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PM
2.5

 prediction plays an important role for governments in establishing policies to control the 
emission of excessive atmospheric pollutants to protect the health of citizens. However, traditional 
machine learning methods that use data collected from ground-level monitoring stations have 
reached their limit with poor model generalization and insufficient data. We propose a composite 
neural network trained with aerosol optical depth (AOD) and weather data collected from satellites, as 
well as interpolated ocean wind features. We investigate the model outputs of different components 
of the composite neural network, concluding that the proposed composite neural network 
architecture yields significant improvements in overall performance compared to each component 
and the ensemble model benchmarks. The monthly analysis also demonstrates the superiority of the 
proposed architecture for stations where land-sea breezes frequently occur in the southern and central 
Taiwan in the months when land-sea breeze dominates the accumulation of PM

2.5
.

Particulate matter (PM) is composed of air pollutants emitted into the atmosphere through human activi-
ties, urban development and industrialization. PM with an aerodynamic diameter smaller than or equal to 
2.5 micrometers ( µm ) (PM2.5 ) has been associated with cerebrovascular, cardiovascular, and pulmonary 
diseases1–5. In the Global Burden of Diseases study, PM2.5 was ranked the sixth leading cause of human death6. 
One measure against PM2.5 harm is to predict precise PM2.5 concentrations; many governments have established 
ground monitoring stations to record PM2.5 concentration to enact policies to control excessive atmospheric 
pollutants.

Taiwan’s Environmental Protection Administration (EPA) has divided Taiwan into seven air quality zones 
according to geographical and meteorological conditions. Of these air quality zones, the middle and southern 
air quality zones suffer the most serious air pollution. The literature shows that the characteristics of weather and 
air pollution are widely considered and play important roles in PM2.5 prediction9. In addition to PM2.5 events 
caused by local emission, poor atmospheric diffusion conditions, and remote transport, PM2.5 concentrations 
in central and southern Taiwan often reach the national warning threshold due to land-sea breezes7,8,11. Simula-
tions from the literature have shown that land-sea breeze events occur with a northwest wind onshore formed 
during the day and east winds offshore at night8. However, this land-sea breeze effect is difficult to detect merely 
by monitoring station data.

The literature shows that the introduction of machine learning (ML) methods such as feedforward neural 
networks (FNNs)12,13, convolutional neural networks (CNNs)14, convolutional long short-term memory (Con-
vLSTM)10,15 and random forests16–18 improve the performance of PM2.5 prediction. Recently, the development 
of deep neural network (DNN) approaches has overcome the weakness of other ML methods with their ability 
to capture complex interactions between datasets from different domains19. In our case, the introduction of 
DNN techniques facilitates the learning of spatio-temporal variation and the distribution of air pollutants from 
massive datasets. The presence of unknown factors also affects PM2.5 prediction . For better prediction, the 
ensemble models (EMs) produce the softmax-weighted average of several ML model outputs to outperform 
DNNs20. AdaBoost (AD)21, generalized additive models (GAM)22,23, random forests (RF)21,23, and extreme gradi-
ent boosting (XGBoost)21,22,24 are popular EMs for PM2.5 prediction. Recently, the composite neural network25 
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has outperformed the EM methods in PM2.5 prediction10,26. A composite neural network consists of individually 
pre-trained DNN components, each of which utilizes knowledge from datasets; component outputs are then con-
nected as an acyclic tree. The leaf outputs are weighted by trained variables and collectively taken as an ensemble 
node, instead of being softmax weighted as in EM.

In this work, we build a remotely transported pollutants (RTP) model10, a composite neural network consist-
ing of two DNN components pre-trained by heterogeneous datasets from multiple sources to improve PM2.5 
prediction in southern and central Taiwan. We not only train the PM2.5 prediction model using local meteoro-
logical and air pollution monitoring data, but we also introduce large-scale satellite images of East Asia to aid 
our model in capturing the spatiotemporal distribution of remotely transported PM2.5 . To capture the land-sea 
breezes that play an important role in PM2.5 prediction in southern and central Taiwan, large-coverage wind 
features are also introduced. According to the observation in “Grouping of monitoring stations” and “Land-sea 
breeze”, the proposed model should yield better PM2.5 prediction results at stations where land-sea breeze fre-
quently occur in months when land-sea breeze dominates PM2.5.

Materials
Study region and air quality data.  The study region is located in the south and central part of Taiwan 
between latitude 21◦25′ and 24◦15′ north and longitude 120◦12′ and 120◦58′ east as shown in Supplementary 
Fig. S1. We created a grid area of 234× 80 = 18720 km2 that covers the study area for the subsequent data pre-
processing. Each individual grid cell has a spatial resolution of 1 km.

The EPA monitoring stations detect air pollutants concentration values such as PM10 with a diameter of 
10 µm , nitrogen dioxide (NO2 ), other nitrogen oxides (NOx), ozone (O3), carbon monoxide (CO) and sulfur 
dioxide (SO2). All of which strongly influence the formation and future status of PM2.5 . In this work, we col-
lected hourly detected air pollutant data for 3 years (2014, 2015, 2016) from the Taiwan EPA (https://​opend​ata.​
epa.​gov.​tw) as model input.

Aerosol optical depth data from MAIAC algorithm.  Aerosol optical depth (AOD) products are typi-
cally generated by dark target (DT) and deep blue (DB) algorithms at spatial resolutions of 3 to 10 km. However, 
AOD retrieval is challenging, especially when thick smoke is observed by satellite-based monitoring devices, 
which view the smoke as clouds. This makes the retrieved AOD data unreliable.

Multiangle atmospheric correlation implementation (MAIAC) is an advanced AOD retrieval algorithm based 
on time series analysis that has been proven reliable for predicting PM2.5

27. The accuracy of MAIAC AOD in 
China and East Asia has been validated by the AErosol RObotic NETwork (AERONET) ground measurement 
network28. Given MAIAC’s strong performance and global coverage, we use these data to capture information 
on remote PM2.5 transported long distances, for example, from one country to another10.

In this work, we collected 3 years (2014, 2015, and 2016) of MAIAC AOD data at a 1 ×1 km2 spatial resolution 
from NASA.(https://​ladsw​eb.​modaps.​eosdis.​nasa.​gov) The AOD products cover two tiles from the investiga-
tion area (h28v06 and h29v06). The coordinates of the four corner points for h28v06 are ( 19◦56′ N, 106◦3′E), 
( 30◦3′ N, 115◦5′E), ( 29◦59′ N, 127◦2′ E) and ( 19◦53′ N, 117◦2′E). The coordinates of four corner points for h29v06 
are ( 19◦56′ N, 116◦41′E), ( 30◦3′ N, 126◦37′E), ( 29◦59′ N, 138◦34′ E) and ( 19◦52′ N, 127◦41′E). AOD preprocessing 
is described in “Data preprocessing”.

Remote meteorological data.  PM2.5 can float in the air for 4 to 7 days29 and can be transported from 
one place to another with the help of meteorological features. Meteorological features are also involved in the 
formation of PM2.5

29.
We used 3 years (2014, 2015, and 2016) of meteorological data from two different sources available in the 

remote area to capture more remote pollutants. The first source is data on temperature, pressure, vertical velocity 
(VVEL), absolute vorticity (ABSV), lifted index (LFTX), wind speed (ws) and wind direction ( θ ) at pressure levels 
from 10 mb (millibars) to 1000 mb (total 148 features) from the National Center for Environmental Prediction 
Final (NCEP FNL) Operational Global Analysis data.(https://​rda.​ucar.​edu/​datas​ets/) NCEP FNL data is provided 
in 2 × 7 grids which covers 27◦N to 29◦N in latitude and 120◦E to 127◦E in longitude at six-hour intervals. We 
pre-processed the data and converted them to hourly intervals, as explained in “Data preprocessing”.

The second source is buoy monitoring stations that record the hourly wind speed and direction over the 
oceans. The ocean wind (OW) influences the diurnal variation of PM2.5 in central and southern Taiwan11. There-
fore, we create a grid area that covers Each grid cell has a spatial coverage of 1 ×1 km2 . We constructed wind 
direction and wind speed feature maps by filling non-observed grid cells using kriging interpolation based on 
wind direction and wind speed features Center Weather Bureau (CWB) stations and buoy weather monitoring 
devices. Another preprocessing is described in “Data preprocessing”.

By interpolating non-observed grid cells with CWB stations on land and buoy weather monitoring devices 
on the ocean, we assemble wind feature maps that are reliable within our research area, which is encircled by 
buoy monitoring devices.

Local meteorological data.  The dispersion and transportation of PM2.5 is strongly influenced by mete-
orological features (rainfall, pressure, temperature, humidity, wind speed, and wind direction)27. In this work, we 
downloaded these features from the CWB website,(http://​opend​ata.​cwb.​gov.​tw/​index) which included hourly 
weather and weather forecast data from 337 monitoring stations. We preprocessed the data as explained in “Data 
preprocessing” using spatial interpolation to populate all non-observed grid cells and vectorize the wind speed 
and wind direction data as described in “Wind feature vectorization”.

https://opendata.epa.gov.tw
https://opendata.epa.gov.tw
https://ladsweb.modaps.eosdis.nasa.gov
https://rda.ucar.edu/datasets/
http://opendata.cwb.gov.tw/index
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Methods
Wind feature vectorization.  Our wind feature maps derive from wind features composed of speed and 
direction. Wind direction data are usually represented in polar coordinates, which must be converted to vector 
form. We vectorized the wind feature from wind speed at a particular angle into meridional (v-wind) and zonal 
(u-wind) components. To isolate the wind speed feature from the direction features, we then normalized the 
u-wind and v-wind by dividing them by the wind speed to yield the meridional and zonal components of the 
unit wind direction vector.

Data preprocessing.  Data preprocessing includes conversion from monitoring station-based areas to a 
grid, linear interpolation, spatial interpolation to populate empty grid cells, data cleaning, and spatial downscal-
ing.

For AOD, NCEP meteorological data and ocean wind which are input to STRI model in “Modeling methods”, 
we vectorized the wind direction into zonal and meridian components of the meteorological dataset (NCEP) 
as described above. We also used linear interpolation to convert the meteorological dataset (NCEP) to hourly 
intervals from a six-hour interval.

We cleaned the MAIAC AOD data at 550 nm by filtering out poor quality grid values, after which we inter-
polated using the remaining grid cells. We also downscaled the spatial dimension of each remote tile (h28v06 
and h29v06) to 300×300 km2 from 1200×1200 km2 using maximum pooling15 to fit the available memory of the 
GPU. Then, we repeated the daily reading of each grid cell 24 times to match the hourly interval of other datasets.

To capture the spatio-temporal characteristics of the speed and direction of the ocean wind over the sea, we 
created a grid area (492×396 = 194,832 km2 ) inside the remote area with each grid cell covering 1 ×1 km2 . We cre-
ated a feature map by populating the dataset in the grid area according to the latitude and longitude coordinates 
of the monitoring stations (CWB and buoys). We used kriging interpolation to populate the remaining grid cells 
that did not match the station coordinates. Shown in Fig. 1 is an example of the results after kriging interpolation 
on the CWB and buoy dataset. Maximum pooling was applied to the kriging interpolated feature map to reduce 
the spatial dimensions to 246×198 km2 to match the memory of the computing resource.

For air quality, weather, and weather forecast feature maps that are input to the base model in “Modeling 
methods”, we converted the study regions to the grid area (234× 80 cells) and created the feature map by popu-
lating the grid cells with the observed air quality and meteorological data according to the coordinates of the 
monitoring stations (37 EPA, 174 CWB) and using four nearest neighbors (4-NN) to populate grid cells outside 
these coordinates.

Figure 1.   Left side: CWB and buoy monitoring stations. Right side: distribution of ocean wind dataset after 
kriging interpolation.
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Modeling methods.  The proposed composite neural network models—RTP with DNN components (base, 
STRI)—were trained over 2 years (2014, 2015) of data and tested on one year (2016). All models were con-
structed using Keras with a TensorFlow backend and trained on an NVIDIA GPU with 11 GB of memory.

STRI component.  The spatiotemporal remote information neural network (STRI)10 is a component of the RTP 
model that captures remotely transported PM2.5 and predicts local PM2.5 concentration. We added ML layers 
(CNN, ConvLSTM) to the STRI model to capture the spatiotemporal characteristics of the new heterogeneous 
dataset (AOD, meteorology, ocean wind). We included the AOD data to provide more spatial-temporal informa-
tion on PM2.5 remotely transported towards Taiwan.

In this work, the large STRI model with multiple layers of ML predicts the local PM2.5 concentration of 37 
EPA stations . The model uses large and heterogeneous datasets (AOD, meteorology, ocean wind) with local 
PM2.5 as input. In Fig. 2, STRI_fe inputs 300×300 sized AOD satellite image, 2 ×7×148 sized NCEP meteorologi-
cal grid data and the local PM2.5 value; STRI_p inputs Kriging interpolated ocean wind grid data (246×198) and 
the embedding generated from STRI_fe. The idea is to capture spatiotemporal characteristics of heterogeneous 
datasets in different spatial scales, concatenate these, and then merge them with local features (PM2.5 ) to predict 
local PM2.5 concentration.

Furthermore, to fit the large STRI model into the GPU memory, we divided the model into two components, 
as shown in Fig. 2. STRI_fe, the first component10, is used for the extraction of remote pollutants (ERP) given 
the AOD input from two tiles with their meteorology dataset. STRI_p, the second component, is used for the 
prediction given the ERP input, local features, and spatiotemporal features of ocean wind (Fig. 2). The detailed 
configuration of STRI model is described in detail in Supplementary Table S1.

After dividing the model into two components, we borrowed techniques from previous work10 to fine-tune 
the individual components with fewer training parameters to improve the final prediction results.

Base component.  The base model10 is a component of the RTP model that predicts PM2.5 concentration using 
local features only. The input to the base model is the air quality feature maps interpolated from EPA monitoring 
stations , the weather and weather forecast feature maps interpolated from CWB monitoring stations that covers 
the study area, and the prediction hour value to predict PM2.5 of 37 EPA stations. . The model is described in 
detail in Supplementary Fig. S2.

RTP model.  Given the prediction output of its pre-trained components (STRI and the base model), the RTP 
model outputs the final PM2.5 predictions for the 37 EPA stations by hour. The RTP model is described in detail 
in Supplementary Fig. S2.

Evaluation
Metrics.  We evaluated the proposed models using the root mean square error (RMSE), which measures the 
difference between the predicted PM2.5 and its true value. In this work, the RMSE is the squared mean of the 
error between the ground truth and the predicted value at every hour among the monitoring stations of interest:

Figure 2.   STRI model components STRI_fe (a) and STRI_p (b) with modifications indicated by red dashed 
line.
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where yt,i and ˆyt,i are the true and predicted value of monitoring station i at hour t respectively, T is the length 
of the prediction sequence and n is the total number of monitoring stations.

Evaluation of proposed architecture.  We conducted experiments to show the the model performance 
for the next 3 days (72 h) PM2.5 prediction at 4-hour intervals by comparing them with benchmarks and also to 
evaluate the contribution of each input feature to the prediction performance. In our architecture, each model 
was trained with the corresponding data from 2014 to 2015 and evaluated with the data from 2016. 

1.	 We first compared the prediction performance of RTP_ow with its components (STRI pre-trained with the 
ocean wind and the base model) to evaluate the improvement of the composite neural network architecture 
with respect to PM2.5 prediction.

2.	 After comparing the PM2.5 prediction performance of the RTP model with its components, we compared 
the RTP model with other ensemble models (ADA, GAM, RF, XGB). RTP and the ensemble models use the 
same inputs: the prediction output of STRI and the base model. The main objective of these comparisons is 
to show that RTP outperforms its pre-trained components and other ensemble techniques.

3.	 Furthermore, We compared the PM2.5 prediction performance of RTP models composed of STRI pre-trained 
with ocean wind (RTP_ow) and RTP models composed of the STRI pre-trained without ocean wind (RTP_
no_ow) components to evaluate the effect of pre-training with ocean wind data on PM2.5 prediction. Before 
this experiment, we grouped the 37 EPA stations of interests into two groups by ranking the frequency of 
land-sea breeze occurrences (The detailed grouping method is described in “Grouping of monitoring sta-
tions”). In this comparison, we averaged the RMSE of each group of stations during prediction hours to 
investigate the effect of ocean wind data on PM2.5 prediction performance at stations where land-sea breeze 
frequently occur.

4.	 Finally, we present the monthly PM2.5 prediction performance of models trained under the proposed archi-
tecture by averaging the RMSE of the 37 stations at each prediction hour in each month to compare the model 
performance during months when land-sea breezes affect southern and central Taiwan to the performance 
during the rest of the year. In addition to the RMSE of the 37 stations, we also averaged the RMSE of each 
group of stations grouped in “Grouping of monitoring stations” at each prediction hour to investigate the 
effect of ocean wind data on PM2.5 prediction performance at stations where land-sea breeze frequently occur 
in each month.

Grouping of monitoring stations.  To evaluate whether the introduce of ocean wind data improves the 
PM2.5 prediction performance at stations where land-sea breeze frequently occur, we selected the 28 stations 
land-sea breeze frequently occur and annotated these as LS stations, as listed in Supplementary Table S2. The 
processes we determine the LS sites are listed below. First, calculate the average daily wind direction (from 7am 
to 6pm) and the night wind direction of each site within 2014 to 2016; Second, calculate the counts of days when 
the daytime average wind direction lies between 157.5◦ and 337.5◦ (this step aims at counting the days when the 
daytime wind comes from the sea), and the difference of average wind direction in the daytime and nighttime 
is greater than 135◦ (this threshold indicates the significant diurnal wind direction variation); Third, select sites 
of top 28 counts as LS sites. The remaining nine stations (Xianxi, Lunbei, Mailiao, Taixi, Xingang, Puzi, Xinying, 
Annan and Hengchun) are annotated as normal stations.

Land‑sea breeze.  Many studies present land-sea breeze with backward trajactory simulation for few hours 
period. To provide a synoptic observation of land-sea breeze in different season, a quantified metric, Jensen-
Shannon divergence (JS divergence), is used to measure land-sea breeze through statistics from monitoring sta-
tions’ observation. JS divergence is a method of measuring the similarity between two probability distributions. 
The lower JS divergence of two distributions is, the closer the two distributions are. As shown in Supplementary 
Fig. S3, we present the daytime and nighttime wind directions of each month in two discrete probability distri-
butions. In practice, we present each probability as an array of 8 elements (the elements represent the probability 
of 8 principal wind directions within a month). Then, we calculate the similarity of the two distribution with the 
following JS divergence formula:

where P and Q represent the discrete probability distribution in the 8 principal wind directions in day and night, 
respectively; i represents each principal wind direction.

Thus, JS divergence is able to represent the diurnal wind direction variation in monthly probability.
In Supplementary Fig. S4, we presents four cases (Annan, Mailiao, Nanzi and Linyuan) of stacked bar plot 

which represent the distribution that PM2.5 events of different AQI index level occur under eight principal wind 
direction every months in 2016. For each case, top row is the daytime distribution and the bottom row is the 
nighttime. JS divergence value is shown in top diagram. When land-sea breeze dominates, the diurnal wind 
direction distribution shift is recognizable, and JS divergence value is greater than 0.3.

From the four stations, we found JS divergences are relatively higher from April to August. This indicates that 
land-sea breeze dominates from April to August. For Nanzi and Linyuan, which are LS stations, the occurrences 
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of PM2.5 concentration at Unhealthy for sensitive groups and Unhealthy AQI index level grow at nighttime from 
March to May. This indicates that the PM2.5 concentration at LS stations is dominated by land-sea breeze from 
March to May. However, PM2.5 concentration is mostly under Good and Moderate AQI index level in June, July 
and August. In summer, strong vertical convection also influenced PM2.5 and attributes to low PM2.5 concentra-
tion. Hence, the proposed RTP is expected to perform well especially during March and May.

In January, February, November and December, the distributions between daytime and nighttime look similar 
and the JS divergences are small. The bars at northeast, north and northwest are relatively high. This indicates 
northeast monsoon dominates the whole day during the four months. However, for Nanzi and Linyuan stations, 
JS divergence values are relatively higher than the other two stations during winter. JS divergences of Linyuan 
station even keep above 0.3 for the whole year. As we have known that Linyuan and Nanzi are selected as the LS 
stations, this quantified metric clearly demonstrate that the LS stations are prone to be influenced by land-sea 
breeze.

The observations above help explaining the RTP performance in each month in “Monthly analysis”.

Results
RTP and its components.  Figure  3 (left) shows that RTP and STRI both significantly outperform the 
base model from prediction hour 4 to 32. However, for the prediction hour after 32, STRI is worse than the base 
model, while RTP exhibits the best PM2.5 prediction performance. This experiment shows that composite neural 
network architecture significantly improves PM2.5 prediction compare to its components.

RTP model and other ensemble models.  As ensemble models such as AdaBoost, generalized additive 
models, random forests, and XGBoost have been widely used for PM2.5 prediction, we further compared the 
RTP model trained under the proposed architecture with these models. In this experiment, we input the pre-
diction output from both the STRI and the base model components into the RTP and the ensemble models. In 
Fig. 3 (right), the RTP model outperforms the ensemble models (ADA, GAM, RF, XGBoost) at every prediction 
hour. This shows that the proposed composite neural network architecture has the best overall PM2.5 prediction 
performance in southern and central Taiwan with components pre-trained using large-scale AOD, weather, and 
ocean wind data.

Effect of pre‑trained components on RTP model.  To evaluate the effect of ocean wind data on RTP 
model with respect to PM2.5 prediction, we compared RTP composed of two different pre-trained STRI models: 
STRI pre-trained with PM2.5 and AOD data (RTP_no_ow), and STRI pre-trained with PM2.5 , AOD, and ocean 
wind data (RTP_ow). In Fig. 4, comparing RTP_ow to RTP_no_ow shows that ocean wind features does help 
PM2.5 prediction performance from prediction hour 4 to 28; however, Table 1 shows that in terms of average 
RMSE during the prediction hours, RTP_ow outperforms RTP_no_ow. This shows that ocean wind helps pre-
trained components of composite neural network models to improve the overall PM2.5 prediction performance 
during 72-hour prediction.

Figure 3.   Left: average RMSE for RTP and its components. Right: average RMSE of RTP and other ensemble 
models.
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Monthly analysis.  In Fig. 4, although RTP_ow significantly improves the PM2.5 prediction performance 
from prediction hour 4 to 28, RTP_ow_normal is obviously better than RTP_ow_LS through out every pre-
diction hours, which means that the proposed architecture performs worse at LS stations during the whole 
testing period (2016). However, land-sea breeze does not dominate PM2.5 throughout the year according to 
the observations in “Land-sea breeze”. To evaluate whether the proposed composite neural network architec-
ture that introduces ocean wind yields improved the PM2.5 prediction performance for stations where land-sea 
breeze frequently occur, we separated the PM2.5 prediction performance of RTP_ow for all 2016 into intervals 
of one-month for both LS and normal stations, as shown in Fig. 5. These monthly prediction results show that, 
in terms of average RMSE, RTP_ow for LS stations outperform RTP_ow for normal stations during prediction 
hours in March, April,and May. Importantly, RTP_ow for LS stations shows better performance compared to 
RTP_no_ow for LS stations from prediction hour 4 to 32 in March, April,and May. In June and August, when 
PM2.5 pollution is the lowest in the year, both RTP_ow and RTP_no_ow have similar performance no matter for 
LS stations or normal stations.

In Supplementary Fig. S3, we present the monthly prediction results for autumn and winter: clearly, RTP_ow 
exhibits superior prediction performance for normal stations in September, October, December, and January. 
Although LS stations show higher JS divergence throughout the whole year according to Supplementary Fig. S4, 
northeast monsoon mainly dominates PM2.5 events in Unhealthy level, which weaken the effect of land-sea breeze. 
In summary, the proposed composite neural network architecture that introduces ocean wind data, RTP, produces 
an improved PM2.5 prediction performance for stations where land-sea breeze frequently occur in southern and 
central Taiwan in months when land-sea breeze dominates PM2.5.

Conclusion
We propose a composite neural network architecture that uses components pre-trained with large-scale weather 
features and ocean wind to predict PM2.5 in southern and central Taiwan. The neural network RTP_ow, which 
uses STRI, pre-trained with PM2.5 , AOD, large-scale weather features and ocean wind features as components, 
achieved the best overall PM2.5 prediction performance compared to its individual components and other 

Table 1.   Average RMSE for land-sea (LS) and normal stations for RTP pre-trained with (RTP_ow) and 
without (RTP_no_ow) ocean wind.

RTP_no_ow RTP_ow

LS stations 13.4834 13.4037

Normal stations 13.2319 13.2190

All stations 13.4222 13.3588

Figure 4.   Average RMSE of LS stations (solid line) or normal stations (dashed line) in every prediction hour for 
RTP pre-trained with (RTP_ow) or without (RTP_no_ow) ocean wind.
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ensemble models. Monthly analysis reveals that the proposed model yields improved PM2.5 prediction for LS 
stations in southern and central Taiwan in months when land-sea breeze dominates PM2.5.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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