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ABSTRACT 

In the recent decade, remote sensing 

techniques had emerged as one among the 

best options for quantification of measures of 

tree species diversity. In this study, potential 

of using remotely sensed data derived from 

airborne laser scanning (ALS) for predicting 

tree species richness and Shannon diversity 

index was evaluated. Two modelling 

approaches were tested: linear mixed effects 

modelling (LMM), by which each of the 

measures was modelled separately, and the 

k-nearest neighbour technique (k-NN), by 

which both measures were jointly modelled 

(multivariate approach). For both methods, 

the effect of vegetation type on the prediction 

accuracies of tree species richness and 

Shannon diversity index was tested. Separate 

predictions for richness and Shannon 

diversity index using LMM resulted in 

relative root mean square errors (RMSEcv) 

of 40.7%, and 39.1%, while for the k-NN 

they were 41.4% and 39.1%, respectively. 

Inclusion of dummy variables representing 

vegetation types to the LMM improved the 

prediction accuracies of tree species richness 

(RMSEcv = 40.2%) and Shannon diversity 

index (RMSEcv = 38.0%). The study 

concluded that ALS data has a potential for 

modelling and predicting measures of tree 

species diversity in the miombo woodlands 

of Tanzania. 

Key words: Airborne laser scanning, 

biodiversity, miombo 

woodland, Liwale-Tanzania, k-
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INTRODUCTION  

Tropical forests ecosystems host at least two 

thirds of the earth’s terrestrial biodiversity 

and provide significant human benefits at 

local and regional scales through the 

provision of economic goods and services 

(Gardner et al. 2009). Nevertheless, the 

biodiversity of tropical forests is declining 

rapidly due to conversion of forests to 

permanent agricultural land, climate change, 

induced fires, and unsustainable logging 

practices (Chidumayo 2013, Bellard et al. 

2012). Other consequences of these changes 

include increasing amount of carbon 

emission from tropical forests as compared 

to other forest types globally. To mitigate 

this development, and to conserve the 

beneficial ecosystem services that tropical 

forests can provide, Reducing Emissions 

from Deforestation and Forest Degradation 

(REDD+) has been negotiated as an 

international effort under the United Nations 

Framework Convention on Climate Change 

(UNFCCC) since 2005. REDD+ has now 

become the most active global land use 

policy program (Matthews and van 

Noordwijk 2014) in the tropical countries. 

Although the primary objective of the 

REDD+ framework is climate change 

mitigation through enhancement of forest 

carbon stock and sustainable forest 

management, co-benefits from biodiversity 

conservation are also expected (Imai et al. 

2014). However, despite this considerable 

potential, methods for monitoring forest 

biodiversity are lacking in the context of 

REDD+ (Ehara et al. 2014, Roe et al. 2013, 

Gardner et al. 2012). Efforts have so far 

focused on the establishment of methods for 
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accounting large-scale forest carbon stock 

and changes, with little emphasis on forest 

biodiversity assessment (Imai et al. 2014). 

Such methods are also important for other 

subsidiary bodies like the Convention on 

Biological Diversity (Chandra and Idrisova 

2011) and Millennium Ecosystem 

Assessment (Mooney et al. 2004).  

Assessments of biodiversity for 

management, conservation planning or 

policy development (e.g., REDD+), 

however, poses a number of challenges, 

especially at larger scales due to the broad, 

multi-dimensional and multi-scale 

characteristics associated with such 

assessments (Boutin et al. 2009). Unlike in 

forest carbon assessments, where agreed and 

consistent metrics exist (e.g., carbon density 

or emissions in metric tons per hectare), there 

is lack of consensus on what to monitor in 

biodiversity assessments (Pereira et al. 

2013). To account for this, the emphasis has 

turned to acquiring data for estimation of 

indicators that aggregate and synthesize 

information for describing multiple aspects 

of biodiversity simultaneously (Winter et al. 

2011). Species diversity is one of the most 

intuitive and widely adopted indicators of 

biodiversity because it is strongly correlated 

with other biodiversity attributes such as 

genetic diversity and ecosystem functioning 

(Pereira and Cooper 2006; Colwell and 

Coddington 1994; Chiarucci and Palmer 

2006). Thus, in many studies that aimed at 

describing biodiversity of forest ecosystems, 

tree species diversity has been used as an 

indicator of forest biodiversity (e.g., Barna 

and Bosela 2015, Schmidt et al. 2015, 

Vanderhaegen et al. 2015, Shirima et al. 

2015). Additionally, from cost-benefit and 

time-efficiency perspectives, tree species 

diversity is considered as a more viable 

option for biodiversity assessment since it 

can easily be derived from existing datasets 

such as national forest inventories (Chirici et 

al. 2012).  

Species richness and species evenness are 

two basic measures describing species 

diversity of different taxa (Magurran 1988). 

Species richness, computed as the total 

number of species in a community, has 

frequently been used as a measure of tree 

species diversity in different forest types 

(e.g., Chiarucci and Palmer 2006, McRoberts 

and Meneguzzo 2005), especially for those 

cases that involves comparisons of 

conservation values of different sites. 

Species evenness (sometimes known as 

equitability) is describing the way abundance 

is distributed among individual species in a 

community. A biological community, in 

which all the species are represented by the 

same number of individuals, has high species 

evenness while a community in which a few 

species are represented by many individuals 

and the other species are represented by few 

individuals, has a low species evenness. A 

number of indices taking into account both 

species richness and evenness have also been 

proposed for measuring species diversity. In 

this category, the Shannon diversity index 

(e.g., Magurran 1988) has frequently been 

used in many studies on tree species diversity 

(Shirima et al. 2015, Borah et al. 2015, 

Nadeau and Sullivan 2015).  

The computation and reliability of measures 

for tree species richness and evenness, or for 

the two combined, in estimating tree species 

diversity rely heavily on accurate field-based 

information. Traditionally, assessment of 

tree species diversity has been done by using 

ground-based surveys. However, for larger 

spatial scales ground field-based surveys are 

impractical due to huge amount of data to be 

collected. Current remote sensing techniques 

may close this gap by providing spatially 

continuous and time-series information that 

can be used to describe tree species diversity 

(Müller and Vierling 2014, Fricker et al. 

2015). Moreover, remote sensing allows 

frequently repeated recording of 

environmental information, and may thereby 

provide time-series information that are 

essential for monitoring and understanding 

how tree species diversity respond to 

different environmental factors over time 

(Leutner et al. 2012).  
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Airborne laser scanning (ALS) is a remote 

sensing technique that recently has gained 

wide acceptance in ecologically based 

studies due to its ability to quantify the three-

dimensional (3D) structure of forests, which 

is of particular interest in characterizing 

measures of tree species diversity and other 

taxa in the forest ecosystem (Müller and 

Vierling 2014, Fricker et al. 2015). However, 

ALS cannot measure directly the measures of 

tree species diversity, thus applications of 

ALS involve the development of statistical 

models or classifiers that relate the ALS 

structural metrics to measures of tree species 

diversity derived from field plots. By using 

such models or classifiers along with 

statistical sampling estimators (e.g., Chao 

and Shen 2003), estimates of tree species 

diversity may be produced for relevant 

geographical areas of interest. Models may 

also be used for developing tree species 

distribution maps that can support decision-

making and conservation planning. Several 

studies in temperate and boreal forests, have 

used ALS data for modelling and predicting 

measures of tree species diversity (Leutner et 

al. 2012, Simonson et al. 2012, Ceballos et 

al. 2015, Hernández-Stefanoni et al. 2014) 

together with other taxa such as beetles 

(Müller and Brandl 2009), spiders (Vierling 

et al. 2011) and birds (Vogeler et al. 2014, 

Lindberg et al. 2015). Parametric, and to 

lesser extent non-parametric methods (e.g., 

random forests), have been used in these 

studies. For example, a study by Leutner et 

al. (2012) conducted in the temperate 

montane forests of Germany used non 

parametric- random forests to compare the 

ability of LiDAR and hyperspectral remote 

sensing data in predicting tree species 

richness. Their results concluded that for 

modelling tree species richness, LiDAR 

predictors were the best choice with R2 of 

0.3. On the other hand, a study by 

Hernández-Stefanoni et al. (2014) conducted 

in Mexico used parametric method in 

particular the ordinary least square 

regression to model the relationship between 

tree species richness and LiDAR metrics for 

different field plot sizes. Their results 

indicated high potential of using LiDAR data 

for predicting tree species richness especially 

for the larger plot sizes where R2 increased 

from 0.32 to 0.67 for the large plot size. 

The non-parametric approach k-nearest 

neighbors (k-NN) have widely been used in 

modelling and estimation of different forest 

attributes such as volume and aboveground 

biomass (AGB) when using remotely sensed 

data (McRoberts et al. 2015). Among the 

desirable features of k-NN are the ability to 

handle multivariate data and non-linear and 

diverse relationships between dependent and 

independent variables (Eskelson et al. 2009). 

The multivariate feature of the k-NN 

technique makes it very useful in ecological 

applications because management decisions 

frequently require consistent information on 

multiple parameters and estimates. However, 

to our knowledge no study has to date 

attempted to use k-NN for modelling and 

prediction of measures of tree species 

diversity using ALS data. Of particular 

interests is the tropical forests, where 

irrespective of the methods used, only a few 

studies have quantified the relationship 

between measures of tree species diversity 

and ALS data (Müller and Vierling 2014). 

Lack of ALS data and a complex structure 

due to the large number of tree species in 

tropical forests, as compared to temperate 

and boreal forests, are among the possible 

reasons for that fewer studies of this kind 

have been carried out in tropical forests. 

Furthermore, the few studies that do exist 

(e.g., Fricker et al. 2015, Hernández-

Stefanoni et al. 2014), have not attempted to 

analyze the influence of vegetation 

types/forest types on the relationship 

between measures of tree species diversity 

and ALS data. Vegetation types are 

considered as important sources of forest 

structural variation (Swatantran et al. 2011), 

which would also affect the prediction 

accuracy of tree species diversity when using 

ALS data. Stratification and post-

stratification of forest inventory information 

has been suggested as a viable means to 

reduce prediction errors due to structural 

variations (Latifi et al. 2015), particularly in 
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the studies related to prediction of different 

forest attributes using ALS data. However, 

such studies are still limited in the aspects of 

tree species diversity as compared to AGB 

and volume. 

The overall objective of this study was to 

assess if ALS data can be used to predict 

measures of tree species diversity in miombo 

woodlands, forests and other vegetation 

types surrounding the woodlands in Liwale 

District, Tanzania. The specific objectives 

were to: 1) examine the performance of 

parametric and non-parametric methods for 

predicting measures of tree species diversity 

using ALS data; and 2) assess the prediction 

accuracy of measures of tree species 

diversity across vegetation types.  

 

MATERIALS AND METHODS 

Study area description 

The study site is located in Liwale District, 

Lindi Region (Fig. 1) and it occupies an 

estimated area of about 15,867 km2 in the 

south-eastern part of Tanzania. The altitude 

ranges from 360 to 900 meters above sea 

level. The area experiences an annual rainfall 

ranging from 600 mm to 1000 mm, mostly 

between November and early April. The 

average annual temperature ranges between 

20oC and 30oC (LDC 2014). The vegetation 

type that dominates the study area is miombo 

woodlands, characterized by the presence of 

three genera; Brachystegia, Jubernardia, and 

Isoberlinia from the family Fabaceae and 

sub-family Caesalpinioideae. Even though 

the area is mainly dominated by miombo 

woodlands, forests and other vegetation 

types that were neither woodlands nor 

forests, were also found in the study area. 

Data collection and processing 

Field data  

In this study, field plots that were established 

and measured by the National Forest 

Resources Monitoring and Assessment 

(NAFORMA) program in 2011 were used. 

 

Figure. 1. Location of the study area in Liwale 

District, southern Tanzania. 

NAFORMA is the first ground based 

national forest inventory of Tanzania that 

was conducted from 2009 to 2014 covering 

different vegetation types across the country 

(MNRT 2015). In the study area (i.e., 

Liwale) the initial measurement by 

NAFORMA was completed in June 2011. 

Eight months later (February 2012) all the 

plots were revisited to ensure temporal 

consistency with the ALS data acquisition 

(February/March 2012) but also to 

accurately record the positions of the plots 

using survey grade Global Positioning 

System and the Global Navigation Satellite 

System receivers.  

Sampling design 

The sampling design adopted by 

NAFORMA is systematic double sampling 

for stratification with individual plots 

allocated in clusters (Fig. 2). The details of 

the planning of this design are given in 

Tomppo et al. (2014); Mauya et al. (2015). 
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Figure. 2. The structure of a NAFORMA cluster. 

The field sample plots are represented 

by black dots, and the ALS coverage is 

shown with gray shading. Note that the 

ALS measurements do not cover the 

entire cluster. 

 

Plot data 

The NAFORMA cluster structure has a total 

of ten plots per cluster (MNRT 2011), 

however during the re-measurement two 

plots in each cluster were omitted (Fig. 2), 

because they were outside the corridors 

designated for ALS data acquisition. Thus, 

eight plots per cluster were re-measured in 

the field. Differential Global Navigation 

Satellite Systems (dGNSS) were used to 

positions the center of each sample plot. Two 

Topcon Legacy 40-channels dual frequency 

receivers observing both pseudo range and 

carrier phase of the Global Positioning 

System (GPS) and the Global Navigation 

Satellite System (GLONASS) were used as 

rover and base station, respectively.  

The re-measurements of the NAFORMA 

plots used in the current study followed the 

NAFORMA field protocol. The plots had a 

concentric circular design with 15 m radius. 

Within each plot, diameter at breast (dbh) for 

the trees was measured using calipers or 

diameter tape following the concentric plot 

design described in Fig. 3. Height 

measurements were done for every fifth tally 

tree in the cluster by using a Suunto 

hypsometer. Identification of species names 

of every recorded tree in the plot was done 

by the professional botanist from Tanzania 

Forest Research Institute (TAFORI). The 

identification was also guided by the 

previous tree species information recorded 

by NAFORMA in 2011 to ensure 

consistency between the two measurements 

and that the same names were used for every 

measured tree. For all the trees that were 

identified, the species names were further 

confirmed by using NAFORMA checklist to 

ensure that botanic names are correctly 

recorded. This was done in the Herbarium at 

Lushoto Silviculture Research Centre before 

further analysis. 

On each plot, information on vegetation 

types were also recorded. For this study, all 

the dataset was grouped into three distinct 

vegetation types (NAFORMA broad 

categories); woodlands, forest, and other 

vegetation types as described in Table 1, and 

further elaborated in MNRT (2011). This 

information was used to stratify the plots into 

more homogeneous ecological groups with 
the objective of helping to explain the variation 

in tree species diversity better. 

Figure. 3. NAFORMA concentric sample 

plot design 

 

 

 

1) Within 1 m radius; all trees with dbh 

> 1cm were recorded 

2) Within 5 m radius; all trees with dbh 

> 5 cm were recorded 

3) Within 10 m radius; all trees with 

dbh >10 cm were recorded 

4) Within 15 m radius; all trees with 

dbh > 20 cm were recorded 
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Table 1. Brief description of the structure and biological values of the three vegetation types. 

Vegetation 

types 
Description Biodiversity 

Forest 

The forest category referred to in this study comprised of low land 

forests. 

• They occur at an elevation less than 800m.  

• They are characterized by semi ever green closed and dense 

canopy. 

High biodiversity 

values 

Woodlands 

• Generally, the canopy cover for the woodlands is less dense as 

compared to forest. 

• Trees are well spaced with short trunked and spreading canopies.  

• Most of the woodlands are deciduous. 

Moderate biodiversity 

value 

Other 

vegetation 

types 

• This category, refers to bushland, grassland and cultivated land.  

• The canopy cover in these categories is sparser as compared to 

forest and woodlands.  

• Detail description of individual categories are given in MNRT 

(2011). 

Less biodiversity value 

 

Calculation of the measures of tree 

species diversity 

In this study, tree species richness and 

Shannon diversity index were considered as 

the commonly used measures of tree species 

diversity. Calculation of the two measures of 

tree species diversity was done for each 

sample plot, and only trees with dbh ≥ 5 cm 

were considered. Tree species richness (S) 

was calculated by summing the number of 

tree species in each of the plot i, while 

Shannon diversity index (H') was calculated 

as: 

𝐻′ = − ∑ 𝑝𝑖
𝑆
𝑖=1 ln 𝑝𝑖  

Where:  pi =  the proportion abundance of 

the ith species relative to the 

total abundance of all the 

species (S) sampled in the 

plot i 

ln = the natural logarithm.  

Shannon diversity index assumes that the 

𝑝𝑖 ’𝑠 are population parameters where all the 

species in the population are known. 

However, in practice, the reported Shannon 

diversity index is only an estimator of the 

population and is biased because the number 

of species observed in the sample (e.g., field 

plot) is less than species in the population. 

But, if sampling is adequate, this bias is 

considered to be small (Oldeland et al. 

2010). 

All the calculations and plotting were done 

by using vegan library (Oksanen et al. 2011) 

in R statistical software following the 

procedure by Kindt and Coe (2005). 

Summary statistics for the tree species 

richness, and Shannon diversity index over 

the different vegetation types are presented 

in Table 2. 

 

Table 2. Number of field sample plots (n), total tree species richness, mean, standard error (Se) 

of tree species richness and Shannon diversity index for different vegetation types. 

Vegetation type a  n 
Tree species richness Shannon diversity index 

Total Mean Se Mean Se 

Woodlands  387 239 5.36 0.12 1.20 0.02 

Forest 40 90 6.68 0.36 1.29 0.07 

Agriculture and other cover types 57 79 3.23 0.31 0.73 0.08 

All 484 270 5.22 0.12 1.15 0.02 
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ALS data 

The ALS data were acquired in the period 

between 10 February and 7 March 2012. 

Thirty-two parallel strips with an average 

width of 1374 m, were systematically 

distributed over the study area in east-west 

direction. The ALS strips were spaced 5 km 

apart, following the NAFORMA 5×5 km 

grid. A Leica ALS 70 airborne laser sensor 

(Leica Geosystems AG, Switzerland), 

carried by a Cessna 404 aircraft was used for 

data acquisition. The measurements were 

acquired from an average flying altitude of 

approximately 1200 m above the ground, at 

an average ground speed of 77.2 ms-1. The 

sensor was operated at a pulse repetition 

frequency of 193 kHz, with a scan rate of 

36.5 Hz. The beam divergence was 0.28 m 

rad which produced an average footprint size 

on the ground of about 34 cm. The average 

pulse density was 1.8 m−2. 

The data were initially processed by the 

contractor (TerraTec AS, Norway), where 

the first step was to classify echoes into 

ground- and vegetation echoes. Then, a 

terrain model was built using the progressive 

Triangular Irregular Network (TIN) 

densification algorithm (Axelsson 2000) 

implemented in TerraScan software (Anon 

2012). The heights above ground (the TIN 

surface) were calculated for all vegetation 

echoes by subtracting the respective xy-

corresponding TIN heights from the echo 

height values. Up to four echoes were 

registered per pulse and three echo categories 

classified as “single”, “first of many”, and 

“last of many” were used. The “single” and 

“first of many” echoes were pooled into one 

dataset denoted as “first” echoes, and 

correspondingly, the “single” and “last of 

many” echoes were pooled into a dataset 

denoted as “last” echoes.  

Separate height distributions were derived 

from the first and last ALS echoes and used 

to extract ALS metrics for each sample plot. 

A threshold of 1.3 m above ground was used 

to separate canopy echoes. Below this height, 

echoes were considered to have been 

reflected from shrubs, grass, or ground, i.e., 

non-tree objects. Height variables for first 

and last echoes including maximum value 

(MaxF and MaxL), mean value (MeanF and 

MeanL), coefficient of variation (CVF and 

CVL), and percentiles at 10% intervals 

labeled PF0, PF10, …, PF90 (first echoes) 

and PL0, PL10, …, PL90 (last echoes), were 

computed. Furthermore, several measures of 

canopy density were derived. Canopy 

density was calculated for 10 different 

vertical layers according to Næsset (2004). 

The height of each layer was defined as one 

tenth of the distance between the 95 

percentile and the lowest canopy height, i.e., 

1.3 m (Gobakken et al. 2012). Canopy 

densities were then computed as the 

proportions of ALS echoes above fraction 

#0, 1, …, 9 to total number of echoes, and 

denoted TF0 (>1.3 m), TF1, …, TF9 for the 

first echoes and TL0, TL1, …, TL9 for the 

last echoes. 

Statistical analyses 

Outline of the analyses 

Parametric and non-parametric methods 

were used to develop statistical relationship 

between the measures of tree species 

diversity and the ALS metrics. Specifically, 

linear mixed effects models (LMMs) and the 

k-NN approach were used. The analyses 

were performed based on the following steps 

below: 

1. Explanatory variables for predicting 

each of the measures of tree species 

diversity (i.e., tree species richness and 

Shannon diversity index) were selected 

separately for fitting LMMs. 

2. Separate LMMs for tree species 

richness and Shannon diversity index 

were fitted. 

3. Multivariate approach was then used 

for selecting explanatory variables and 
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predicting measures of tree species 

diversity using k-NN techniques. 

4. Both of the two methods were 

evaluated and compared using 

measures of reliability derived from 

the cross validation. 

5. Effects of vegetation types on the 

prediction accuracy of the measures of 

tree species diversity for each of the 

method was assessed. 

Parametric method 

Model development (LMMs) 

When modelling measures of tree species 

diversity using ALS data previous studies 

(e.g., Fricker et al. 2015, Hernández-

Stefanoni et al. 2014, Wolf et al. 2012) have 

mostly used ordinary least square regression 

(OLS). However, in this study the sampling 

design characteristics employed by 

NAFORMA imposes a hierarchical data 

structure where the field plots are nested 

within the clusters. Theoretically this may 

induce a spatial dependency among the plots 

measured from the same cluster, and thus it 

is likely that the basic assumptions of 

uncorrelated error terms might not hold. 

LMM in this case was potentially an ideal 

tool for development of predictive models 

that account for dependence of the plots 

within the clusters, but also for ensuring that 

the modelling procedure adheres to the 

sampling design. LMM essentially consists 

of two main parts i.e., a fixed effect- and 

random effect part. The fixed effects are 

common to all subjects, while random effect 

parameter is specific to each subject 

(Pinheiro and Bates 2000). 

Model development for each of the measures 

of tree species diversity started with variable 

selection, i.e., separate explanatory variables 

were selected for richness and Shannon 

diversity index. In both cases a subset 

regression technique was used for variable 

selection. Specifically, reg-subsets function 

implemented in the leaps Package of the R 

software (Team 2014), was used. The model 

statistics used to determine the best subsets 

was Bayesian Information Criterion (BIC). 

The selection of the variables was limited to 

the best combinations of four or fewer 

variables in order to avoid multicollinearity 

among candidate predictors. Variance 

inflation factor (VIF) values for each of the 

parameters (βs) were computed, VIF values 

greater than 10 was considered as an 

indication of multicollinearity. Variable 

combinations that yielded VIF-values higher 

than this threshold were excluded from the 

model (O’Brien 2007). 

To account for heteroscedasticity and non-

linearity, the model for tree species richness 

was fitted with natural-log transformation of 

the response variable and non-transformed 

predictor variables. Such model form has 

been used by Hernández-Stefanoni et al. 

(2014) with good results when modelling and 

predicting tree species richness using ALS 

data. For Shannon diversity index non-

transformed model was used. All the models 

were fitted using restricted maximum 

likelihood estimation (REML) procedure in 

lme4 package (Pinheiro et al. 2007) of the R 

software (Team 2014). Quality of the model 

fits (coefficient of determination) were 

assessed by using pseudo R-square (R2) 

computed as the square of the Pearson 

correlation coefficient between observed and 

predicted values.  

Accuracy assessment 

In order to assess the prediction accuracy of 

tree species richness and Shannon diversity 

index when using ALS data, leave one out 

cross validation (LOOCV) at the cluster level 

was applied, to ensure that hierarchical data 

structure was preserved during re-sampling 

(i.e., leave one cluster out). The predicted 

values from LOOCV were corrected for 

biasness due to logarithmic transformation 

using the method suggested by Snowdon 

(1991). The accuracies of the prediction from 

the LOOCV for tree species richness and 

Shannon diversity index were evaluated by 

using relative root mean square error 

(RMSEcv%):  
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RMSECV% =
√∑ (𝑦𝑖 − 𝑦̂)2 𝑛⁄𝑛

𝑖=1

𝑦̅
× 100 

where yi and 𝑦̂ denote observed and predicted 

tree species richness and Shannon diversity 

index respectively, for plot i, and 𝑦̅ denotes 

their mean field observed value for all plots.  

Non-parametric method 

k-NN imputation 

Non-parametric methods have gained wide 

acceptance in ecologically based studies 

given their unique ability to account for 

complex relationships and spatial patterns as 

compared to the traditional probability based 

approaches (Drew et al. 2010). Furthermore, 

these methods allow univariate and 

multivariate predictions of both continuous 

and categorical variables. In this study, the k-

NN imputations method carried out with the 

package yaImpute (Crookston and Finley 

2008), was used. In k-NN language and set 

up the dataset should be distinguished 

between reference and target sets. The 

population units for which observations of 

both response and explanatory variables are 

available is labeled reference set; the set of 

the population units for which only the 

explanatory variables are available is termed 

as the target set. In this study, the reference 

set contained both measures of tree species 

diversity (i.e., tree species richness and 

Shannon diversity index) and the ALS 

metrics, while the target set contained only 

the ALS metrics. 

In typical k-NN imputation, the dependent 

variable for the target observation is 

predicted by means of finding its k nearest 

neighbour observations in the reference 

dataset and assigning the value of the 

variable to be the weighted averages of the 

values of the neighbours. Nearness of the 

observations is measured with the 

independent variables and is defined in terms 

of weighted Euclidean distance. The 

principle behind k-NN imputation as it is 

applied in this study is further explained in 

Eskelson et al. (2009), McRoberts (2012) 

and its use for forest parameter estimation in 

yaImpute statistical environment can be 

found in Hudak et al. (2008).  

In order to identify predictor variables for 

predicting tree species richness and Shannon 

diversity index simultaneously, multivariate 

variable selection was firstly done by using 

the VarSelection function in the R yaImpute 

package. Model fitting and imputation were 

then performed by using yai and impute 

functions within the yaImpute package. In 

this package, any k number of reference 

observations can be selected to impute the 

target. The k values were tested from 1 to 10 

and selected the value with lowest RMSEcv 

from cross validation. LOOCV at the cluster 

level was used, where one cluster at time was 

used as the target set while the remaining 

clusters were used at the reference set. The 

imputed values from the LOOCV were used 

to compute RMSEcv% as described in the 

equation and used to compare with LMM. 

Effect of vegetation types on the prediction 

accuracy 

To account for the variability in prediction 

accuracy that might be caused by the 

differences in vegetation types, LMMs that 

relates each of the measures of tree species 

diversity and ALS data, were firstly fitted 

with dummy variable that specify vegetation 

types and evaluated. Secondly, vegetation 

specific LMMs for each of the measures of 

tree species diversity were fitted and 

evaluated. Same procedure described above 

for variable selection and accuracy 

assessment was applied. Lastly, multivariate 

k-NN imputation with k = 1 was also applied 

for each of the vegetation type. RMSEcv% 

from the LOOCV for each of the method was 

calculated to assess the variability in 

prediction accuracy across different 

vegetation types.  

 

RESULTS  

Parametric method 

Based on the results from best subset 

regression predictor variables derived from 

both the first and last echoes were selected. 
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The number of predictors for the individual 

models were four consisting of both canopy 

height and canopy density metrics. For all the 

selected variables, the VIF values were < 10, 

indicating acceptable levels of 

multicollinearity. Similarly, the parameter 

estimates for LMMs fitted for each of the 

measures of tree species diversity (Table 3), 

were significantly different from zero (p < 

0.05). The LMMs explained relatively more 

of the variation in tree species richness as 

compared to Shannon diversity index. 

However, results from the LOOCV indicated 

lower RMSEcv% values for Shannon 

diversity index as compared to tree species 

richness (Table 4).  

Table 3: Parameter estimates of LMMs for tree species richness and Shannon diversity 

index. 

Tree species richness  Shannon diversity index 

Predictor 
variables 

Parameter 
estimates 

Standard error  
Predictor 
variables 

Parameter 
estimates 

Standard error 

Intercept 0.6372 0.0872  Intercept 0.4850 0.0788 

MaxF 0.0346 0.0072  MaxF 0.0262 0.0064 

PF20 -0.0782 0.0115  PF10 -0.0518 0.0123 

TL0 -0.8061 0.1769  TF2 1.4667 0.1894 

TF2 2.0465 0.2002  TL0 -0.7453 0.1662 

PF20 = Percentiles of the first echo canopy heights for 20% (m); 

TF2 = Canopy densities corresponding to the proportion of first echoes above fraction #2; 

TL0 = Canopy densities corresponding to the proportion of last echoes above fraction # 0 (1.3m); 

MaxF = Maximum of the canopy height distributions of the first echoes. 

 
Table 4. Pseudo-R

2
 (R

2
), absolute root mean square error (RMSE), and relative root mean 

square error (RMSECV%) from the LOOCV for predicted tree species richness and 

Shannon diversity index using LMMs and k-NN. 

Measures of tree 

species diversity 

LMMs k-NN 

Predictor 

variablesa 

R2 RMSECV RMSECV 

(%) 

Predictor variablesa RMSECV RMSECV 

(%) 

Tree species 

richness 
MaxF, PF20, 

TL0, TF2 
0.46 2.12 40.7 

TF2, TF8, PF10, 

PL60, TL8, PL0, 

PF60, TF0 PF90, 

CVL, PF20  

2.15 41.2 

Shannon diversity 

index 

MaxF, PF10, 

TL0, TF2  
0.39 0.45 39.1 

TF2, TF8, PF10, 

PL60 TL8, PL0, 

PF60, TF0 PF90, 

CVL, PF20  

0.46 40.0 

a PF10, PF20, PF60, PF90 = Percentiles of the first echo canopy heights for 10%, 20%,60% and 90% (m);  
PL60 = Percentiles of the last echo canopy heights for 60% (m); 

TF2, TF8 = Canopy densities corresponding to the proportion of first echoes above fraction #2 and #8;  

TL0, TL8, = Canopy densities corresponding to the proportion of last echoes above fraction #0 (1.3m), and #8; 
MaxF = Maximum of the canopy height distributions of the first echoes; 

CVL = Coefficient of variations of the last echo laser canopy heights. 

Non-parametric 

Multivariate predictions for both tree species 

richness and Shannon diversity index were 

performed using k-NN imputation models 

(Table 4). A total of eleven predictor 

variables were selected from the multivariate 

variable selection procedure. The imputation 

for both tree species richness and Shannon 

diversity index resulted in into lowest values 

of RMSEcv% when using imputation model 

with 10 neighbours. The RMSEcv% for 

Shannon diversity index was relatively low 

as compared to tree species richness. 

Comparing the two methods (i.e., LMMs and 

k-NN), the RMSEcv% for both tree species 

richness and Shannon diversity index were 

slightly lower for the LMMs compared to the 

k-NN. 
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Effect of vegetation types on prediction 

accuracy 

The results suggest that vegetation types 

affect the relationship between the measures 

of tree species diversity and the ALS data. In 

the first approach, where the model fitted 

with dummy variables, indicated that for 

both tree species richness and Shannon 

diversity index, the parameter estimates for 

the dummy variables were significantly 

different from zero (p < 0.05) (Table 5). The 

standard error of parameter estimates for the 

LMMs with dummy variables were 

relatively low as compared to the LMMs 

without dummy variables. This is further 

shown by the results from the LOOCV where 

the RMSEcv% of the LMMs with dummy 

variables (Table 6) is relatively small as 

compared to the model without dummy 

variable. In the second approach where 

vegetation specific models were fitted, the 

influence of vegetation was proved to affect 

the prediction accuracy. Different predictor 

variables in each of the vegetation types were 

selected from the best subset procedure 

(Table 6). The variability explained by the 

vegetation specific LMMs ranged from 0.34 

to 0.53 for tree species richness and from 

0.32 to 0.47 for Shannon diversity index 

(Table 6). The results from the LOOCV 

indicated variation in prediction accuracy 

across the different vegetation types. Lowest 

RMSEcv% for predicting tree species 

richness across vegetation types was 

obtained in woodlands, while for Shannon 

diversity index the lowest value was obtained 

in forest (Table 6). Variations in prediction 

accuracy as measured by the RMSEcv% 

among the vegetation types were also 

observed when using k-NN (Table 7).  

Table 5. Parameter estimates of LMMs for tree species richness and Shannon diversity index 

with dummy variables 

Tree species richness Shannon diversity index 

Predictora 

variables 

Parameter 

estimates 

Standard 

error 

Predictor 

variables 

Parameter 

estimates 

Standard 

error 

Intercept 0.3377 0.0971 Intercept 0.2798 0.0909 

MaxF 0.0315 0.0070 MaxF 0.0234 0.0063 

PF20 -0.0760 0.0111 PF10 -0.0492 0.0120 

TL0 -0.7082 0.1755 TF2 1.3551 0.1859 

TF2 1.8926 0.1918 TL0 -0.6592 0.1701 

Forest 0.4229 0.1183 Forest 0.2682 0.1117 

Woodlands 0.4283 0.0796 Woodlands 0.2982 0.0748 
a PF20 = Percentiles of the first echo canopy heights for 20% (m);  

TF2 = Canopy densities corresponding to the proportion of first echoes above fraction #2;  

TL0 = Canopy densities corresponding to the proportion of last echoes above fraction #0 (1.3m);  

MaxF = Maximum of the canopy height distributions of the first echoes; 

Forest and woodlands = Vegetation types according to MNRT (2011) 

Table 6. Predictor variables, number of field sample plots (n), Pseudo-R
2
 (R

2
), absolute root mean 

square error (RMSECV), and relative root mean square error (RMSEcv%) of LMM for 

tree species richness and Shannon diversity index across different vegetation types  

Measures of tree 

species diversity 
Vegetation typea Predictor variablesb n R2 RMSEcv 

RMSEcv 

(%) 

Tree species 

richness 

Woodlands MaxF, PF20, TF3, TL0 387 0.41 2.08 38.9 

Forest PF20, TF9, PL50  40 0.34 2.79 41.8 

Other cover types MaxF, MeanF, TF1, TL0 57 0.36 1.84 57.0 

All 
MaxF, PF20, TL0, 
TF2, DUMMY 

484 0.45 2.10 40.2 

Shannon 

diversity index 

Woodlands CVF, TF4, PF40  387 0.32 0.42 35.0 

Forest PF40, TF8, MaxL, TL0  40 0.47 0.35 27.0 

other cover types MaxL, TF2  57 0.39 0.53 73.0 

All 
MaxF, PF10, TL0, TF2, 

DUMMY 
484 0.38 0.44 38.0 
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a Vegetation types according to MNRT (2011). 
b PF10, PF20, PF40 = Percentiles of the first echo canopy heights for 10%, 20%, 40% (m);  
PL50 = Percentiles of the last echo canopy heights for 50% (m);  

TF1, TF2, TF3, TF4, TF8, TF9 = Canopy densities corresponding to the proportion of first echoes above 

fraction #1, # 2, #3, #4, #8, and #9; 

TL0 = Canopy densities corresponding to the proportion of last echoes above fraction #0 (1.3m);  

MeanF and MeanL = Arithmetic mean of first and last echo laser canopy heights (m); 

MaxF and MaxL = Maximum of first and last echo laser canopy heights (m);  
CVF and CVL = Coefficient of variations for the first and last echo respectively;  

DUMMY= vegetation types (0 = Other cover types, 1 = Forest, 2 = Woodlands = 3). 

 
Table 7. Predictor variables, number of field sample plots (n), absolute root mean square error 

(RMSEcv), and relative root mean square error (RMSEcv%) of the multivariate k-NN 

imputations for tree species richness and Shannon diversity index across different 

vegetation types. 

a Vegetation types according to MNRT (2011). 
b PF10, PF40, PF90, PF80, PF90 = Percentiles of the first echo canopy heights for 10%, 40%, 90%, 80%, and 

90% (m);  

PL10, PL40, PL60, PL70 = Percentiles of the last echo canopy heights for 10%, 40%, 60, and 70% (m);  
TF1, TF2, TF4, TF8, TF9 = Canopy densities corresponding to the proportion of first echoes above fraction #1, 

# 2, # 3, #4, #8, and #9; 

TL0, TL2, TL3, and TL9 = Canopy densities corresponding to the proportion of last echoes above fraction #0 

(1.3m), #2, #3, and #9; 

MaxL = Maximum of last echo laser canopy heights (m). 

 

DISCUSSION 

The main objective of the study was to 

examine the usefulness of ALS data for 

modelling and predicting measures of tree 

species diversity in miombo woodlands of 

Tanzania. More specifically the performance 

of parametric and non-parametric methods 

for modelling and predicting tree species 

richness and Shannon diversity index using 

ALS data, were tested and evaluated. 

Overall, the study has showed that, ALS data 

can be used for modelling and predicting tree 

species richness and Shannon diversity 

index. Both tree species richness and 

Shannon diversity index are often used as 

measures of tree species diversity in remote 

sensing literature (e.g., Leutner et al. 2012, 

Laurin et al. 2014). 

Based on the results from LMMs, more 

variations were explained by the ALS data 

when predicting tree species richness as 

compared to Shannon diversity index. 

Similar findings have been reported by 

Leutner et al. (2012) who assessed the 

potential of ALS and hyperspectral data for 

predicting plant species richness and 

Shannon diversity index in the temperate 

forests of Germany. The reason for this 

difference is unclear and opens questions for 

further investigations. However, irrespective 

of this difference, in an ecological context, 

Shannon diversity index is considered as a 

more appropriate measure of tree species 

Measures of tree 

species diversity 
Vegetation type a Predictor variables n RMSECV 

RMSECV 

(%) 

Tree species 
richness 

Woodlands TF2, PL40, PF0, PF90, TF4  387 2.84 53.0 

Forest 
PL70, PF40, TL9, TL0, PF60, TF8, 

TF6, MaxL, TL2, PF90, TL3, PL10  
40 2.99 44.8 

Other cover types TL0, TF1, PF80, PL60, YTF8  57 2.93 90.7 

Shannon diversity 

index 

Woodlands TF2, PL40, PF0, PF90, TF4 387 0.59 49.2 

Forest 
PL70, PF40, TL9, TL0, PF60, TF8, 

TF6, MaxL, TL2, PF90, TL3, PL10  
40 0.50 39.0 

Other cover types TL0, TF1, PF80, PL60, TF8  57 0.72 99.0 
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diversity as compared to tree species 

richness, because it has the attributes of both 

richness and evenness. Besides that, 

Shannon diversity index is considered to be 

a better indicator for describing forest 

structure when using remotely sensed data as 

compared to tree species richness (Foody and 

Cutler 2003). Use of Shannon diversity index 

in remote sensing based studies has also been 

suggested by others using both ALS and 

other remotely sensed data (e.g., Oldeland et 

al. 2010, Laurin et al. 2014) 

Assessment of the performance of the two 

prediction methods, i.e., LMMs and the k-

NN, has shown that both of the methods can 

reliably be used for predicting the measures 

of tree species diversity. The choice between 

them may therefore depend on the objective. 

For example, for making spatially consistent 

predictions of the multiple measures of tree 

species diversity, it is more reasonable to 

consider the use of k-NN. This is in-line with 

earlier studies that reported the strength of 

the k-NN over the parametric based methods 

(e.g., Moeur and Stage 1995, McRoberts et 

al. 2002). LMM being a parametric method 

is more applicable if the interest is to 

examine the relationship between individual 

measures of tree diversity and the ALS data, 

which is important for deriving ecological 

interpretation of relationship between the 

measures of tree species diversity and the 

respective ALS metrics.  

The assessments of the effects of vegetation 

types on the prediction accuracy of both 

LMMs and k-NN have shown that vegetation 

types had significant impact on the 

prediction accuracy of the measures of tress 

species diversity when using ALS data. The 

parameter estimates of the dummy variables 

representing vegetation types were 

significantly different from zero when 

incorporated in the LMMs for predicting tree 

species richness and Shannon diversity 

index. This indicates that different vegetation 

types have different tree species diversity 

and spatial structure which entirely affect the 

relationship between the measures of tree 

species diversity and the ALS measurement. 

The importance of accounting for the effects 

of the vegetation types in the LMMs was also 

demonstrated by the results from LOOCV 

where the LMMs with dummy variables 

turned out to have lower RMSEcv% as 

compared to the LMMs without dummy 

variable. The variability imposed by 

different vegetation types was further 

indicated by different prediction accuracies 

when testing and evaluating both LMMs and 

k-NN across different vegetation types. As 

compared to LMMs, the RMSEcv% values 

for the k-NN were relatively higher across 

different vegetation types. This might be 

attributed to the relatively low number of 

observations, since imputations methods are 

generally more sensitive to the number of 

observations as compared to parametric 

methods. The variability in prediction 

accuracy obtained across vegetation types, 

implies that it is important to control for the 

effect of vegetation types when making large 

scale estimation by post stratifying the area 

into different vegetation types.  

Generally, the findings of this study in terms 

of model quality criterions such as R2 and 

RMSEcv% are in accordance with other 

published studies that have attempted to use 

ALS data for predicting measures of tree 

species diversity in the tropical forests 

(Fricker et al. 2015, Wolf et al. 2012). For 

example, Wolf et al. (2012) reported R2 of 

0.48 when predicting tree species richness in 

the Neotropical forests of Panama. However, 

some of the studies from the tropical forests 

have reported relatively better results (e.g., 

Hernández-Stefanoni et al. 2014, Laurin et 

al. 2014) than what is obtained from this 

study. This is not surprising since in most 

cases the predictive ability of the remotely 

sensed data varies with the ecosystem and 

biogeographical context (Camathias et al. 

2013). Furthermore, the differences in 

factors such as number of species, field 

design, data characteristics, and scales of 

reporting may attribute to the differences in 

prediction accuracy among the studies. It is 

therefore, important to mention some 

possible sources of errors that might have 

attributed to relatively low prediction 
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accuracy in this study. The plot size used was 

relatively small compared to remote sensing 

based studies in ecology, where one hectare 

plot size has commonly been used (e.g., 

Asner and Mascaro 2014, Asner et al. 2012, 

Mascaro et al. 2011). In ALS-based studies, 

smaller plots have been reported to be a 

source of model errors due to the poor 

overlap between the field- and ALS-data. 

Thus, larger plots would most likely have 

helped in reducing the residual errors of the 

models. The effect of field plot size on ALS-

based inventories is extensively analyzed in 

AGB related studies in the tropical forests 

(e.g., Mascaro et al. 2012, Mauya et al. 2015) 

and same pattern in tree species diversity 

related studies would be expected. For 

example, Hernández-Stefanoni et al. (2014) 

compared the prediction accuracy of tree 

species richness at different plot size ranging 

from 400 m2 to 2200 m2 and indicated that 

the R2 increased from 0.32 to 0.67. Another 

source of error that might have affected the 

accuracy of the model, is the NAFORMA 

subsampling procedure illustrated in Fig. 3. 

Since not all the trees within the plots were 

considered during measurement, we may 

expect a slight mismatch with what has been 

captured by the ALS data. Furthermore, with 

the NAFORMA subsampling procedure, it is 

possible that there is under-estimation of tree 

species diversity, particularly when using 

Shannon diversity index, which theoretically 

assumes that all the species are represented 

in the sample. 

While this study focused on the use of ALS 

alone, future studies should attempt to 

combine ALS with other remotely sensed 

data that have large spatial coverage such as 

hyperspectral images. This will likely also 

improve the prediction accuracy of the 

models, as the two types of sensors will 

complement each other, especially when 

modelling multi-layered forests (e.g., Laurin 

et al. 2014; Dalponte et al. 2008). 

Hyperspectral data are useful in providing 

detailed surface reflectance characteristics, 

while ALS data adds detailed three-

dimensional positioning information. 

Moreover, this study focused on the 

commonly used ALS metrics that have 

widely been proved efficient in the 

prediction of various biophysical parameters 

including tree species diversity. However, 

further studies should be devoted in 

exploring other types of metrics such as 

texture based metrics that might improve the 

prediction accuracy of the models. 

 

CONCLUSION 

In this study the potential of using ALS data 

for predicting measures of tree species 

diversity in the miombo woodlands of 

southern Tanzania has been analyzed. LMMs 

and k-NN imputations were tested and 

evaluated, and the results suggested that both 

approaches are promising tools for 

modelling and predicting measures of tree 

species diversity. The prediction accuracies 

of tree species richness and Shannon 

diversity index were affected by the 

differences in structural properties attributed 

by the vegetation types. Fusion of ALS data 

with other remote sensing techniques such as 

hyperspectral dataset is considered as an 

avenue for future research that might 

improve the prediction accuracy of trees 

species richness and Shannon diversity 

index. 
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