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Abstract 

Tomato leaf miner (Tuta absoluta (Gelechiidae)) is a serious tomato insect pest in Tanzania, and its management or 

control still posess significant challenge. If left uncontrolled, the loss inflicted by the miner can be as high as 100%. 

Successful management of the pest may leverage on an integrated pest management (IPM) approach which, requires 

high throughput data on damage signs over space and time. This needs, in turn, a robust technique for pest monitoring. 

This study uses a deep learning technique to detect infestation symptoms of T. absoluta on tomato plants. The 

technique is rapid, automated and doesn’t require trained or experienced personnel. An experiment was carried out at 

Sokoine University of Agriculture (SUA), where two sets of tomato plants (cv. Asila F1) were planted in a screen 

house and in an open field. High-quality images of the tomato leaves were captured from both sets at seven days 

intervals for 70 days following transplanting. More images were collected from tomato gardens around Morogoro 

town. Collected images were labeled as being infested  or non-infested. A simple convolution neural network (CNN) 

architecture with four convolution layers, three pooling layers, one flat layer and one dense layer, powered by Keras 

library and python’s Tensorflow backend, was developed in R-Software.  The model accuracy was 90% on training 

and 82% on test data sets. This study suggests that the model can accurately identify T. absoluta infestation in tomato 

plants to a considerable extent. An in-depth discussion of the technique is provided in the paper.  
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Introduction  

Tomato is one of the most important vegetable crops in Tanzania, primarily as a source of income 

and livelihood and as food due to its high content of phenolic compounds, carotenoids, vitamins 

and glycoalkaloids, essential for prevention of chronic degenerative disorders in humans 

(Chaudhary et al., 2018). The tomato subsector is apparently dominated by small-scale farmers, 

whose yields range from 2.2 tons/ha to 16 tons/ha, far below the potential of 40 t/ha (Msogoya and 

Mamiro, 2016). Pests and diseases are among the most significant barriers to achieving high 

tomato productivity (Aloyce et al., 2019; Materu and Losujaki, 2019). Lately, the tomato leaf 

miner (Tuta absoluta (Gelechiidae)) has been acknowledged as a severe tomato insect pest in the 

Eastern African region, capable of inflicting 100% loss if left uncontrolled (Illakwahhi and 

Srivastava, 2017; Esther et al., 2019). T. absoluta was first reported in northern Tanzania in 2014 

(Chidege et al., 2016) and has, since then spread all over the country. Nevertheless, its management 

or control still pose considerable challenge mainly because of its prolific reproduction nature and 

concealment of larvae which feed under the plant tissues. Several studies have reported several 

approaches to control T. absoluta, including the use of insecticides (Rwomushana et al., 2019), 

natural enemies and parasitoids (Soares et al., 2019; Zekeya et al., 2019) or integrated pest 

management (IPM) (Illakwahhi and Srivastava, 2017).  

IPM approaches have been reported to be promising in the management of T. absoluta scourge. 

However, IPM entails comprehensive crop pest monitoring to provide growers with a practical 

decision-making tool (Preti et al., 2021). The pest monitoring data can feed into pest prediction 

models for forecasting the next insect outbreak. A wide range of techniques for insect monitoring 

exists, including traps and assessing the visual signs of damage (Preti et al., 2021). In all cases, 

trained personnel have to directly visit the observation points, resulting in increased costs, 

inefficiency, and limited sample size. Besides, the correctness of monitoring depends on the 

knowledge and experience of the technician and therefore prone to subjectivity.  

As a leap step towards monitoring T. absoluta, we developed a computer vision tool for detecting 

visual damage signs of the pest on tomato leaves based on images taken by cameras. While 

traditional T. absoluta monitoring involves sending out technicians to the field to collect data, the 

current study presents a deep learning approach to detect the presence or absence of pests. If 

integrated into a smartphone application, farmers and other persons can use the tool to send real-

time data regarding infestation status to the organizations responsible for IPM or plant protection 

services. This is important because there is a considerable potential for cross-analysis and a basis 

for pest outbreak prediction when coupled to other data types.  

Deep learning is a part of machine learning techniques that, when presented with data, learn all the 

features about it in one pass without the need for feature engineering by a human expert. Unlike 

in other techniques (shallow learning), which require transformation of input data into one or two 

representation spaces through simple transformations such as support vector machine or decision 

trees, feature engineering is automated in deep learning. Concise accounts of the deep learning 

approach have been given by Deng and Yu (2014), Rusk (2016), and Paszke et al. (2019). 

Convolutional neural network (CNN) is an extension of the deep learning technique, getting this 

name from mathematical linear operation between matrixes called convolution (Albawi et al., 

2017). CNN has wide applications, especially in image data classification, computer vision (Khan 

et al., 2018), and in natural language processing (NLP) (Yin et al., 2017). A simplified treatment 

of CNN techniques is provided by O’Shea and Nash (2015). 



CNN architectures in plant diagnostics leverage the distinctive appearance of diseased or infested 

plant organs instead of those free from disease or insects. Considerable successes have been 

reported over the use of CNN models in plant disease/insect damage diagnostics. Sladojevic et al. 

(2016) applied a pre-trained CaffeNet CNN architecture to detect about 13 types of plant diseases 

based on leaf image classification with an average accuracy of 96.3%. Zhang et al. (2018) 

implemented such CNN architectures as AlexNet, GoogLeNet and ResNet to identify the tomato 

leaf diseases, where ResNet was considered the best among all the architectures used. Arsenovic 

et al. (2019) proposed PlantdiseaseNet CNN architecture to detect diseases in real agricultural 

field, achieving an accuracy level of 93.4%. Remarkably few studies have dealt with T. absoluta 

detection within the context of CNN techniques. Mkonyi et al. (2020) compared pre-trained CNN 

architectures, namely VGG16, VGG19 and ResNet50 in terms of their performance metrics in 

detecting T. absoluta infestation in tomatoes, where VGG16 attained the highest accuracy of 

91.9%. Rubanga et al. (2020) implemented four pre-trained CNN architectures (VGG16, VGG19, 

ResNet and Inception-V3), where Inception-V3 achieved the highest accuracy (87.2%) in 

classifying T. absoluta infested from non-infested tomato leaves. Unlike in the reported studies 

above, our approach is unique since we use a custom-built CNN architecture to detect  T. absoluta 

damage signs in tomato plants under both controlled and field conditions. The custom-built CNN 

model allows flexibility for adapting specific contexts related to T. absoluta infestation and can 

work in a low volume of training data sets.  

The objective of this study was to develop a machine vision model for the detection of T. absoluta 

infestation in tomato fields. Specifically, a simple convoluted neural network (CNN) model was 

developed, trained, validated and tested for its ability to classify the presence or absence of damage 

signs of T. absoluta exhibited by burrows on tomato leaves.  

The rest of this paper is organized as follows: the materials and methods section, results discussion 

and the conclusion section winding the paper.  

Materials and Methods 

An experiment was carried out at Sokoine University of Agriculture (SUA) within the Horticulture 

Unit (Morogoro Urban), where two sets of tomato plants (cv. Asila F1) were planted. One set of 

10 plants in 4-litre pots was grown in the screen house, and another set of ten plants was grown in 

the open field. The screen house set was free from T. absoluta infestation, unlike the open field 

set, which was severely infested as evidenced by adult moths obtained from sweep net trappings 

conducted during the experiment. A digital camera (Nikon COOLPIX AW120) was used to 

capture high-quality images of the tomato plant leaves at seven days interval for the next 70 days 

after transplanting. In addition,  images of tomato plant leaves were collected from tomato gardens 

around Morogoro town at Mazimbu (Morogoro Urban), Sangasanga and Mlali villages in 

Mvomero District (Fig 1). Collected images were labeled as being infested (if there were burrow 

lines) or non-infested if there were none. Therefore, a total of 2,600 images were collected. In each 

class, 80% of the images were allocated for training and validation while 20% was used to test a 

deep learning model.  

 



  

Figure 1 Map of Tanzania (inset), Mvomero District, and Morogoro Urban.  Red dots indicate 

locations where images for training, validation and testing were collected from 

 



CNN architecture 

Input images were resized to 400*400 pixels and assigned to categorical labels of 0 and 1 (infested 

and non-infested, respectively). The CNN model consisted of four convolutional, three pooling, 

and fully connected layers (Fig 2). A 3x3 convolutional kernel was slid over the width, height, and 

depth (spectral bands within the image) and then passed to a non-linear activation function, 

rectified linear unit (ReLU), which returns values for input greater than 0, 0 otherwise (Equation 

1) and its’ derivative (Equation 2) (Agarap, 2018). 

𝑔𝑅𝑦𝑘′ = max⁡(0, 𝑦𝑘′) ---------------------------------------------------------------------1  

𝑔′𝑅𝑦𝑘′ = {
1⁡⁡𝑦𝑘′ > ⁡0

0⁡⁡𝑦𝑘′ ⁡< 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
--------------------------------------------------------------2 

A stride (a space step over which a convolutional kernel slides over an input layer) of 1 was used 

to ensure more overlaps between the receptive fields. A 2x2 maximum pooling window was 

employed to downsample (reduce the dimensionality) the feature maps. The filter counts were less 

in initial layers to avoid model overfitting, increasing in deeper layers as follows: 32x32 for first 

convolutional layer, 64x64 for the second convolutional layer, 128x128 for third and fourth 

convolutional layers and 256x256 for the one-dimensional fully connected (FC) layer. A softmax 

activation function (Equation 3) (Wang et al., 2018) was used in the FC layer for binary 

classification of the feature maps. Model overfitting, which would have hindered the CNN model 

from performing plausibly due to the small size of the training dataset, was dealt with a dropout 

technique (Srivastava et al., 2014).  

 

Figure 2. Illustration of a Ssimple CNN architecture (Author creation) 

 

𝑓(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑁

𝑗=1

⁡(𝑖 = 1,2, … ,𝑁) ----------------------------------------------------------3 



where x1, x2, …., xN are the input values of the FC layer, and the output values f(xi) represents the 

probability that the sample belongs to the ith category. The CNN architecture was run under the 

Keras library (Arnold, 2017) and Python’s TensorFlow distribution backend (Dillon et al., 2017) 

in an R-environment (R Core Team, 2020). The CNN model had four convolution layers, three 

pooling layers (no parameters for this layer), one flat layer and one FC layer with a total of 

36,258,851 parameters. A CNN architecture works as an information distillation pipeline where 

the raw RGB images are continually transformed so that irrelevant information is filtered out. In 

contrast, useful information is magnified and refined (Figure 3). The model training was run on a 

Dell Precision Tower 7910 Workstation and took about 26 hours to complete.  

 

Figure 3 Features map extracted from the raw image by CNN architecture. The first feature map 

retains most features of the raw image, whereas the 3rd feature map carries less of the visual content 

of the image but more of the information that is related to the class of the image 

 

CNN architecture performance metrics  

The CNN architecture’s performance was evaluated based on an overall accuracy obtained over 

three model runs (Equation 4)   

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦⁡ = ⁡
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
------------------------------------------------------- 4 

 

where TP = “True Positive”, number of infested and classified as infested, TN = “True Negative”, 

number of non infested images and classified as non-infested. FP = “False Positive”, number of 

non-infested and classified as infested and FN = “False Negative”, number of infested images and 

cclassified as non-infested.  



 

Results 

 
CNN training and validation 

 

Model training and validation was carried out in 60 epochs (iterations), where the training and 

validation losses decreased up to the 5th and 20th epochs, respectively (Fig 4). On the other hand, 

training and validation accuracy attained maximum values at the tenth and 15 epochs, respectively. 

The model attained a training loss of 0.8288 whereas its training accuracy was 90%, meaning the 

model placed most (90%) of the images into their appropriate classes.  

 

 
Figure 4 Training and validation metrics of the simple CNN model for detection of Tuta absoluta 

infestation 



CNN testing  

During training, 60 epochs were applied in the training of the CNN model. An accuracy of 82% 

was obtained when the model was presented with the test data set.  

 
CNN predictions 

 

For practical purposes, the trained CNN was used to make predictions over 200 image  dataset, 

which was not among the training, validation or testing sets, as presented in a  confusion matrix 

(Figure 5). The model was confident for 79 images, less confident in 15 images within the non-

damaged class sample, and confident with 85 images and less confident with 21 images in the 

damaged class sample.  

 

 

 

 
Figure 5. Confusion matrix indicating CNN architecture’s prediction confidence for 100 images from 

infested label and 100 images from non-infested label  

 

 

 

Discussion 

This is one of few studies related to the use of CNN architecture  to monitor T. absoluta infestation 

in tomato gardens in Tanzania. Mkonyi et al. (2020) compared three convolutional neural network 

architectures (VGG16, VGG19 and ResNet50) to classify infested against non-infested tomato 

leaves, whereas the highest accuracy was obtained from VGG16 architecture at 90.1% on the 

training dataset. In another study, Rubanga et al. (2020) employed four pre-trained CNN 

architectures to quantify the severity of T. absoluta infestation in tomato leaves, where the best 

performing was Inception-V3, attaining an average accuracy of 87.2%. The CNN model in this 

study achieved 90% accuracy on the training dataset, which is comparable to that of VGG16 and 

Inception-V3 architectures. The difference between this and the  studies mentioned above. The 

generic CNN with four convolutional layers was employed by Agarwal et al. (2019) to detect 

potato diseases and eventually attaining 99.5 and 99.8 training and testing accuracy, respectively. 

A small training dataset may have caused the discrepancy between training and testing accuracy 



in this study. This may deteriorate further if a completely new test dataset is used and the 

characteristics depart from those in the training set. This is an essential limitation to the wide use 

of CNN in constructing disease or pest damage classifiers beyond the controlled experiments 

(Soekhoe et al., 2016).   

 

Conclusion 

 

The convolutional neural network was used to segregate tomato leaves with damage signs by 

T.absoluta from  healthy ones. The training and test accuracy from this study compares well with 

other studies that have dealt with plant leaves in disease or insect damage classification using 

complex CNN architectures. Given that technical challenges in constructing  a suitable image 

database for training, such as labeling and storage, are overcome, this intelligent monitoring 

system can feed an IPM strategy for controlling T.absoluta.  
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