

Appendix D：Daily Throughfall（T），Stemflow（S）and Interception（I）

Appendix（1）－I：Acrape daily throughfall（T），stemflow（S）．interception（1）gross rainfall（1＇） for plot 1

1）in	Timmans				March				April				140，			
	P	1	S	1	1	1	\leqslant	1	P	1	\leqslant	1	1	1	\leqslant	1
1	21.4	13.4	117	5.85	${ }^{1}$	0	0	$1)$	12.3	8.23	0.7 .4	3.3	14s	10.4	0.74	： 6.5
2	11	0	1	1	11	1	1	0	S． 3	Sis	10.11	2：1	15.5	10.5	1117	： 0.4
；	＂	0	1	1	1	1	11	0	17.6	118	1.06	476	1.4 .7	111：	（1．79	： s
4	11	${ }^{1}$	11	1	11	1	11	11	15.3	11.7	11.8 .4	3.8	1	11	0.11	11.57
；	11	1	11	11	1	11	11	1	18.6	12.9	1.117	46.5	15	10．61；	いい2	10.85
6	1	0	11	1	24	1.18	11.1	1.11	3.2	1.52	0.16	1.53	11	0	$1)$	10
7	11	0	1	11	111.1	6.77	（1．54	2.75	2.1	11.72	（1．13：	1.25	11．2	7．13	0．6\％	3.4
K	21	11	117	5 si	214	12.8	11.92	7.73	3.3	1.6	11.17	1.55	10	11.1	1.11	3.79
${ }^{1}$	11	0	1	11	21.7	13.1	11.92	7．65	4.3	2.48	11.19	1.6 .5	11	11	11	11
10	11	11	1	11	1.4 .7	10.4	0.6 .4	3.71	8.1	0.15	10.4	1.65	X	5.57	0.36	1.78
11	21.9	$1+2$	12	6.48	$1+.6$	9.95	0.6 .3	4.12	2．4．9	17.5	1.81	5．58	11.4	7.28	11.60	3.45
12	0	11	1	$1)$	1.1	0.43	0.01	0.65	S．2	5．1．	0.35	267	20	13.4	1.25	5．3n
13	0	11	0	1	12.8	822	0.53	4.106	9.3	6.13	（1．3）	2.77	$1 .:$	0.5	0．112	11.75
1.4	1	11	＂	11	10.1	6.13	11.5	3.23	1－1．4	10.2	11.78	3.47	1	0	11	0
15	11	11	11	11	12.4	732	0.5 .4	＋1．5．4	1	0.42	0.01	0.57	1	1	11	1
16	11	1	11	0	2.3	1.35	0.1	0.85	3.3	2.15	11.16	1.15	1	11	1	1
17	1	0	1	0	0	$1)$	0	11	5.2	2．7．3	0.21	2.26	1	1	0	11
18	0	1	1	0	0.5	0.28	0.01	0.21	8.6	5.17	0.12	3.12	1	11	0	11
19	7 \％	518	1.2	2.41	0.5	0.27	0.01	0.22	29.4	21.6	236	5.41	1	11	11	11
20	111	2s	2.66	887	s．6	5.25	10.41	2.9 .4	3.7	2.10	0．16	1.51	2	1．113	0.112	11.95
21	20.7	1.1	1.17	6．12	s． 7	55	11.41	2.79	8.2	6.23	0．3．5	1.62	11	11	11	11
22	11.7	0.3	0.01	0.36	1．4．1	10.5	0.57	3.01	8.3	5.27	（0．3）	2.65	11	0	0	1
23	0		0	1	2.6	1.57	0.17	0.86	38.8	27.5	2.87	8.45	11	11	$1)$	11
24	0		0	1	5.3	2.15	0.25	2.9	27.8	20.6	2.16	5．116	0	1	11	$1)$
25	16.8	12.2	0．ケ	3.62	5.4	2.17	0.27	2.97	8	5.87	0.36	1.78	11.8	7.97	0.72	3.11
26	7	4.73	0．1s	2.18	8.6	5.45	0.35	2.8	5.2	2.63	0.2	2.36	11	0	0	1
27	20.6	12.8	1.16	6.66	2.4 .7	18	1.24	5.49	11.2	7．13	0.66	3.4	0	0	1	11
28	1	1	1	$1)$	6.8	4.77	021	1.52	4.2	2.4	11.18	1.62	1	11	0	11
29					0	1	0	0	27.1	19.9	2.16	5．06	6	5.03	0.19	0.77
30					15.6	11.8	0.94	2.91	7.2	5.33	0.21	1.66	S	5.87	0.36	1．78
31					6，4．8	46.8	2.18	15.8					2	1.03	0.02	0.95
Tolal	177	119	9.91	18.3	290	192	12.5	85	3.47	2.37	21.3	Ss．9	145	98.8	8.04	38.4

Aphendix 1）－2：Average daily thronghfall（T）．stemfow（S），interception（I）gross rainfall（1） fir plot 2

1）N	1 1－brames				March				April				Mas			
	1	1	\checkmark	1	1	1	s	1	1	1	\leqslant	1	1	T	\checkmark	1
1	191	$1: 2$	051	5.61	11	11	1	11	1；：	K2S	1125	1.77	14	91s	いご	16.5
2	11	11	11	11	11	＂	11	1	x2	8	11．16	S．4\％	16.5	8．6．5	＂24	－¢
；	11	11	11	1	11	11	1	10	15.2	9.6 .5	0.28	5.27	1.32	K．3：	1125	462
4	1	0	11	11	11	11	0	11	3.6	2.12	11.06	1.43	$2 . .3$	1.27	（1）（1）	いい
；	11	11	11	1	1	11	1	11	19.1	12.2	10.55	6.32	2.6	1.15	1115	11
6	11	1	11	11	11	11	11	11	：	1.75	0．0\％	1.19	11	11	1	11
7	11	11	11	0	82	48	0.15	3.25	1.1	10.45	0.102	11．63	\＄． 1	1.8	11.5	115
8	211.7	13.7	11.6	6.38	8.2	4.55	1.15	3.2	3.4	2	0.106	1.3 .4	11	11	0	11
＂	11	1	11	1	9．：	1.93	0.18	4.19	4．3	2.5	00\％	1.7	11	11	11	11
10	11	1	11	0	10.3	5.9	0.22	4.18	s． 1	5	0.15	2.95	2.5	1.75	0.06	（1．ソ）
11	263	13.3	1106	6.36	15.2	9.48	0．28	5.4	25.9	15.8	0.7	9.4	1.6	2.73	1．16，	1.8
12	${ }^{1}$	${ }^{1}$	11	1	12	055	11.13	115	6.1	3．52	（1，（1）	2．74	11	6.85	1123	－19
$1:$	＂	1	11	1	236	18.4	$11 .(1)$	6.51	リン	53	11.18	3．71	2.1	1.3	い15	1
14	1	$1)$	11	1	9.1	5.25	11.15	3．97	1．4：	9 ¢0，	127	4.95	1	11	11	0
15	11	1	11	11	$1:$	889	${ }^{112.2}$	3 st	1.1	11.45	11.103	0.12	11	11	1	11
16	11	11	11	1	38	2.22	0.05	1.53	3.2	1.6	0.06	1.34	11	11	11	11
17	11	11	0	1	11	11	1	$1)$	4.2	2.43	0．06，	1.71	11	$1)$	11	11
18	11	${ }^{1}$	11	0	1112	727	022	272	8.6	5.3	0．16	3.14	11	1	1	1
111	8	503	0.25	2.71	06	11.25	0.02	0.33	19.5	12.7	0.6	6.16	11	11	$1)$	1
21	2 S ．	210.4	0.83	$7 . .34$	11	1	0	1	3.7	2.32	10，	1.32	1.8	1187	11.17	10.86
21	1.57	122	0.57	5．\％	63	3.3	0.09	2.91	8.3	512	0.15	3.103	11	0	11	11
22	15	123	0.11	026	13.3	8.33	0.25	4.72	8.2	5.107	0.15	2.95	0	11	11	0
23	11	11	0	1	5.1	2.78	0.07	2.24	38．8	26.4	0.96	11.4	11	0	11	1
24	11	1	$1)$	1	0	$1)$	0	1	27.8	21.4	11：90	5.61	11	11	11	11
25	11.5	6.47	11.32	1．72	S． 2	5.4	0．16	2.64	7.1	1.2	（1．10）	2.81	11	1	11	11
26	7．9	4.17	0.25	3．18	25.5	18.6	10.7	6.14	5.2	3.15	0.107	1.98	S．8	5.4	0.15	3.25
27	22.2	15.6	11.65	5.93	6.2	3.72	0.1	2.39	11.1	6.85	0.23	＋．102	0	0	11	1
28	1	0		0	7.9	4.23	0.15	3.51	4.2	2.55	0.07	1.58	11	0	$1)$	11
29					11	0	0	0	27	19.9	0.73	6.37	12.2	7.35	11.22	4.63
30					12.4	6.92	0.23	5.25	4.2	2.63	0.107	1.49	9	5.32	1.17	3.52
31					$6 \times .5$	＋4．7	1.15	22.7					2	0.97	0.08	0.96
Total	158	105	4．7．4	$4 \mathrm{~S} \cdot 4$	268	171	5.31	92.4	317	205	7.17	105	111	66.2	2.2	12.9

Appendix D－3：Average daily throughfall（T），stemflow（S），interception（I）gross rainfall（I） for plot 3

Dive	Fehruars				March					April				A 1.			
	1 ＇	1	\checkmark	1	1		1	S	1	P	T	S	1	1	1	$\stackrel{\square}{ }$	1
1	23.4	14.5	11.42	3.51	1		11	${ }^{1}$	＂	17.8	$1+.6$	11.44	2.48	17.8	1.19	114.1	24
2	0	11	11	11	11		11	0	1	11.2	7.23	0.137	3.1	18.5	15.1	11.4	2.97
3	11	11	11	11	1		11	11	0	9.5	7.12	11.1	237	17.7	1.4 .7	11.4	2.5
1	11	11	11	11	0		1	11	1	8.8	6.9	0.27	1.6 .3	1.5	11.8	1111	（i．？
5	11	11	11	1	1		11	$1)$	11	9.8	7.4	11.11	2.09	？	115	001	11．91
6	11	11	0	11	7.7	5	15	1014	2.11	7.8	5.32	112	2.26	11	＂	11	11
7	11	1	0	11	8リ	6．：	is	0.15	2 n	11	11	11	11	14.2	x 11.	1：7	5．9
8	25.8	い9	0.1	5世	$1)$	1	1	0	1	s	5.17	0．23	2.6	211	150	11.4	3.1
${ }^{\prime}$	11	1	0	0	1	1	1	0	11	1	1	11	11	11	11	＂	1
10	11	11	11	1	38.7	25	5.7	0．s6	12.1	27.5	20.1	0.55	6．9）	6	1	114	1.96
11	27.9	$2-13$	11.4	3．16	25.8		1.8	1155	4.45	11.5	6.85	11.37	4.25	9.4	6.2	いご	2.91
12	1	1	1	1	9.7		73	0.28	1.69	3.5	1.15	0.01	2.0 .4	18	15	114	2
13	11	1	11	11	2 S .8		1.7	1101	6.51	13.8	7.78	0.107	5.65	1.1	10.65	いい1	11.14
1.4	11	11	11	11	0	$1)$	1	0	1	3.4	1.38	11.101	2	11	11	1	11
15	11	1	11	11	210.4	15	5.9	0.54	4	2.2	1.18	0.101	1	1	11	11	11
16	11	11	11	1	11.2	7.2	25	0.3	3.65	2	1.15	0.01	0．9．4	0	11	11	1
17	3	182	1	1.18	0		0	0	0	3.1	1.33	0.01	2.05	0	11	1	11
18	11	11	11	0	1	1	$1)$	0	1	0	11	0	11	${ }^{1}$	11	1	1
19	6.4	45	11.15	2.24	19		4.4	11.43	4.22	6.5	12	1101	2.26	1	11	11	11
211	27	231	10.18	3.45	1－4．s	9．t	12	0.32	5.17	5	3.77	11．11．	1.2	2.4	1.22	1111	1.17
21	11	732	0.3 .4	2.3 .4	11	1	＇	1	11	6.7	4.55	0.113	2.12	＂	11	11	11
22	11	1	${ }^{1}$	11	12	7.6	6.3	13.3	4.107	12	6.97	10.38	4.65	0	11	11	11
23	11	11	1	1	4.8	3.2	23	0.08	1.49	17	13.2	0.43	3.3 .4	11	11	11	1
2.4	0	1	$1)$	1	1	0	1	0	1	2	1.15	0.01	0.8 .4	1	1	11	1
25	198	155	11.14	3.85	11	7.3	37	0．24	3.34	3.5	1.52	0.101	1.97	97	7.12	11.1	2.27
26	27	22.7	0.18	3.8	13.8	S． 1	13	0.3	5.37	11.5	6.62	11.30	4.8	1	11	11	0
27	255	18.4	0.15	9.167	9.8	7.8	ss	0.25	1.64	9.2	6.2	11.29	2.71	11	11	11	1
28	11	11	11	11	0			0	$1)$	9.8	7.25	0.32	2.23	$1)$	11	11	11
29					12.4	7.5	52	0.4	4.49	9.9	7．23	0.32	2.35	5.6	3.75	1103	1.82
311					ミ9．5	26.	1	$0 . \mathrm{SK}$	12.6	IS	14.1	0．1）	3.49	7.7	5.15	11.14	243
$\therefore 1$					20.4	15.	． 7	11.55	4.15					17	$0 \cdot 5$	11.11	11.74
Total	196	157	3.67	35.7	309	21	S	7.22	\＄3．6	252	172	6.18	74.2	153	114	343	35.7

Appendix D-t: Average daily throughfall (T), stemfow (S), intereeption (I) gross rainfall(I) for plot 4

IMa!	lichruary				March				April				Mix			
	1	1	s	1	1	1	S	1	1	T	\checkmark	1	1	1	\checkmark	1
1	214	14.4	11.67	6.3	1	$1)$	1	1	18.5	12.7	0.7	5.18	16	9.12	0.16	6.13
2	11	0	11	1	0	0	0	0	11	5.78	0.34	4.8 .3	18.5	12.7	11.7	5.14
3	0	$1)$	11	$1)$	11	11	1	0	98	5.73	0.2 S	3.78	15	8.8	0.15	5.75
4	11	0	0	11	0	11	11	0	9.7	5.6	0.28	3.82	1.8	1.17	0.6m	11.57
5	0	1	0	${ }^{1}$	11	11	11	1	8.5	5.65	11.26	2.54	2.2	1.2x	U.10	11.54
6	11	0	1	0	7.7	5.55	0.11	2.0 .4	8	5.32	0.27	2.41	11	0	11	0
7	0	$1)$	0	11	9.7	6.82	0.27	2.62	0	11	$1)$	0	9.8	6.0.3	1128	3.14
S	26.5	20.4	0.75	560	1	11	0	$1)$	${ }^{1}$	5.47	11.27	326	81	5is	112%	こり5
${ }^{\prime}$	11	11	0	1	1	11	0	11	11	11	11	1	11	11	1	11
10	11	11	$1)$	1	87.5	288	1.2	17.5	27.5	19.2	0.8 .4	7.5	2.8	1.15	01	125
11	27	19.9	0.75	6.32	19.5	13.1	0.65	576	18.5	12.6	0.71	5.17	4.4	2.3	1.1	2.1
12	0	$1)$	1	11	6.6	4.78	0.1	1.72	2.8	1.23	0.09	1.48	11	0.2 S	0.29	3.13
13	0	$1)$	1	0	27.7	20.1	0.78	6.55	21.2	16.3	0.7	4.23	2.1	1.2	u.18	0.12
14	11	1	1	0	0	1	$1)$	0	4	2.27	0.019	1.6 .4	0	0	$1)$	11
15	0	1	0	1	19.2	13	0.6 .5	5.55	2	1.17	0.106	0.77	11	$1)$	11	11
16	0	0	11	0	156	9.17	0.45	6.08	2.5	1.33	0.107	1.1	11	1	11	11
17	7	4.72	0.11	2.17	11	0	0	$1)$	5.5	2.6	0.11	2.79	0	11	11	1
18	0	1	0	11	0	$1)$	10	0	$1)$	11	0	11	0	1	11	11
19	7	4.32	0.11	2.107	20.4	14.3	0.67	5.47	8.5	5.15	0.17	3.28	1	0	11	0
20	29.9	22.2	10.84	6.89	13.7	7.93	0.41	5.36	3	1.53	0.05	1.38	2	1.15	10 S	0.77
21	187	12.8	0.65	5.29	11	0	11	0	6	$2 . \mathrm{SS}$	11.14	3.03	11	11	11	$1)$
22	0	0	1	0	9.3	6.1	0.26	2.94	111	6.23	11.28	3.14	11	$1)$	11	11
23	0	11	11	1	+.3	233	0.117	1.09	27	17	11.8 .3	9.17	0	$1)$	11	11
2.4	11	11	$1)$	1	$1)$	1	1	1	55	2.55	0.14	2.81	11	1	11	1
25	13.8	7.85	0.41	5.51	4	6.115	0.26	2.69	3.5	1.8	0.12	1.58	${ }^{9}$	5.52	0.27	3.21
26	18.8	12.7	10.64	5.49	19.7	13.3	0.65	5.8	22	15.6	0.76	5.62	0	1	1	11
27	20.8	13.9	0.66	6.23	12.4	8.12	0.41	3.87	24.4	16.7	0.78	6.92	0	0	11	1
28	0	0	1	1	0	0	1	0	8.9	5.35	0.28	3.27	0	0	11	0
29					13.5	7.63	0.41	5.46	13.4	7.)	10.53	4.97	12	6.108	0.30	5.52
30					48.8	29.7	1.2	17.9	32	22.5	0.96	8.52	8.5	5.65	0.26	2.59
31					28.5	20.7	0.78	7					1.5	0.93	0.105	0.52
Total	191	1.34	5.59	51.9	3.3	217	9.34	107	323	208	11.2	10.4	12.1	74. 8	3.94	15.7

APPENDIX E: Relationship between Rainfall and Throughfall, Stemflow and

Interception

Appendix E-1: Regression output for the Throughfall-Rainfall relationship

Regression Statistics		ANOVA for the regression			
Multiple R	0.98	Source of liarialion df	SS M/S	F	F'rict
R Square	0.97	Regression I	15060.115060 .1	13222.66	1.118-2.47
Adjusted R Square	0.97	Residual 296	$337.13 \quad 1.14$		
Standard Error	1.06				
Observations	298	Total 297	15397.2		
NB: ** $=$ significant at 001					
l'ariahle	(crefficionts	S: T.Stat	P'value'		
Imercept	-0.4946	00987 -5.013	9 21:-(07		
Rainfall (P)	0.713	$0.0062 \quad 114990$	1.1IE-247		

Appendix E-2: Regression output for the Stemflow-Rainfall relationship

Regre.ssion Statistics		ANOVA for the rearession					
Muluple R	0.82	Source of Variation	df	SS	MS	F	FC'rict
R Square	0.68	Regression	1	33.21	33.21	622.69 **	895 E -
Adjusted R Square	068	Residual	29	15.78	0.053		
Standard Error	023						
Observations	298	Total	297	49.0			
NB: ${ }^{*}=$ significant at 0.01							
l'ariable	Coreficients	SE	7 Stal		P-value		
Intercept	-0.01384	0.021	-0.65		0.05		
Rainfall (P)	003348	00013	24.95		8.9E-75		

Appendix E-3: Regression output for the Interception-Rainfall relationship

Regression Statistics		ANOVA for the regression					
Multiple R	0.92	Source of Fiariation	df	SS	M/S	F	F Crict
R Square	0.84	Regression	1	1900	1900	1549.7**	1.15E-
Adjusted R Square	0.84	Residual	29	362.9	1.23		
Standard Error	1.11						
Observations	298	Total	297	2262.9			
NB: ** $=$ significant at 0.01							
l'ariable	Coefficients	SE	T Stat		P-value		
Intercept	0.50799	0.10236	4.96		1.17E-06		
Rainfall (P)	0.25325	0.0064	39.37		1.15E-119		

APPENDIX F : Comparison of Throughfall, Stemflow and Interception between months

Appendix F-I: ANOVA for comparing pereent throughfall between months

Somrce of Pariation	df	SS	MS	1	$1 \cdot \mathrm{crit}$
Between months	3	104.66	34.89	0.806 11.5	3.098
1:rror	$20)$	865.51	43.27		
Total	23	970.18			

Appendix F-2: ANOVA for comparing percent stemflow between months

Source of Viariarion	(f)	SS	$1 / 5$	$1 \cdot$	1F cril
Between months	3	1.72	0.57	0.58 ns	3.098
Firror	20	19.80	0.99		
Total	23	21.53			

NIS: ns = not significantly different at 5% level

Appendix F-3: ANOVA for comparing percent interception between months

Somrce of Fariation	df	SS	MS	F	F crit
Between months	3	107.58	35.86	1.06 ns	3.098
Error	20	674.41	33.72		
Total	23		781.99		
Nl3: ns $=$ not significanty different at 5% level					

APPENDIX (;: Features of the twenty-four(24) trees used in the study of

> throughfall, interception, and stemflow

MaT1	[131]	Cromin Area	13irk	l:nylish	Sciemilic name
leel	27.5	3.46	smooth	cypress	C'upressus lusitimica
Tree?	41.38	30.2	rough	enculyptus	Fucilly
1 rees	6.4	2.54	smooth	cuculypus	Eamalys teretionmis
1 \|cer	2117	3.46	smmoth	coculy puis	Facallans tereticormis
11005	3183	8.104	roukl	Slash pine	Prinu caribata
1 cec	27.7	22.9	rough	Slash pine	Pinu carihaca
1012	131]	Crown Area	Bark	Name	Sciemitic name
1 cec	8.6	10.014	smowh	blackwaile	Acacta mearsii
1 cc 2	35	35.39	rough	pinc	P'inus uncarp:
lice?	37.88	515	rung	cuculypus	I amillas tereticomin
lect	21%	4.27	smowh	cypress	Cupresous Insitamica
1 aces	28.6 .4	20.1	rough	Slash pine	P'inu caribaca
licer	11.78	4.54	smouth	cypress	Cupressus lusitmica
Pidil 3	1)311	Crown Area	\| 3ark	Name	Sciontitic name
1 rec	18.14	10.55	smoolh	blackwatle	Acacia mearsii
1 cec 2	20.7	21.74	smooth	blackwatte	Acacia mearsii
lices	5.4	4.77	smowh	blackwallte	Acactia mearsii
1 100.	18.8	28.27	smooth	backuatule	Acacia mearsii
Ices	11	5.14	smowelh	blackuathle	Acacia mearsii
Ireen	17.2	16.62	rough	pine	Pinus oncarpa
1ग614	1131H	Crown Area	Bairk	Name	Scientilic name
1 recl	19	311.2	rough	cliculytus	Facalyus tereticomis
1 ces	28.6 .4	5.46	smooth	blackwattle	Acacia mearsii
1 ree	7	10.10 .4	amouth	hackwathle	Acacia mearsii
licest	6.36	3.95	smowh	blackuallle	Acacia mearsii
Ifecs	16.55	20.1	smowh	hlackwattle	Acictia mearsii
ricers	8.6	4.33	smooth	blackwalle	Acacia mearsii

$\mathrm{NB}: \mathrm{DBH}=$ Diameter at breast height

APPENDIX G-1: ANOVA for comparing of stemflow between various stem sizes

Sonurce of Pewiution	df	SS	I/S	F	Fcrit
Between Stems	23	624.014	27.13104	$43.34 * *$	1.68
Error	72	45.077	0.62606		

NB: ** $=$ Significantly different at 0.01

APPENDIX H：Potential maximum retention（S）cm

tem Abmill	13194	りにリ5	95／9\％	4×1.97	97，98	9x9	lictile
IIIII	1.26	10.48	（11）	0.23	1．1．3）	1.15	こい
JIII	1.51	4.15	1.46	1.52	4.85	1.101	2.51
A！	2.49	4.89	13.34	0.00	4.14	S．38	5.11
Sip	0.152	1．76	3.19	11.14	1.56	13．33	： 17
（）al	535	11.55	5.57	5.75	22.16	1.97	－
Non	3.77	9．39	1.92	4.85	49） 25	0.85	11.6 .5
lall	． 17.11	．19．25	4.13	52.67	72.14	（11）36）	5．4．6）
1 CH	4S．s3	4170	83.61	55.26	15322	51．5\％	720
N．17	43.89	72.32	611.00	89.17	45.91	85.7	T．4．14
\therefore	46． 62	81.32	112．44	68．9\％	6.3 .24	8s．78	7680
Min	51.66	27.70	51．8．4	14．22	4.519	Sx．8s	⒈311
A／：M	25.31	25.37	31.34	2．4．43	36.69	29.4	2x．75
SI）	31.51	29.35	38.87	33.23	45.18	3．1．57	

Appendix H－1：A composite Table showing means for all parameters used in
the models

Probulix	Tr	W	Raintall	Ri	Rd	IR	DRU）	S	1	1	［1．）	13F
008	1294	133.45	256．11	41.6	8.4	＋3．79	14110	8.59	182（1）	6537	11411	33.55
0.15	（1．4）	12510	248.80	30.9	6.9	3644	12.5	8.46	179．76	6．455	［1431	32．3．
023	4.3	11.1 .19	243410	39.8	6.8	2Sts	12．12	822	17472	Ci 7a	116， 16	$\therefore 16$
1111	3.5	50.86	200.10	39） 4	60_{1}	36	1211	いい	1：2111	519	111：	？ 18
11.9	2.60	42.55	18430	3 S 4	0.6	3．8：	65	0.16	1.319	＋774	95．18	311．11
11.46	216	－0．32	10580	375	6.4	33．22	＋ SO	． 52	716	2721	り山い	27.318
1154	1.8%	－x5 87	42.40	8.5	5.8	32.13	3.44	1.11	2976	1120	8：17	20.36
116	1.63	－57．26	32.10	6.7	5.0	31．83	2.57	106	22．3	S 6.4	7885	259.4
0.19	1.45	－87．65	18．00	4.9	4.6	31.16	1.35	059	$12: 3$	$51: 6$	7612	25.55
1177	130	． 99.74	14.10	2.7	4.3	28.51	0.84	11.46	9．5\％	418	$6) 71$	2.4
0.85	1.18	－100．09）	10.50	2.4	3.8	2x．06	077	0 134	00	$: 16$	心こ： 11	2271
11.92	108	－105．11	8.70	2	1.4	27.72	0.65	0.23	5.72	2.72	61135	2206

1י Probabolity of exceedince
la Retmarn Period

APPENDIX I: Regression output related to the development to of the models

Appendix I-1: Regression output for the development of the runoff model

Regression Statistics		ANOVA for the Regression					
Multiple R	0.98	Source of Variation	Df SS	MS	F	Firll	
R Square	0.96	Regression	6287.94	47.99	20.52**	11.102	
Adjusted R Square	0.91	Residual	$5 \quad 11.69$	2.34			
Standard Error	1.53						
Observations	12	Total 11299.64					
NB: ** = Significantly different at 0.01							
Variables	Coc/ficients Siand		andard Eirror	tStat	1 liám		
Intercept		-0.2671	16.11	-0.01.7			0.82
Rainlall (P)		0.3558	0.58	0.612			0.57
Intensity (Ri)		-0.0982	0.09	-1.0.49			0.3 .4
Duration (Rd)		0.2871	0.49	0.588			0.59
Throughfall (T)		-0.3613	0.00	0.00			0.00
Stemfow (S)		4.0188	38.91	0.010			081
Interception (I)		-0.670	35.90	0.019			0.52

Appendix I-2: Regression output of selected parameters for the development of the runoff model (DRO)

Regression Statistics		ANOVA for the Regression				
Multiple R	0.98	Source of Variation Df	SS	. $1 /$ S	$\stackrel{\rightharpoonup}{ }$	Ficrit.
R Square	0.96	Regression 3	287.33	95.77	62.59**	6.9E-06
^djusted R Square	0.94	Residual 3	12.31	1.53		
Standard Error	1.24					
Observations	12	Total 11	299.64			
		NB: ${ }^{* *}=$ Significantly dif	fferent a	0.01		

Variables	Coefficients	Standard Error	tStat	Plalue
Intercept	-0.671	1.551	-0.432	0.68
Rainfall (P)	0.0559	0.011	4.979	0.001
Intensity (Ri)	-0.074	0.066	-1.125	0.29
Duration (Rd)	0.3414	0.386	0.883	0.40

Appendix I-3:Regression output for the development of the water balance model.

		M()VA for the Regression				I'th	
Vhluple	10.95	Sourse of Variation 17 Sf		M	1		
R Spumie	0.15	Reyression	810.406	130)	*	(1)(ii)	
WhtustadR squate	(リ)	Rewidual	3.154 .56	15.15			
Shatiand Emor	12.3						
(Hexatains	12	Tolial 11 1.4805?					
NB: ** = Signiticantly differemt at (1.01							
Variables	(in)/ficiems		Stamhard lirror	t.ital			
halercep		-2.410.77	12.\%	-01.011			"\$1
Rambill (1)		-5610	4×51	-1.156			11.33
Interaily (Ra)		1.227	0.804	1.372			1120
Hualiom(Rd)		-4.673	5.418	-11.864			11.15
		51102	3.33	1.530			0.22
(1)ECl ramoti (1)R())		-1.187	3.802	-10.307			11.78
Stemblow (S)		-19.96	36.33	-1.0101			0 Sa
haterception (1)		15.563	336	0.1015			1182
		4.879	0.101	(1.6)			11.101

Appendix 1-4:Regression output of selected parameters for the development of the water balance (W) model

APPENDIX J: Gendavaki catchment parameters used to validate the models

Prob of Exc	Tr	P	Rd	Ri	W	TR	DRO)	BF	Eto	T	S	1
0.08	12.99	258.00	11.00	38.50	152.00	44.10	15.02	37.08	109.00	171.57	8.77	75.08
0.15	6.49	248.00	9.91	37.80	112.51	42.02	14.06	35.69	102.00	164.92	8.43	72.17
0.23	4.33	236.30	8.26	36.40	107.20	39.00	13.01	32.22	99.95	157.14	8.03	68.86
0.31	3.25	207.57	7.09	36.20	75.47	38.00	8.09	31.09	99.00	138.03	7.06	60.40
0.39	2.60	176.17	6.44	35.90	39.17	38.00	6.78	31.00	98.49	117.15	5.99	51.26
0.46	2.16	114.60	625	25.60	18.60	36.50	6.02	27.3.4	93.47	7621	300	33.35
0.54	1.86	39.00	5.78	8.70	-86.11	32.20	3.90	27.00	85.00	25.94	1.33	11.5
0.62	1.63	38.49	542	7.20	-87.30	32.15	2.86	2.406	75.00	25.60	1.31	11.20
0.69	1.45	19.82	4.87	3.50	-87.38	28.90	156	23.9 .4	72.30	13.18	0.67	577
0.77	1.30	17.84	4.48	2.70	-93.18	28.00	120	22.74	69.00	11.86	0.61	5.19
085	1.18	13.82	3.57	2.40	-99.15	25.60	0.92	21.98	68.00	9.19	0.47	4.12
0.92	1.08	9.65	1.59	1.80	-109.55	24.30	0.81	20.40	57.00	6.42	0.33	2.81

