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Abstract 

Background:  A functional forest carbon measuring, reporting and verification (MRV) system to support climate 
change mitigation policies, such as REDD+, requires estimates of forest biomass carbon, as an input to estimate emis-
sions. A combination of field inventory and remote sensing is expected to provide those data. By linking Landsat 8 
and forest inventory data, we (1) developed linear mixed effects models for total living biomass (TLB) estimation as a 
function of spectral variables, (2) developed a 30 m resolution map of the total living carbon (TLC), and (3) estimated 
the total TLB stock of the study area. Inventory data consisted of tree measurements from 500 plots in 63 clusters in 
a 15,700 km2 study area, in miombo woodlands of Tanzania. The Landsat 8 data comprised two climate data record 
images covering the inventory area.

Results:  We found a linear relationship between TLB and Landsat 8 derived spectral variables, and there was no clear 
evidence of spectral data saturation at higher biomass values. The root-mean-square error of the values predicted 
by the linear model linking the TLB and the normalized difference vegetation index (NDVI) is equal to 44 t/ha (49 % 
of the mean value). The estimated TLB for the study area was 140 Mt, with a mean TLB density of 81 t/ha, and a 95 % 
confidence interval of 74–88 t/ha. We mapped the distribution of TLC of the study area using the TLB model, where 
TLC was estimated at 47 % of TLB.

Conclusion:  The low biomass in the miombo woodlands, and the absence of a spectral data saturation problem sug-
gested that Landsat 8 derived NDVI is suitable auxiliary information for carbon monitoring in the context of REDD+, 
for low-biomass, open-canopy woodlands.
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Background
Deforestation and forest degradation in the trop-
ics continue to be a significant source of global car-
bon dioxide (CO2) emissions and the largest source 
of CO2 in the developing world [1]. After years of 
negotiations, the United Nations Framework Con-
vention for Climate Change (UNFCCC) gradually rec-
ognized a mitigation mechanism for reducing emissions 
from deforestation and forest degradation and forest 

conservation, sustainable management of forests and 
enhancing forest carbon stock in the tropics and subtrop-
ics (REDD+) [2]. REDD+ deploys results-based finance 
to incentivize emissions reduction, based on a functional 
forest carbon measuring, reporting and verification 
(MRV) system [3]. Nevertheless, technical challenges in 
MRV [4, 5] have, thus far, substantially contributed to the 
lack of progress for implementation of REDD+  on the 
ground.

A functional MRV to support REDD+  requires esti-
mates of the area of forest loss and gain and the corre-
sponding carbon stock and changes [3, 6]. These data are 
needed for the estimation of the actual emissions and the 
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construction of forest reference emissions level (FREL), a 
benchmark against which the actual emissions are com-
pared [7]. A combination of field inventory and remote 
sensing is expected to provide those data. National forest 
inventories (NFIs) with repeated measurements are often 
lacking for most of the forests and woodlands of Africa. 
On the other hand, there exists a wide range of remote 
sensing technologies, including sensors on-board aircraft 
and space-based platforms. Landsat is one of the most 
attractive remote sensors because its images are freely 
available and have medium resolution, large spatial and 
frequent temporal coverage [8].

Landsat data have been widely used in forest above-
ground biomass (AGB) estimation, commonly through 
developing empirical relationships between AGB or 
other forest characteristics and spectral indices such 
as the normalized difference vegetation index (NDVI) 
derived from satellite data [e.g., 8–17]. Large scale and 
coarse resolution biomass or carbon mapping using 
satellite imagery for tropical forests in Africa has been 
demonstrated [10, 18–20]. Fine to medium scale carbon 
maps offer more detailed and locally accurate auxiliary 
information in the context of REDD+. For instance, the 
majority of the REDD+ countries that have submitted a 
FREL proposal to the UNFCCC [21] used medium reso-
lution maps based, largely, on Landsat to extract activity 
data, i.e., forest area change. Biome or forest type specific 
biomass models or carbon maps with higher spatial reso-
lution can also provide estimates of carbon densities [22], 
that can be used as emissions factors that are more reli-
able than for instance the IPCC default values [23].

For Landsat based approaches, cloud and cloud shad-
ows [24] as well as canopy reflectance data-saturation 
has been reported as a major problem for high biomass, 
closed canopy forests and high leaf area index [25]; par-
ticularly for the tropical rainforests [24] and secondary 
successional forests [26]. Another problem of Landsat 
based approaches is related to the impact of shadows 
caused by canopy in complex stand structures and 
relatively complex topography [27, 28]. Furthermore, 
interference by understory vegetation and soil in open 
woodlands may require correction when spectral indices 
such as NDVI are used [29]. Yet, in savannah-type open 
Mediterranean evergreen woodlands, models with spec-
tral indices including NDVI had comparable or better 
predictive capabilities of tree canopy cover [30]. Tropi-
cal forests, also, consist of extensive open canopy and 
low biomass woodlands, such as the miombo woodlands. 
The miombo woodlands are the dominant forest types 
in many African countries. In Tanzania, the woodlands 
dominated by miombo make up to 90 % of the forest area 
[31]. The miombo woodlands are of major significance 
in Tanzania, as a source of livelihood, in supporting 

biodiversity and maintaining the local hydrological 
cycle [32, 33]. Moreover, with the advent of REDD+, the 
miombo woodlands provided Tanzania with a poten-
tial to receive financial benefits through the carbon they 
store. These woodlands, however, are under continuous 
pressure from land clearing for agriculture and char-
coal production as well as fire [33]. Reliable methods for 
biomass estimation and carbon mapping are needed to 
monitor the dynamics and to support activities and deci-
sions in the context of REDD+.

The Landsat 8 sensor has come with design improve-
ments over Landsat 7 ETM+, including narrower near-
infrared wavebands, higher signal-to-noise ratio, and 
greater radiometric sensitivity [34]. It has also shown a 
better capability in land cover mapping and is expected 
to present new opportunities for understanding the con-
tribution of forest ecosystems to the carbon cycle [35]. 
The current study aims at testing the potential of Land-
sat 8 for estimation of total living biomass (TLB), i.e., 
the sum of the above and belowground woody biomass 
in miombo woodlands. The specific objectives are to (1) 
develop empirical models to estimate TLB from spectral 
indices derived from Landsat 8 data, and (2) develop a 
30 m resolution spatial map of total living carbon (TLC) 
by applying the TLB model, and (3) estimate the TLB and 
TLC stock and density where, the TLC was estimated at 
47 % of the TLB [36].

Methods
Study area
The study area is a polygon of 15,700  km2, originally 
delineated as part of a previous project [37], located in 
Liwale district, southeastern Tanzania (36°50′–38°48′E; 
and 8°–10°50′S (Fig. 1). The miombo woodlands are the 
dominant vegetation type in the region with more than 
100 tree species including timber species of Brachyste-
gia sp., Julbernadia sp. and Pterocarpus angolensis, with 
trees up to 35 m height [38, 39]. The mean annual tem-
perature is 25 °C, ranging from 20–30 °C. Annual rainfall 
ranges from 600 to 900 mm with a bi-modal pattern. The 
long rainy season occurs from March to May, while a dry 
season occurs from July to October, followed by a short 
rainy season from November to January.

Human activities are common in the district such as 
shifting cultivation and harvesting for charcoal and fuel 
wood, and land clearing for agriculture. Forest fire is 
also an important factor in the miombo ecosystem. Up 
to 50 % of the miombo woodland area is affected by pre-
dominantly small-sized fires with less than 2 years of fire 
return intervals, which prevent the occurrence of large 
intense fires [40]. The northern part of the study area falls 
within the territory of the Selous game reserve, one of the 
largest fauna reserves of the world.
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Sampling design and field inventory data
Field inventory data came from 500 plots grouped in 63 
clusters. The field plots were originally established in 
2011, as part of the National Forest Resources Monitor-
ing and Assessment (NAFORMA), which is the national 
forest inventory of Tanzania [31]. The NAFORMA plots 
were established using a systematic double sampling for 
stratification design with clustered plots [31]. The first-
phase comprised L-shaped clusters containing 6–10 
plots each. The clusters were located at the nodes of a 
5 ×  5  km grid across mainland Tanzania. Each cluster 
was assigned to one of 18 predefined strata, based on 
predicted growing stock volume, time consumption for 
cluster measurements and the slope of the terrain [31]. 
Within each stratum, second-phase samples of clusters 
were selected systematically among the first-phase clus-
ters using optimal allocation [41].Higher sampling inten-
sities were achieved for strata with higher growing stock 
volume, which implies that spending relatively larger 
resources (more plots) on high-volume strata was an 
effective means to reduce the overall uncertainty of grow-
ing stock volume estimates. Only those clusters selected 
during the second phase of sampling were measured in 
the field. The distance between plots within a cluster was 
250 m, while the distance between clusters varied from 5 
to 45 km. Details of the NAFORMA sampling design and 

the inventory procedures, and illustrations are presented 
in Tomppo et al. [31].

The established plots were revisited and measured in 
2012 [37], and then again in 2014. Although most of the 
field plots fall in miombo woodlands, plots in agricultural 
fields and other vegetation types were also included in 
the inventory data. In the current study, we used the data 
from the 2014 field visit. The field measurements in 2014 
were conducted in the period January–July and followed 
a similar procedure with that of NAFORMA in 2011. Dif-
ferential Global Navigation Satellite Systems were used 
to determine the coordinates of the center point of each 
plot. Two Topcon Legacy 40-channels dual frequency 
receivers observing both pseudo-range and carrier phase 
of the Global Positioning System (GPS), along with the 
Global Navigation Satellite System (GLONASS) were 
used as rover (on the plot) and base station respectively. 
The estimated accuracy of the planimetric plot coor-
dinates ranged from 0.01 to 1.41  m, with an average of 
0.13  m. Each plot of size 707  m2 consisted of four con-
centric circles of radius 2, 5, 10 and 15 m. In each circle, 
all trees of diameter at breast height (dbh) greater than or 
equal to 1, 5, 10, and 20 cm, respectively, were measured 
for dbh. Every fifth tree on a plot was selected as a sam-
ple tree for height measurement. For trees without height 
measurements, total heights were estimated using local 

0 20 4010 Kilometers

0 2 41 Kilometers

Fig. 1  Location of the study area and the clusters, from left to right: Tanzania in Africa, study area in Lindi region of Tanzania (polygon in dark), and 
the distribution of sample clusters (dark dots) in the study area polygon
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height-dbh models of the form in Eq. 1 [cf. 42] developed 
using the sample trees.

where h =  total height, b0 and b1 are coefficients esti-
mated from the measured sample trees.

AGB and the belowground biomass (BGB) of each sam-
pled tree in the plots were estimated using the allometric 
biomass models (Eqs. 2, 3) developed for miombo wood-
lands in Tanzania [43],

where dbh (cm) and h (m) are defined above and AGB 
and BGB are in kg.

AGB and BGB predictions of each tree were scaled up 
to a per hectare level based on plot size information given 
by dbh-thresholds of the concentric circles. The total liv-
ing biomass (TLB) is the sum of AGB and BGB and the 
total living carbon (TLC) was estimated at 47 % of TLB 
[36]. Table 1 presents plot summary statstics for the vari-
ables of interest.

Landsat 8 data and spectral variables for modeling 
biomass
Two Landsat 8 surface reflectance climate data record 
(CDR) images, with 30  m resolution, (Worldwide Ref-
erence System 2: path 166 and row 66 and 67) were 
acquired through the USGS Earth Explorer (earthex-
plorer.usgs.gov). Both images were from 31 July 2014, 
and were almost cloud free over the study area. The 
data acquisition date corresponded to the cool early dry 
season [44], which is expected to offer a good contrast 
between understory vegetation and the woody biomass 
for open woodland, as the understory vegetation begins 
to dry off. The two images were pre-processed by the 
provider, i.e., corrected for atmospheric conditions and 
topography, and with cloud and cloud shadow masking. 
The CDR data were derived from Landsat 8 Operational 

(1)h = 1.3+ b0(dbh)
b1

(2)AGB = 0.0763(dbh)2.2046h0.4918

(3)BGB = 0.1766(dbh)1.7844h0.3434

Land Imager (OLI) using Landsat Ecosystem Disturbance 
Adaptive Processing System (LEDAPS) software [45], 
which applies moderate resolution imaging spectrora-
diometer (MODIS) atmospheric correction routines to 
Level-1 scenes [46].

For each NAFORMA plot, we extracted seven spectral 
reflectance values (bands 1–7) from the pixel containing 
the plot center, using the default extraction procedure 
in ArcGIS The surface reflectance specification and the 
center wavelengths of each Landsat 8 band are available 
in [46]. We also tested a second approach which extracts 
the weighted mean value of the four nearest pixels, 
weighting the contribution of each pixel by its fraction of 
the 707 m2 plot area. The second approach was thought 
to reduce sampling error in the case of spatial mis-regis-
tration of the image. However, a paired t test for the dif-
ferences between spectral indices developed based on the 
values extracted using the two extraction methods did 
not show any significant difference (p  >  0.05). Further-
more, the spectral variables from the two methods pro-
duced similar correlation coefficients with biomass, with 
no gain in using the second approach which was finally 
discarded.

Seven spectral indices (Table 2) were calculated using 
the different spectral band combinations. These particu-
lar indices were selected not only because they are related 
to land surface features and vegetation biomass, but also 
because they have some advantages for practical applica-
tions since they are readily provided from the USGS on 
demand [46].

Model development
In order to examine the relationship between TLB and 
the 14 spectral variables (seven spectral bands and seven 
spectral indices in Table 2), we calculated Pearson’s corre-
lation coefficient (ρ), and also visually analyzed the scat-
ter plots of TLB against those spectral variables. All the 
14 spectral variables correlated significantly with TLB, 
but they were also highly inter-correlated (p < 0.005). The 
latter would lead to a multicollinearity problem, if those 
variables were used simultaneously as predictor vari-
ables in a regression model. We, therefore, evaluated the 
strength of the relationship between TLB and each spec-
tral variable using correlation and preliminary regression 
analysis to select the best explanatory variable for model 
development.

As a means to understand the form of the relation-
ship between TLB and the spectral variables, we aggre-
gated the plots in the respective clusters and graphically 
evaluated the scatter plots of TLB against the spectral 
values. While the aggregated cluster level data were used 
for graphical analysis, data from the individual plots 
(n = 500) were used for the final model development.

Table 1  Summary statistics of aboveground biomass (AGB), 
belowground biomass (BGB), total living biomass (TLB) 
and total living carbon (TLC)

Values are based on plot measurements (n = 500). The minimum (0) are from 
plots without trees

Variable (t/ha) Minimum Mean Std. Dev. Maximum

TLB 0 88.49 64.52 436.20

AGB 0 62.10 48.73 350.30

BGB 0 26.39 16.88 89.97

TLC 0 41.59 30.33 205.00
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The scatter plots of the TLB against the spectral val-
ues suggested linear models may sufficiently describe 
the relationships. Due to the hierarchical structure of 
the data (plots nested in clusters) a linear mixed mod-
eling approach was appropriate [cf., 54, 55]. We evalu-
ated alternative mixed models with the random intercept, 
random slopes or both, on the basis of improvements in 
Akaike’s Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC). The mixed models with ran-
dom intercept and slope (that varies with cluster) (Eq. 4) 
produced the smallest AIC and BIC.

where Y denotes the dependent variables (TLB), X 
denotes the independent spectral variables and i indexes 
plots within clusters (1, 2,…, 8), and j indexes clusters (1, 
2,…,63). Coefficients α and β represent the intercept and 
the slope of the fixed part of the model, respectively, and 
aj and bj are the random intercept and slope, respectively 
(deviations around the value α and β). The aj and bj are 
assumed to be distributed normally with mean zero, and 
G-variance–covariance matrix given as:

In the G variance–covariance matrix, the σ 2
int and σ 2

slope 
represent variance components for the random inter-
cept and slope, respectively; the (σ 2

int, slope) are covariance 
components representing the correlation between the 
random intercept and the random slope.

The eij are the residuals of ith plot in the jth cluster 
and are assumed to be normally distributed with mean 0 
and variance σ2, i.e., eij ~ N (0, σ2). We fitted the model 
using the Restricted Maximum Likelihood (REML) with 
unstructured variance–covariance, using the mixed pro-
cedure in SAS [55]. We applied the empirical option for 
the mixed effects procedure in SAS, also known as the 
“sandwich” estimator which computes a robust variance–
covariance matrix of the fixed effects parameters using 
an asymptotically consistent estimator [56–59].

(4)Yij = (α + aj)+ (β + bj)(X)ij + eij ,

(
aj
bj

)
∼ N

[(
0
0

)
,G =

[
σ 2
int σ 2

int,slope

σ 2
int,slope σ 2

slope

]]

We evaluated model performance based on root mean 
square error (RMSE) and RMSE as a percent of the mean 
of the field inventory TLB (%RMSE), and absolute bias 
(Eqs.  5, 6, 7) and residual diagnostics. To evaluate the 
accuracy of the final TLB model, we used a leave-one-out 
cross validation (LOOCV) in which we left out a cluster 
at a time.

where n is number of plots, ŷi is predicted TLB for the ith 
plot using model (4) fitted without the plots in the same 
cluster as the ith plot, and (yi) is the observed TLB for the 
ith plot.

Mapping and estimation of total living carbon
We applied the best TLB model to the NDVI compos-
ite of the two Landsat 8 CDR images and estimated the 
mean TLB density and the TLB stock of the entire study 
area. To estimate a 95 % confidence interval of the mean 
TLB density and total biomass stock, we used a model-
based variance estimator for the population (the study 
area) as described in McRoberts [60], i.e.,

where, V̂ar
(
ˆ̄Y
)
 is the variance estimator of the popula-

tion mean estimate ˆ̄Y . ˆ̄Y  was estimated as the mean of the 
pixel-wise model predictions across the entire study area, 
X̄ is the vector for the population mean of the explana-
tory variables including the intercept, T stands for trans-
pose of a matrix, and Σ̂ is the variance–covariance matrix 
of the fixed parameter estimates (intercept and slope of 

(5)RMSE =

√√√√1

n

n∑

i=1

(
yi − ŷi

)2

(6)%RMSE =
RMSE

ȳi
∗ 100

(7)Absolute bias =
1

n

n∑

i=1

(yi − ŷi),

(8)V̂ar
(
ˆ̄Y
)
= X̄T

Σ̂X̄ ,

Table 2  Spectral indices derived from the spectral band reflectance values

NIR near infra-red (band 5), SWIR1 short wave infra-red (band 6), SWIR2 short wave infra-red 2 (band 7), sqrt square root

Index Equations (spectral bands) References

Normalized difference vegetation index (NDVI) NDVI = (NIR − red)/(NIR + red) [47]

Enhanced vegetation index EVI = (NIR − red)/(NIR + 6 (red) − 7.5 (blue) + 1) [48]

Soil adjusted vegetation index (SAVI) SAVI = ((NIR − red)/(NIR + red + 0.5)) (1.5) [49]

Modified soil adjusted vegetation index (MSAVI) MSAVI = (2 (NIR) + 1 − sqrt ((2 (NIR) + 1)2 − 8 (NIR − red)))/2 [50, 51]

Normalized difference moisture index (NDMI) NDMI = (NIR − SWIR1)/(NIR + SWIR1) [52]

Normalized burn ratio (NBR) NBR = (NIR − SWIR2)/(NIR + SWIR2) [53]

Normalized burn ratio-2 (NBR2) NBR2 = (SWIR1 − SWIR2)/(SWIR1 + SWIR2) [53]
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the model, Eq.  4). We compared the TLB density esti-
mate of the study area with a value estimated from three 
recent pan-tropical biomass maps of Baccini et  al. [20], 
Saatchi et al. [18] and Avitabile et al. [61]. The later was 
developed by combining the data sets of the earlier two 
[18, 20]. Since these biomass maps are for AGB, the mean 
ratio of BGB to AGB of 0.43 from our field data (n = 500) 
was used to calculate the corresponding TLB.

We applied the TLB model to the two NDVI compos-
ite images covering the study area to construct a 30  m 
resolution TLC map, where TLC is estimated at 47 % of 
TLB. To further demonstrate the utility of the model for 
local carbon mapping and stock estimation, we extracted 
the carbon map of 13 wards, using the ward bounda-
ries as a mask. We compared the estimated TLC values 
with values based on field data from previous works in 
the region. In the absence of other maps for that particu-
lar year and season, we visually compared extracts of the 
carbon distribution pattern from our map with image 
extracts from Google Earth [62] of the same year and sea-
son. The 13 wards have a combined area of 4780 km2 and 
included Liwale town, the major town in Liwale district. 
We selected this area, particularly because it consisted 
of settlements as well as a number of human activities, 
such as land clearing for agriculture, fuel wood and char-
coal, as well as fire, which are likely to influence the forest 
cover and thus carbon stock and its distribution.

Results
Relationships and regression models for TLB
All the 14 spectral variables were significantly corre-
lated to TLB and inter-correlated amongst each other 
(p  <  0.005). The Pearson correlation (ρ) between the 
spectral variables and TLB ranged from |0.18| to |0.50| 
(Table 3). The indices NDVI, EVI, SAVI, and MSAVI and 
the spectral bands-Blue and Red correlated most strongly 
with TLB (ρ ≥ |0.45|). It appeared, therefore, that any one 
of these variables, particularly the EVI, would be a use-
ful predictor in the model. Nevertheless, the correlation 
(ρ) of EVI, although slightly better, was not convincingly 

larger (Table  3) to forgo NDVI, which is popular, intui-
tive and easier to interpret and to compare with other 
works. NDVI was thus selected as a single predictor for 
the final model. The large variability in the preliminary 
scatter plots of TLB against spectral data of individual 
plots limited our ability to detect absence or presence of a 
data saturation effect. It is likely that the small size of the 
field plots contributed to the observed large variability. 
However, the scatter plots of the NDVI against TLB, par-
ticularly those based on mean values at cluster level data 
showed no sign of saturation at higher biomass (Fig.  2) 
and suggested that the observed relationships were linear.

Parameter estimates and the associated statistics of the 
linear mixed model are presented in Table 4, along with 
the fit statistics. Plots of the residuals against the fitted 
TLB values, except for few data points of NDVI values 
less than 0.2, showed that the residuals had a constant 
variance over the range of TLB. The estimated covariance 
matrix used for the variance estimators of the mean and 
the total TLB for the entire study is given in Table 5.

Biomass and carbon mapping and estimation
The estimated mean TLB density for the study area was 
81  t/ha with a 95 % confidence interval of ±7  t/ha. The 
total TLB stock was estimated at 140 Mt, with a 95 % con-
fidence interval of ±14 Mt. We used the TLC map, devel-
oped based on the TLB model, to estimate carbon stock 
by ward and visualize the carbon distribution pattern 
among 13 wards for the year 2014 (Fig. 3). The mean TLC 
varied considerably among the 13 wards, ranging from 24 
to 51  t/ha. For example, the four most eastern wards in 
the map had carbon densities of 25–29  t/ha, which was 
less than the average of the entire study area. In con-
trast, the four most western wards had carbon densities 
of 42–51 t/ha, which was higher than the average for the 
study area. The spatial distribution of predicted TLC cor-
responded well to the extracts from Google Earth images 
(Fig. 4). As can be expected, settlement areas and farm-
lands had low predicted TLC, and the dark green areas 
representing forests depict higher values. 

Table 3  Pearson correlation coefficients between spectral variables and TLB (t/ha) of plots (n = 500)

Prob > |ρ| under Ho: ρ = 0, and ρ is significant (p < 0.005) for all the spectral variables. The level of confidence α = 0.05

Landsat 8 spectral bands

Coastal Blue Green Red NIR SWIR1 SWIR2

−0.43 −0.45 −0.44 −0.48 0.18 −0.38 −0.43

Spectral vegetation indices

NDVI EVI SAVI MSAVI NDMI NBR1 NBR2

0.49 0.50 0.49 0.49 0.44 0.45 0.43
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Discussion
Relationship between biomass and NDVI
The linear relationship between the TLB and NDVI 
suggested that spectral data saturation is not a prob-
lem when using Landsat for biomass and carbon moni-
toring in miombo woodlands. Data saturation related 
to optical sensors is reported as a major limitation or 
source of uncertainty in forest biomass estimation in 
complex stand structures and closed canopy forests [10, 
22, 24, 63]. A similar study in miombo woodlands in 

Mozambique [64] found a significant linear correlation 
(ρ = 0.30) between NDVI and the AGB. In dry land open 
canopy vegetation in Argentina as well, NDVI data satu-
ration was, not observed [65]. Pixel-level NDVI is influ-
enced by the degree of absorption of the red wavelengths 
by chlorophyll, which is proportional to the amount of 
chlorophyll in the leaf and the reflectance of near infra-
red (NIR) radiation, which is proportional to green leaf 
density [47]. The relatively low aboveground biomass in 
the open canopy woodlands might have resulted in the 
low reflectance values in the NIR band, which overcomes 
the saturation problem of the NDVI. The NIR, although 
statistically significant, produced the weakest correla-
tion with TLB (ρ = 0.18), suggesting less green leaf den-
sity and thus low reflectance in open canopy woodlands. 
For boreal forests with evergreen conifers and relatively 
closed canopy forests in Canada [66, 67] and mountain 
birch forests in Finland [68], NIR was considered a strong 
predictor of stand attributes such as height, crown clo-
sure or AGB.

Geographic factors, such as elevation, slope and aspect 
as well as shadows are also known to affect spectral reflec-
tance values, and thus compromise biomass estimation 
performances of models based on spectral variables [24]. 
However, NDVI, as a ratio of two bands, is expected to 
correct potential errors due to topography and shade and 
compensate the variation in illumination resulting from 
terrain features [28]. Lyon et al. [27] compared seven veg-
etation indices to detect land-cover change in a Chiapas, 
Mexico and reported that the NDVI was least affected by 
local geographic factors such as slope and aspect.

Fig. 2  Scatter plots of the total living biomass (TLB) (t/ha) against the NDVI [plot values (left), n = 500, and cluster mean values (right), n = 63]

Table 4  Parameter estimates of  the fixed part of  the TLB 
model (p < 0.001) with NDVI as a predictor

Statistics presented for the model construction and cross validation (LOOCV)

Intercept 
(α)

Slope (β) RMSE (t/
ha)

%RMSE Absolute 
bias (t/ha)

Model −84.22 280.93 43.66 49.00 0.00

Standard 
error

24.15 40.20

LOOCV 56.00 63.00 0.00

Table 5  Empirical covariance matrix for  the fixed effect 
parameters (Σ̂) where values in the diagonal are the vari-
ances of the intercept and the slope, respectively, and the 
off diagonal elements are the covariance between the two

α β

α 583.14 −960.27

β −960.27 1615.77
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The absence of data saturation facilitated develop-
ment of a linear model between TLB and NDVI. Model 
fit statistics, i.e., RMSE (%) and less bias in the cross vali-
dation (Table 4), along with the constant residual errors 
(not shown) suggested the model has a comparable accu-
racy with previous works based on similar approach. 
These results are comparable to many other models for 
vegetation properties based on Landsat data, where 
model  %RMSE values were in the range of 21–50  % 
[13, 28, 67, 69]. Other studies that have reported higher 
model accuracies [e.g., 68, 70] were based on data from 

single species stands or plantations. Furthermore, many 
of these studies attempt to model AGB, rather than TLB, 
mostly because of the relative ease of estimating AGB or 
availability of allometric models for AGB only. The model 
presented here enables direct estimation of TLB, includ-
ing the BGB. In the absence of BGB data, the default ratio 
of 0.28 between the BGB and AGB [36] is recommended 
for tropical dry forests for estimating TLB. This default 
ratio is much lower than the mean BGB to AGB ratio of 
0.43 in our data. The BGB, although significantly related 
to the AGB, in this study was independently calculated 

Fig. 3  Total living carbon (TLC) density map of 13 wards in Liwale district. Numbers in each ward are mean TLC (t/ha). The reference, Liwale town 
falls within the boundaries of four wards, Nangando, Likongowele, Liwale Mjini, and Liwale B
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Fig. 4  Visual comparison between the extracts of the 30 m resolution total living carbon (TLC) map in Liwale district left panels (based on this 
study)—and extracts of Google Earth images—right panels, showing settlement areas (Liwale town)—top two panels, clear cut areas in Liwale Mjini 
ward—middle panels, and a dense forest in Makata ward—bottom panels. The TLC density map and google earth image extracts are from the year 
2014. In the extracts of the map (left panels), color ranges are from low (deep red) to high (green) TLC values
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for each plot based or the below ground tree allometric 
equations. The TLB model can, therefore, be consid-
ered an important contribution for miombo woodlands, 
where data availability for the BGB remains a challenge.

The performance of the model showed that NDVI 
is a good predictor of TLB in open woodlands. Yet, 
there remains a sizeable amount of unexplained vari-
ation in the data, which can be attributed to a number 
of sources. Miombo woodlands are subject to distinct 
seasonal processes, and the beginning of the dry sea-
son marks a change in phenological cycles and leaf den-
sity might decrease, compared to the rainy season when 
ecosystem productivity is higher. NDVI, as a greenness 
indicator, cannot clearly distinguish variations in bio-
mass related to phenology, the complexity of forest spe-
cies and canopy structure. Shrub and grass layers were 
not measured in the field for the BGB and AGB calcu-
lations, but their contribution to the total biomass may 
be small. Nevertheless, in the spectral variable extrac-
tion, the effects of the shrub and grass layer on canopy 
reflectance are unknown, but could be large, depending 
on the intensity of greenness or the grass layer phenol-
ogy during image acquisition. Other sources of uncer-
tainty include a potential mismatch between the field 
coordinates and the points of spectral variable extraction. 
The field plots are circular with a size of 707  m2 while 
the spectral variables are extracted from square pixels of 
size 900 m2. Furthermore, tree level BGB and AGB were 
derived from allometric models with sizeable errors that 
are likely to propagate through to plots, pixels and thus 
to the TLB model [e.g. 71]. Therefore, model sensitivity 
to those factors, including phenology, stand structure, 
and their application in areas of low biomass need to be 
investigated. Incorporating auxiliary biophysical predic-
tors, such as land-use, land-cover or vegetation structure 
information may improve model accuracy, by reducing 
the spectral variability within those biophysical predic-
tors [e.g. see 10, 67, 72].

Other remote sensing data sources with higher resolu-
tion may produce more accurate models and estimates of 
better precision. In a recent study, conducted in parts of 
our study area, Næsset et  al. [73] estimated the relative 
efficiency (RE), i.e., variance of the field-based estimate 
relative to the variance of that of the different remotely 
sensed data to quantify contribution of different remote 
sensing data sources to improve precision of AGB esti-
mates. Their results showed that RE values were 3.6 
for ALS, 3.3 for RapidEye, and 2.8 for InSAR; while for 
Landsat and PALSAR the RE values were only 1.3–1.4. 
The latter two contributed only marginally to improve 
precision. The limited spatial and temporal coverage 
as well as the costs of acquiring and processing those 

types of data, however, limit their extensive applicabil-
ity to larger areas. In contrast, the use of Landsat 8 data 
for modeling purposes can be justified as the data cover 
large areas and are freely available. Furthermore, Land-
sat 8 came with considerable improvements in sensor 
signal-to-noise performance and associated improve-
ments in radiometric resolution [35]. Dube and Mutanga 
[70] reported an improved accuracy for estimation of 
AGB, for instance for E. dunii plantations, by using 
Landsat 8 (RMSE =  26.54  % of the mean) compared to 
Landsat 7 ETM+ (RMSE =  35.30  % of the mean). Fur-
thermore, the availability of higher order data (Landsat 
8 CDR) products, for free, reduces the efforts and costs 
of data preprocessing, which otherwise require complex 
procedures.

Carbon mapping and estimation
The carbon mapping and estimation was based on the 
TLB model and estimation. The mean TLB density of 81 
t/ha for the study area is higher than the estimate based 
on Avitabile et  al. [61], 48  t/ha, and lower than that of 
Baccini et al. [20], 138 t/ha; but closer to that of Saatchi 
et  al. [18], 73  t/ha. Since these tropical biomass maps 
and our maps were based on different data acquisition 
systems and methods, calibrated with different field data 
sets and have different spatial accuracies, the large differ-
ences among them in the biomass estimates for smaller 
localities are not unexpected. Previous studies showed 
that maps of Baccini [20] and Saatchi [18] often show 
very strong local differences, but at national and global 
scales their estimates tend to converge [61, 74], mostly 
due to compensation of contrasting estimates when aver-
aging over large areas [61]. Moreover, data for these bio-
mass maps were acquired on average around 2007 [61], 
while that of our study are from 2014. The dynamics in 
the miombo woodlands such as clearing and fire as well 
as reforestation means that, maps based on data from 
the same year or season are needed for a more confident 
comparison.

The developed medium spatial resolution (30 m) map 
for prediction of TLC, along with the model-based vari-
ance estimates for the predicted values of the TLC, 
demonstrated the potential utility of Landsat 8 for for-
est carbon monitoring. One of the major applications of 
carbon maps includes use of the map as auxiliary data in 
estimation of carbon density and stocks, and the corre-
sponding land area. Forest carbon accounting principles 
in the context of REDD+ draws on the basic formula 
where the emissions from REDD+ activities are cal-
culated as estimates of areas (activity data) multiplied 
by estimates of change in carbon density in those areas 
(emissions factors) [36]. Both activity data and emissions 
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factors are required to be as accurate as practicable [36], 
since the total uncertainty of emissions is calculated by 
combining the uncertainties of the two.

The lack of ecosystem specific knowledge on carbon 
stock (the basis for emissions factors), and methods to 
determine the activity data (areas) are considered the 
major limitations in the progress for REDD+, particularly 
in Africa [4, 5]. The approach presented here can help 
determining local carbon density and stock for a defined 
area, in combination with available land use or land cover 
maps as a mask. But for a given reporting region or sub-
region such as REDD+ project areas, carbon maps based 
on Landsat 8 calibrated with field observations can be 
used to estimate carbon density and total carbon stock 
within the boundary, so as to maximize potential finan-
cial benefits from payments or credits for carbon.

The estimated mean carbon density of 38  t/ha for the 
entire study area is very close to the IPCC Tier 1 default 
value of 36 t/ha for tropical dry forests in Africa [23]. But 
the wide range of TLC (25–51 t/ha) among the 13 wards 
indicates a large spatial variation and suggests the utility 
of spatial maps to visualize the carbon distributions and 
estimate carbon density or stock for smaller administra-
tive units or localities where carbon reporting might be 
required. The estimated mean and range for the 13 wards 
are close to the living carbon for miombo woodlands 
in Mozambique, (average 29.8  t/ha  ±  13.07) [75] and 
28–36 t/ha [76]. Tanzanian studies report only the AGB 
estimates. In an attempt to compare with our results, we 
added the BGB to their AGB estimates, using the BGB 
to AGB ratio of 0.43 in our data. Our estimates of TLC 
density range correspond with the 39–54 t/ha estimated 
by Kashindye et  al. [77] and 15–47  t/ha estimated by 
Shirima et al. [78]. While the two studies are from differ-
ent areas of the miombo woodlands in Tanzania, another 
study from three villages located within the boundary 
of our study area presented a range of 24–28  t/ha [79], 
which is at the lower range of our estimate. It is, however, 
important to note that the other studies considered only 
plots with trees while our estimates came from all land 
use types, including agricultural lands.

The other potential application of the carbon map 
includes detection of spatial patterns of carbon density 
in connection with human induced disturbances such 
as settlements, fire or forest clearing. As expected, lower 
carbon densities are exhibited near and inside settlements 
such as Liwale town (Fig.  4, top panels) and in wards 
located east of Liwale town (Fig. 3). Furthermore, Google 
Earth images from June 2014 and our carbon map (Fig. 4, 
middle panels) show areas of low carbon corresponding 
to patches of clear cut areas, perhaps cleared for agri-
culture or wood extraction and roads. Clearing for agri-
culture was estimated to result in an annual forest loss 

of 10–25 ha in Liwale district [80], which would amount 
to 380–950 tons of carbon, given a carbon density esti-
mate of 38 t/ha in this study. On the other hand, higher 
biomass vegetation can be shown for instance, in dense 
forests (Fig.  4, the bottom two panels). Fire is also an 
important component of the miombo woodland eco-
system, affecting up to 30 % of the woodlands in Liwale 
district [80]. The low carbon densities in eastern wards 
such as Kiangara and Mirui (Fig. 3) correspond with the 
presence of large forest fires in these areas during the 
year 2013 [62]. Furthermore, there was an indication of 
fire scar detected using visual analysis of the fire-sensitive 
short-wave infrared (band 7) complemented by the Near 
Infra-Red (band 5) and the visible (band 2) [cf., 81] of the 
same Landsat 8 data used for this study.

Our approach may also offer a potential for detection 
of carbon change due to deforestation, fire or land use 
change. This can be accomplished by image-differencing 
or calculating the differences in TLB values between two 
points in time. Nevertheless, several factors influence 
the reflectance values from different satellite images, 
including vegetation phenology and stand structure, 
atmospheric conditions when images were taken, and dif-
ferences in sensors and image pre-processing procedures. 
This requires recalibration of the model coefficients to 
apply to other NDVI composite images of different areas 
and dates of acquisition. These factors are not addressed 
here, but understanding and identifying these sources 
of uncertainty will help to refine the model and improve 
its applicability to carbon mapping and estimation and 
applications to other seasons or regions.

The regression model slightly under predicts carbon 
for pixels with low NDVI, but will still be reliable for 
miombo woodlands, because biomes typically comprised 
of open woodlands and savannah exhibit NDVI values 
greater than 0.4 [82], and 95  % of the field plots in our 
study also exhibited and NDVI larger than 0.4. Although 
plots without trees and thus lower NDVI are few in the 
data, we had a true probability sample and the sampling 
frame covered other land use types including agricul-
ture, and burnt areas which are common in the miombo 
woodlands.

Conclusion
Landsat 8 CDR provides suitable data for monitoring of 
forest biomass and carbon in miombo woodlands. The 
open canopy and low biomass of the miombo woodlands 
means that there was low or no data saturation problem, 
which otherwise is a well-known challenge in using Land-
sat sensors. This property facilitated the development of 
a simple linear model which provides the basis for map-
ping forest carbon, estimating carbon stock and detect-
ing its spatial distribution. The developed TLB model 
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and carbon map also includes the below ground biomass, 
which otherwise are often estimated using a default root 
to shoot ratio from AGB. The Approaches presented here 
i.e., modeling, carbon mapping, and estimation can assist 
to estimate carbon and detect areas of low or high forest 
carbon, which are relevant to REDD+ activities, particu-
larly, deforestation and enhancing carbon stock.
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