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Abstract 

Background:  Soil carbon and biomass depletion can be used to identify and quantify degraded soils, and by using 
remote sensing, there is potential to map soil conditions over large areas. Landsat 8 Operational Land Imager satel-
lite data and airborne laser scanning data were evaluated separately and in combination for modeling soil organic 
carbon, above ground tree biomass and below ground tree biomass. The test site is situated in the Liwale district 
in southeastern Tanzania and is dominated by Miombo woodlands. Tree data from 15 m radius field-surveyed plots 
and samples of soil carbon down to a depth of 30 cm were used as reference data for tree biomass and soil carbon 
estimations.

Results:  Cross-validated plot level error (RMSE) for predicting soil organic carbon was 28% using only Landsat 8, 26% 
using laser only, and 23% for the combination of the two. The plot level error for above ground tree biomass was 66% 
when using only Landsat 8, 50% for laser and 49% for the combination of Landsat 8 and laser data. Results for below 
ground tree biomass were similar to above ground biomass. Additionally it was found that an early dry season satellite 
image was preferable for modelling biomass while images from later in the dry season were better for modelling soil 
carbon.

Conclusion:  The results show that laser data is superior to Landsat 8 when predicting both soil carbon and biomass 
above and below ground in landscapes dominated by Miombo woodlands. Furthermore, the combination of laser 
data and Landsat data were marginally better than using laser data only.
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Background
The Miombo woodlands of Tanzania are under pres-
sure for several reasons, among them a general pop-
ulation increase which brings a need for subsistence 
agriculture as well as small scale charcoal production 
[1, 2]. The loss of natural ecosystems is a common 
pattern which occurs when subsistence agriculture 

increases in the transition towards an urbanized soci-
ety with more intensive agriculture [3]. In the case of 
Tanzania, the National Forest Resources Monitoring 
and Assessment of Tanzania (NAFORMA; [4]) esti-
mates that the annual consumption of forest exceeds 
the available resources by 19.5 million m3 and Hansen 
et al. [5] estimated a net loss of 17,000 km2 of forests 
and woodlands above 5 m height in Tanzania between 
the years 2000 and 2012. This deficit is currently met 
by overharvesting inaccessible forests and illegal har-
vesting in protected areas, thus diminishing the overall 
forest and woodland area.
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Miombo woodlands are a mosaic of areas with differ-
ent tree densities, often with a varying degree of deg-
radation. The woodlands are also often mixed with 
agricultural fields that are covered by crops or have open 
soil, depending on season. There is a large number of cri-
teria used for defining Miombo degradation [6] of which 
the United Nations Framework Convention on Climate 
Change (UNFCCC) definition is related to loss of carbon 
stock during a certain time period [7].

Soil organic carbon (SOC) is an important part of the 
soil ecosystem; the disturbance of natural forests in tropi-
cal areas, as well as the conversion of forests and wood-
lands to agricultural land is known to generally reduce 
SOC [8–12]. Traditionally soil maps have been created 
where soil types have been classified into taxonomic 
units. Land degradation is however a continuous process 
and it is of interest to investigate to what degree remote 
sensing in combination with field plot data can be an aid 
for following this process over time [13].

The first attempts to use remote sensing for estimation 
of SOC were based on the fact that soils with a higher 
organic matter content, i.e., higher proportion SOC, 
generally appear darker. This led to studies relating data 
from electro-optical sensing with organic matter [14–
16]. Recent research covering large areas in East Africa 
confirms that optical satellite imagery could be used 
to predict SOC as well as other soil properties. Vågen 
et al. [10] obtained a R2 of 0.79 when modeling SOC in 
Ethiopia and Vågen and Winowiecki [17] obtained a R2 
of 0.65 when their study material was extended to also 
include test sites in Kenya and Tanzania. In both studies, 
SOC were modeled from Landsat ETM+ data for plots 
of 1000  m2, whereas soil data were averaged from one 
sample from each of four subplots. Winowiecki et al. [11] 
subsequently obtained an R2 of 0.85 when modeling SOC 
on 166 of these plots near Lushoto, Tanzania, and using 
Rapid Eye optical satellite data instead of Landsat data.

There is also a need for the development of accurate 
methods for estimation of above ground tree biomass 
(AGB) and below ground tree biomass (BGB) for car-
bon accounting, including the measuring, reporting and 
verification (MRV) needed within countries’ efforts to 
reduce emissions from deforestation and forest degrada-
tion (REDD+) ([18–20]; http://www.un-redd.org), as well 
as for national and regional planning of forest resources. 
In the case of Tanzania, the sample based NAFORMA 
inventory is a key source for national level data about 
forests and woodlands [4, 21], but remote sensing meth-
ods used in combination with the field plots will allow 
estimates both for smaller areas or estimates with lower 
error [22].

Optical satellite data have been used for estimation of 
AGB since the launch of the first Landsat satellite 1972 

[23]. The use of regression is one of the standard methods 
for modelling biomass using remote sensing data as inde-
pendent variables and data from ground reference plots 
as dependent variables [24]. Landsat multispectral satel-
lite data are a natural first hand choice among the remote 
sensing data sources, since the data are freely available, 
have a suitable pixel size of 30 m and wavelength bands 
suitable for forest monitoring, are regularly provided 
and offer a data continuity since the 1980s. In particular, 
the new Operational Land Imager (OLI) sensor onboard 
Landsat 8 also offers improved performance, such as 
better signal to noise ratios [25]. Additionally, the new 
European Sentinel 2 satellite system provides free opti-
cal satellite images but with more wavelength bands than 
Landsat [26].

As an example of early Landsat studies in dry tropical 
forests, Roy and Ravan [27] used Landsat TM for regres-
sion modelling of AGB in dry forest areas in India and 
obtained an R2(adj) value of 0.70 on a sample plot level. 
Gizachew et al. [28] modeled total tree biomass (defined 
as AGB  +  BGB) from Landsat 8 OLI data in a recent 
study in the Liwale district in Tanzania. The field data 
consisted of 500 plots from the NAFORMA inventory, 
distributed within an area of 15,700 km2. They obtained 
a RMSE of 49% (63% after cross validation) for plot level 
modeling of total tree biomass using only the Normalized 
Difference Vegetation Index (NDVI) from one Landsat 8 
OLI image as the independent variable.

Airborne laser scanning (ALS) produces a point cloud 
with three dimensional coordinates for laser returns from 
the ground and vegetation. ALS data therefore often pro-
vide more information about tree canopies than “two 
dimensional” spectral data from optical satellite data and 
will generally provide the best data for modeling above 
ground tree biomass and other tree-size related variables. 
However, the discrete return ALS systems that are com-
monly used are not very reliable for estimation of vege-
tation near the ground. Mauya et al. [29] modeled AGB 
with ALS using Linear Mixed Modeling (LMM) and sim-
ilar plot sizes to Gizachew et al. [28]. The obtained RMSE 
after cross validation was 28.4% for forests, 47.7% for 
woodlands, and 80.2% for other land cover types. Næsset 
et  al. [22] investigated the use of different remote sens-
ing data sources for a sampling study based on a subset 
of the plots previously used in the Liwale study area. In 
addition to the results related to precision for sampling 
based estimates, their results showed that ALS data pro-
vided the best plot level models for AGB (R2 = 0.64) fol-
lowed by high resolution satellite images from RapidEye 
(R2 =  0.53). Use of interferometric radar data (InSAR), 
as well as a global Landsat product and PALSAR L-band 
satellite data performed less well with an R2 of 0.25, 0.11 
and 0.05, respectively.

http://www.un-redd.org
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Important features of the three dimensional canopy 
structure can be derived from ALS data, while Land-
sat, or other similar sensors, measure reflected light in 
several wavelengths. Since these data sources provide 
complementary information, the best results can be 
expected to be obtained when ALS and Landsat data are 
used in combination. Ediriweera et  al. [30] estimated 
AGB by combining Landsat 5 TM data and ALS data 
for two study areas in Australia: one subtropical rain-
forest area, and one Eucalyptus forest. They found that 
the ALS data performed better than the Landsat data 
for both sites. The combination of Landsat TM data 
and ALS data improved R2 for the Eucalyptus forest 
by 3%, but did not improve the model for the tropical 
rainforest.

The purpose of the current study was to compare the 
usefulness of Landsat 8 OLI data and ALS data, separately 

and in combination, for modeling of SOC, AGB and BGB 
in the Miombo woodlands of Tanzania.

Methods
Study area
The study area is located in Liwale District, one of six 
districts of the Lindi region of southeastern Tanza-
nia. The area is part of the Eastern Miombo Woodland 
ecoregion, which covers a relatively unbroken area in 
the interior regions of southeastern Tanzania and the 
northern half of Mozambique, as well as parts of south-
eastern Malawi. The study area is a rectangular block of 
11.25  km ×  32.50  km (total area 36,562  ha), and is the 
same area as used by Naesset et al. [22] (Figs. 1, 2).

The study area consists of Miombo woodlands, mixed 
with shifting cultivation and permanent fields of cashew 
trees together with food crops (Fig. 3). In the upper left 
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Fig. 1  Location of the study area, the striped pattern roughly indicates Miombo woodland distribution in the area
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corner of the study area a forest protection area occupies 
approximately 4000 ha, i.e., 11% of the total study area.

The climate in the Liwale area is characterized by two 
rain periods a year and a main dry season. The shorter 
period of rain is from late November to January and 

the longer period is from March to May. The main dry 
season is between July and October. The annual pre-
cipitation is in the range 600–1000  mm. The soils in 
the Eastern Miombo Woodlands are relatively nutrient 
poor which limits the agricultural potential. There is 

Fig. 2  Location within the study area of the 11 clusters containing eight plots each that were used for collection of field data. The locations of four 
of these clusters, marked as yellow, are identical to the clusters used in the NAFORMA program

Fig. 3  Photos from different types of land taken on measured field plots within the study area, production forest, agricultural land and shifting 
cultivation are land use classes defined in NAFORMA [31]
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also a widespread presence of tsetse fly (Glossina spp.) 
and vectors of trypanosomiasis, which affect the pos-
sibilities for settlement of both humans and livestock. 
However, population growth has increased demand 
for arable land, thus soils that in earlier years were 
not profitable enough are now to an increasing degree 
being utilized.

The Miombo woodlands of Liwale are characterized by 
high tree species diversity including highly valuable tim-
ber species such as Brachystegia spp., Julbernardia spp. 
and Pterocarpus angolensis. According to the field sam-
ple survey conducted within the project, the study area 
consists of 61% forest or woodland, 14% grassland and 
25% cultivated land. The definitions used are according 
to NAFORMA [31]. In the wooded areas human distur-
bances occur in the form of harvesting for timber, char-
coal burning, honey collection and game hunting. Fire 
is also an important factor in the Miombo woodlands, 
underlined by the seasonality in precipitation which 
leaves the vegetation dry for several months. In the 
study area, the lack of cattle also leaves large amounts 
of grasses that dry and therefore are easily set alight 
(Fig. 4).

Field data measurements
The field plots used as reference data were located in 
eleven clusters that were systematically sampled (Fig. 1). 
The locations of four of these clusters are identical to the 
clusters used in the NAFORMA program [21]. The addi-
tional clusters were located in order to obtain a denser 
systematic cluster design. Each cluster consisted of eight 
field measured sample plots with a radius of 15 m and a 
distance of 250 m between the plots. The cluster design 
as well as the plot size and field protocol were adopted 
from the NAFORMA program [31] apart from the fact 
that two plots in each cluster were removed. The removal 
of these plots was the result of the width of one flight line 
which could not cover the whole cluster.

The field measurements on the 88 circular sample plots 
were conducted during January–February 2014. On each 

plot, information such as land use, land cover, and distur-
bance history were recorded, and the plots were photo-
graphed. Handheld GPS receivers were used to navigate 
to the predefined plot centers. For the 32 previously 
established plots, the plot centers were found and identi-
fied according to marks placed at the first measurement 
[31]. On all plots, the plot center coordinates were deter-
mined by means of combined differential global position-
ing system (GPS) and global navigation satellite system 
(GLONASS) using a 40-channel dual frequency survey 
grade receiver as field unit. The field unit was placed in 
the center of each plot on a 2.9 m rod and data record-
ing lasted for 19–55 min (mean 30 min) with a 1-s log-
ging rate. A second receiver was used as a base station 
located in Liwale town. Before the positioning of the 
plots started, the coordinates of the base station antenna 
were determined with precise point positioning with GPS 
and GLONASS data collected continuously for 24 h, fol-
lowing recommendations from Kouba [32]. The distances 
between the plots and the base station were <76 km. Pin-
nacle version 1.00 post-processing software was used to 
compute coordinates with the base station as reference. 
The standard errors of the planimetric plot coordinates 
reported by Pinnacle ranged from 0.01 to 0.28 m with an 
average of 0.05 m (Additional file 1).

Soil carbon
Soil carbon measurements were taken from NAFORMA’s 
original plot numbers 4, 7 and 10 from each cluster, using 
the method described in NAFORMA’s biophysical field 
manual [31]. On the border of each soil sampling plot, 
four minipits were located in the four cardinal direc-
tions. At each vertical minipit wall, starting from the 
top, a volumetric soil sample was collected from three 
depths, 0–10, 10–20 and 20–30  cm. Soil samples from 
the respective depths were bulked into one per plot. Soils 
were analyzed for carbon content according to Walkley 
and Black [33] and bulk density [34] and then converted 
to ton C  hectare−1. After removal of five outliers, 28 
plots having a valid soil carbon measurement remained 

Fig. 4  Around June, bush fires start to appear in the study area. Here illustrated in three Landsat 8 OLI images where black burnt areas clearly 
spread during July to September
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for modeling. The removal of measurements from five 
plots is unfortunate when considering the small sample, 
however, a boxplot analyses revealed three extreme out-
liers. These three samples showed SOC values over 4% 
and >130 ton SOC ha−1 in the top 30  cm of soil which 
is unrealistic on these predominately sandy soils. Two 
additional samples had Bulk Density values of <1, i.e. the 
density of water. These five samples were excluded as lab 
or sampling errors.

Above and below ground tree biomass
The tree measurements were acquired using concen-
tric circular plots to define the diameter limits of trees 
to be included in the measurements on each part of a 
plot. The radii of the concentric circles were 2, 5, 10 and 
15 m [21], and trees with diameter at breast height (dbh) 
greater than 1, 5, 10, and 20 cm, respectively, for the con-
centric plots of increasing size were measured. A bota-
nist determined and recorded tree species for every tree. 
Every fifth tree on a plot was selected as a sample tree 
for height measurement using Suunto hypsometers. For 
trees without height measurements, tree height was pre-
dicted according to diameter-height models constructed 
from the sample trees. Ground reference AGB and BGB 
on a plot was calculated by summing individual tree bio-
mass predictions using single-tree allometric tree-species 
independent models of total AGB and BGB [35] with dbh 
and tree height as independent variables. AGB on the 
plots ranged from 0 to 133.5 Mg ha−1 with a mean and 
standard deviation of 51.3 and 45.9 Mg ha−1, respectively. 
BGB on the plots ranged from 0 to 56.5 Mg ha−1 with a 
mean and standard deviation of 18.6 and 14.5 Mg ha−1, 
respectively.

Three plots with unusually high biomass were analyzed 
and removed after confirming that single large trees close 
to the plot boundary were influencing the measurements 
to an unproportional degree given that about half the 
canopy were outside the plots.

Remotely sensed data
Airborne laser scanning data
The ALS data were acquired on 1 March 2014 using a 
Leica ALS70 laser scanner mounted on a Cessna 404 
two-engine fixed-wing aircraft. Twenty-two parallel 
flight-lines were flown as a block with three additional 
flight lines perpendicular to the main direction of the 
block. The maximum half scan-angle was 20 degrees. The 
flying speed was 77  m  s−1 and the altitude was 1200  m 
above ground level. The data were acquired at a pulse 
repetition frequency of 193.2 kHz and the resulting aver-
age pulse density on the ground was 11.9 pulses m−2. 
The data were processed and every echo was classified 
as “ground” or “non-ground” by the contractor (TerraTec 

AS, Norway) using TerraScan software and the progres-
sive TIN densification algorithm [36]. Heights relative to 
the TIN surface were computed for every echo.

The software FUSION/LDV [37] was used for com-
putation of metrics from the laser returns and a total of 
66 variables were used as candidates for being included 
as independent variables in the regression models. The 
ALS metrics were computed using point elevations above 
ground within the 15  m radius field surveyed plots. A 
height threshold of 1.5 m was used for most variables to 
exclude sub-canopy vegetation from the tree canopies. 
We also calculated various ratios of all returns above 3, 
5, 7.5 and 10 m. If two variables had a Pearson correla-
tion above 0.99 or below −0.99 one of the variables was 
removed before modeling.

Landsat data
Six Landsat 8 OLI images acquired during the period 12 
May and 1 September 2014 were almost cloud free over 
the study area. The reason for this specific time period 
is that the ground measurements where obtained dur-
ing spring 2014 and during that year cloud free images 
before and after the specified dates did not exist. These 
six images were downloaded from USGS (http://earth-
explorer.usgs.gov/). Both Standard Terrain Correction 
(Level 1T) OLI data and Provisional Landsat 8 Surface 
reflectance product images (LaSRC, version 2.2) were 
downloaded for further testing.

The ground control points used for Level 1T correc-
tion are derived from the GLS2000 data set (http://land-
sat.usgs.gov/science_GLS.php). The bands analyzed to 
determine which OLI scene to use were OLI bands 2–7 
and NDVI which had a pixel size of 30 m × 30 m. In the 
final modelling three OLI band ratios (Band5/Band4, 
Band6/Band4, Band7/Band4) were added and therefore 
the statistics obtained from this initial screening of suit-
able image acquisitions might differ slightly from those 
obtained for the final models. Based on studies of the 
images, including analysis of correlations, scatter plots 
and best subset regressions with the data to be mod-
eled as dependent variables, one of the Landsat images 
was selected for further modelling of SOC and another 
image for modeling of AGB and BGB. Image data corre-
sponding to the field plots were extracted using bilinear 
interpolation.

Regression analysis
Final models for prediction of SOC, AGB and BGB were 
developed using three sets of sensor data: only Landsat 
8 OLI, only ALS, and the combination of Landsat 8 OLI 
and ALS. Of the total 79 variables used, 10 were obtained 
from the Landsat 8 OLI data including NDVI and three 
ratios that by experience is known to be of importance for 

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://landsat.usgs.gov/science_GLS.php
http://landsat.usgs.gov/science_GLS.php
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biomass assessments, 59 from the ALS dataset as derived 
using FUSION/LDV [37], 7 from combinations of two or 
more of the FUSION/LDV generated ALS variables and 
three from the combination of ALS and Landsat 8 OLI 
data. When modeling forest biomass from only Landsat 
data, intensity data are, in particular from the mid infra-
red bands, often important since much of the tree-size 
related signal is driven by shadows [38]. Compared to 
spectral data, ALS data models the tree size related infor-
mation better. What mainly remain to be modeled with 
the spectral data is thus the difference between vegeta-
tion types, which indirectly also influence the biomass. 
A combination of different ALS metrics, Landsat 8 OLI 
bands and ratios between these bands, as well as ALS 
metrics and spectral data, might therefore improve the 
regression models.

A best subset routine [39] using stepwise exhaus-
tive search was used to select a number of models 
with two to six variables. Selection of the final models 
then depended on studies of model statistics such as 
Mallow’s Cp and Akaike information criterion (AIC), 
residual analysis and correlation analysis. We applied 
different log models, multiplicative models and models 
with square root transformed variables but in the end 
multiple linear regression performed as well as more 
complicated models.

Results
Selection of Landsat 8 OLI image
The usefulness of the six available Landsat 8 OLI images 
as well as the processing levels 1T or surface reflectance 
calibration (SRC) were compared using visual inspection, 
scatter plots, correlations and best subset regressions. 
Table  1 shows the results in terms of R2 from the best 
subset regressions using three explanatory variables [39].

Based on studies of the scenes, scatter plots, and the 
coefficients of determination presented in Table  1, we 
selected the Landsat 8 OLI scene from 12 May 2014, 
(scene id LC81660672014132LGNlarge 00), for the fur-
ther modelling of AGB and BGB. This image was cloud 
free for 86 of the 88 plots.

We selected the Landsat 8 OLI scene from 31 July 2014 
(scene id LC81660672014212LGN00) for modeling of 
SOC. This image was cloud free for 87 of the 88 plots. 
We also decided to use the surface reflectance calibrated 
product (SRC) only, even though the differences between 
the two levels of radiometric calibration did not influence 
the final result to a large extent.

Final models
The final models for prediction of SOC, AGB and BGB, 
using only spectral information from Landsat 8 OLI SRC 
data, only ALS and the combination of both data sources 
are presented in Table 2.

Scatter plots of observed versus predicted SOC on the 
measured plots are shown in Fig. 5.

Discussion
A first observation from Table 1 is that the Landsat 8 OLI 
data from the end of July, which is about three months 
into the dry season, were best for modeling SOC. On 
the other hand, the R2(adj) values for modeling AGB and 
BGB from OLI decreased steadily from the May 12th to 
the July 31st images. The Landsat 8 OLI data from May 
12th were therefore best for modeling AGB and BGB. The 
area disturbed by recent fires also increased between July 
and September (Fig. 4). In the July 31st image one to four 
plots were disturbed by fire as seen by fire scars, and in 
the September 1st image the amount was between 40 and 
50 plots. The number of burnt plots was extracted using 
visual interpretation of the satellite images and is there-
fore in some cases difficult to classify with certainty. The 
studies of MODIS and AVHRR satellite data time series 
have also confirmed a seasonal pattern with high values 
for tasseled cap greenness [40] and NDVI [41] during 
the rainy season. Given the increased availability of free 
optical satellite data, there are therefore good reasons for 
carefully selecting the optimal image for the given task. 
It is also evident from Table 1 that the standard Landsat 
8 OLI level 1T data performed similarly to the ground 
reflectance calibrated Landsat data for the task of mod-
eling with field plot data as independent variables.

Table 1  Adjusted coefficients of  determination in  percent [R2(adj), %] for  best subsets regressions (italics) with  three 
explanatory variables for six different Landsat 8 OLI images and two different processing levels

Modeled variable Processing level 12 May 2014 13 June 2014 29 June 2014 15 July 2014 31 July 2014 1 Sept 2014

SOC 1T 8.9 19.5 20.9 21.8 30.0 30.0

SOC SRC 11.1 19.8 19.9 20.4 32.4 27.9

AGB 1T 30.4 24.1 18.4 15.2 4.5 8.8

AGB SRC 30.5 23.9 17.9 14.6 8.0 9.5

BGB 1T 31.8 22.4 17.7 13.7 4.0 4.6

BGB SRC 31.6 22.6 17.5 13.9 6.8 5.1
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The issue addressed in this article is to which degree 
the combination of Landsat 8 OLI and ALS data can 
improve models of AGB, BGB and SOC, compared to 
only using data from one of these sensors separately. It 
was found that modeling of AGB performed substan-
tially better with ALS than with OLI data (Table 2). This 
is expected and in accordance with other studies from 
forest covered landscapes where ALS and optical satellite 
data have been compared [42, 43]. It was also found that 
the model for predicting AGB based on ALS was only 
marginally improved when adding optical satellite data as 
additional independent variables. This is also in accord-
ance with earlier studies, for example Ediriweera et  al. 
[30] who found improvements in one forest type but not 
in another, when Landsat TM data were added to an ALS 
based biomass model. The results for BGB followed the 
results for AGB, which is as expected since they are mod-
eled from the same field survey of tree stems.

A unique finding is that ALS data that describe the for-
est and woodland canopy could also be used for mode-
ling of soil carbon. In this study, ALS data were superior 
to Landsat 8 OLI for modeling SOC. The combination of 
ALS and Landsat 8 OLI data further improved the mod-
els obtained in comparison with either of these sensors 
separately. A reason for this is that ALS is superior to 
two-dimensional optical satellite data for the purpose of 
modeling tree biomass, and SOC generally is positively 
correlated with tree cover [11]. It is also logical that the 

spectral data provide additional information when com-
bined with ALS, since the spectral data will contribute 
with both information about soil colour and field layer 
vegetation that is not captured by the ALS point cloud. 
There are only a few studies where SOC has been mod-
eled based on tree cover data from ALS. Kristensen 
et al. [44] tested this at a site in a boreal forest in south-
ern Norway and found a weak correlation between tree 
canopy density and height obtained from ALS and the 
organic layer C stock. They found a stronger correlation 
with organic layer C stock and topographical wetness 
index obtained from the ALS based elevation model. The 
use of terrain variables for modeling SOC was however 
not tested in the present study.

Vågen and Winowiecki [17], Vagen et al. [45] and Win-
owiecki et  al. [11] obtained even higher R2 values when 
modeling SOC with optical satellite data than obtained 
in the present study. The reasons contributing to this 
might be that they used larger plots with more soil sam-
ples per plot, and that they had many more field plots 
which allowed development of more complex models as 
well as enabling the inclusion of a greater span of data, 
which tends to improve R2. The importance of a large 
plot size was also noted by Mauya et al. [29] who showed 
that when using ALS data for predicting AGB in a tropi-
cal rain forest of Tanzania R2 increased from around 0.4 
for 700  m2 plots to around 0.75 for 2000  m2 plots. The 
plot radius 15 m used in this study was mainly because 

Table 2  Results from  plot level regression analysis of  soil carbon (SOC), above  ground tree biomass (AGB) and  below 
ground tree biomass (BGB) using Landsat 8 OLI, ALS and the combination of these data sources

The R2
adj statistic is for the model and RMSE values from ‘leave one out cross validation’ (LOOCV)

XL and XLS = combination of different variables. For full variable explanation see [37]

XL1 = “return 1 count above −1.00” + “total return count above −1.00”

XL2 = “percentage first returns above 1.50”/“P80”

XL3 = “P90” * “percentage first returns above 1.50” * “return 1 count above −1.00”/“total return count above −1.00”

XL4 = “P90” * “percentage first returns above 1.50” * “return 1 count above −1.00”/“return 2 count above −1.00”

XLS1 = “percentage first returns above 1.50” * “P80”/(“NDVI + 1”); MAD = elev MAD median
a  All regression coefficients were statistically significant at 5% level
b  B = Landsat 8 OLI band (1, 2,…,8); P = Height percentiles of lidar vegetation echoes (0, 10,…,90); PFR = Percentage first lidar returns above heightbreak in dm (50, 
75, 100)

Data source Modela,b R2(adj) RMSE RMSE
% Mg ha−1 %

OLI 140731 SOC = −113.8 + 0.0637 B7 + 22.93 B5/B4 34.6 16.2 27.9

ALS SOC = 74.97 − 0.000500 XL1 + 0.425 XL2 + 0.02500 XL3 42.4 15.2 26.2

ALS + OLI 140731 SOC = −4.2 + 36.93 B7/B4 − 0.000429 XL1 + 0.00433 XL4 56.0 13.3 22.9

OLI 140512 AGB = 35.3 − 0.0661 B6 − 18.41 B5/B4 + 55.20 B6/B4 38.1 30.6 66.2

ALS AGB = 5.92 − 5.05 P60 + 1.248 PFR50 + 0.576 PFR75 64.4 23.3 50.3

ALS + OLI 140512 AGB = 80.8 − 0.02178 B5 − 3.38 P60 + 1.499 PFR75 66.0 22.7 49.1

OLI 140512 BGB = 39.4 − 0.02009 B5 + 7.12 B6/B4 40.1 11.6 62.2

ALS BGB = 1.99 − 1.960 MAD − 0.943 P70 + 0.6644 PFR500 71.5 8.1 43.4

ALS + OLI 140512 BGB = 19.43 − 0.00549 B5 − 0.03186 XLS1 + 0.6417 PFR500 71.8 8.1 43.3
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we used the same field instructions as in the NAFORMA 
inventory. The fact that three plots had to be omitted 
because of single large trees near the plot borders indi-
cate however that much larger plots might be needed in 
the woodlands of Africa than in the boreal where plot 
radius of about 10 m most often are used.

When modeling AGB with OLI, we obtained plot level 
R2(adj) of 38% and RMSE 63% using three explanatory 
variables. The results for modeling of BGB were similar. 
As a comparison, Gizachew et  al. [28] obtained a plot 
level RMSE of 49% for AGB + BGB by using only NDVI 

from an OLI image acquired over Liwale on 31 July 2014. 
Their study area was 15,700  km2 in size and covered a 
substantial part of the Liwale district and their model 
was trained with 500 plots from the original NAFORMA 
inventory, which is stratified for tree biomass [21]. Two 
of the three explanatory variables we used for modeling 
AGB with OLI contained short wave infrared (SWIR) 
bands. These bands are missing on some remote sensing 
sensors, and their importance for the modeling of forest 
biomass was already noted when Landsat TM was new 
[38]. One reason for their importance for forest biomass 

Fig. 5  Observed versus predicted plot level SOC, AGB and BGB, using data from Landsat 8 OLI SRC, and ALS separately and in combination
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assessment is probably that the shadows from the trees 
are more evident in these bands [38]. It should however 
be observed that the high solar angles in the tropics 
reduces the effect of tree shadows, and care should there-
fore be taken when transferring research results about 
optical forest remote sensing from other latitudes.

Næsset et  al. [22] used the same field plots as in the 
current study, as part of a study regarding remote sens-
ing data as an aid in large area sampling. They obtained 
the same RMSE, 63%, for modeling of AGB with Rapi-
dEye data as we obtained with OLI in this study, while 
their results with InSAR, Global tree cover maps from 
Landsat, and PALSAR products were slightly less good. 
Their model of AGB using ALS has about the same R2, 
but the RMSE is slightly lower in the present study, prob-
ably since outliers were removed in this study. Our model 
for AGB with ALS is also very similar to the accuracy and 
R2 obtained by Mauya et al. [29] who modeled AGB with 
ALS over the larger 15,700 km2 area in Liwale, using plots 
from the NAFORMA inventory.

There are several sources of error that should be noted. 
The number of available field plots was limited, especially 
since only 28 plots were used for modeling SOC. Of the 
88 plots with tree biomass measurements, three were not 
used because large trees near the plot boundary consid-
erably disturbed the relationship with the remote sens-
ing data. Two additional plots were cloud covered in the 
satellite image used for the biomass modeling. We tried 
to avoid overfitting by using simple regression functions 
with few explanatory variables.

Another source of uncertainty that may have affected 
the model fit is the sub-sampling of trees within a plot 
as described by the field protocol [31]. The smaller trees 
were only recorded in the center of each plot, and for a 
radius of >10 m (the outer 393 m2 of each plot) only trees 
with dbh >20 cm were recorded. The amount of biomass 
for the smaller trees was estimated from the recordings 
in the inner parts of the plots. When inspecting the plots 
visually using the ALS point clouds, we noticed some 
plots in which smaller trees were present in the outer 
part of some plots for which ALS echoes were included 
in the AGB prediction for the plot, while no or only a few 
trees had been recorded in field. To take full advantage 
of ALS data to improve forest parameter estimates, field 
protocols should reflect the utility of measuring the same 
trees on the ground as observed by the remote sensor.

The overall conclusions from this study are that SOC, 
AGB and BGB can be modeled in Miombo woodlands 
and forests with Landsat 8 OLI and similar satellite data 
such as from Sentinel 2 or SPOT, but that even better 
results are obtained when using ALS data. However, the 
best results were obtained by combining Landsat 8 OLI 
data and ALS, in particular when modeling SOC.
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