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Abstract
Quality assessment of training samples collected from hetero-
geneous sources has received little attention in the existing 
literature. Inspired by Euclidean spectral distance metrics, 
this article derives three quality measures for modeling uncer-
tainty in spectral information of open-source heterogeneous 
training samples for classification with Landsat imagery. We 
prepared eight test case data sets from volunteered geo-
graphic information and open government data sources to 
assess the proposed measures. The data sets have significant 
variations in quality, quantity, and data type. A correlation 
analysis verifies that the proposed measures can successfully 
rank the quality of heterogeneous training data sets prior to 
the image classification task. In this era of big data, pre-
classification quality assessment measures empower research 
scientists to select suitable data sets for classification tasks 
from available open data sources. Research findings prove the 
versatility of the Euclidean spectral distance function to de-
velop quality metrics for assessing open-source training data 
sets with varying characteristics for urban area classification.

Introduction
Data quality is defined as a concept that includes data preci-
sion and accuracy to determine if the data are specific enough 
and the types or amount of errors they contain (Bielecka and 
Burek 2019). However, in this research, we are interested in a 
broader definition that embraces aspects of data relevance—
data qualities that are often characterized as “fitness for use” 
(Stanislawski et al. 2014; Zhou et al. 2018; Shao et al. 2018). 
This article intends to assess the suitability of data extracted 
from multiple open-source platforms as training sets to clas-
sify or retrieve from remotely sensed images.

The increasing availability of crowdsourced data and other 
free open data sources brings new opportunities for geospatial 
applications (Deren et al. 2014, 2019; Yin et al. 2015; Shao 

et al. 2020). Despite its success, every source has its related 
challenges. For example, OpenStreetMap (OSM) data bring up 
new issues to consider, including variations of contribution 
patterns among regions caused by the “digital divide” between 
developing and developed countries (Goodchild 2007). As of 
October 2020, the OSM database in Europe was 22.1 GB but only 
4.0 GB for the whole continent of Africa (http://download.geo-
fabrik.de). Another aspect is its non-exhaustive nature. Users 
are more likely to contribute more to one specific place than 
to others due to, for example, familiarity and pride of place 
(Forget et al. 2018). Finally, there is the issue of quality, which 
is questionable concerning the contributors’ trustworthiness.

Open Government Data (OGD) is another initiative that has 
been picked up on worldwide, including in countries in de-
veloping regions (Vetrò et al. 2016). A study of seven African 
countries (Ghana, Sierra Leone, Tunisia, Morocco, South Afri-
ca, Kenya, and Tanzania) showed that by 2017, OGD Web por-
tals had about 1500 data sets in total that were up to date and 
freely accessible online (Afful-Dadzie and Afful-Dadzie 2017; 
Lyimo et al. 2020). Unlike OSM, government data are authori-
tative and usually assumed to be of better quality (Fogliaroni 
et al. 2018). OGD data have countrywide coverage and are less 
affected by the drawbacks related to OSM data discussed in 
the previous paragraph. The downside of OGD is that publicly 
available data are usually the product of a derived data model 
(Shao and Li 2011; Lyimo et al. 2020). Hence, volunteered 
geographic information (such as OSM) and OGD have different 
modeling schemes and quality characteristics.

When presented with several free and open data sets, 
selecting the best data set to serve as the training set data 
becomes important. The selection of sample data points is 
an essential part of the supervised classification of remotely 
sensed imagery. The training data set’s quality is the key to 
the accuracy of classification results because inappropriate 
training samples are the primary source of classification errors 
(Pal and Mather 2006; Radoux et al. 2014; Shao et al. 2014). 
A study by Foody and Arora (1997) demonstrated that the 
choice of training samples significantly affects the classifica-
tion results more than does changing the classifier model.

While most research has focused on quality measures for 
remotely sensed images, little work has focused on quality 
metrics for training data sets. Ge et al. (2008) proposed using 
rough set theory to analyze sample quality reliability for im-
age classification problems. However, challenges related to 
selecting a discretization method for the decision table affect 
this method’s adaptation in a broader context. Another related 
work used open data Portuguese land cover Map (COS) to 
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generate training samples for random forest classifiers (Viana 
2019). This study explored the k-means clustering technique 
to select the most representative training samples. These 
works assessed the quality of training data for image classifi-
cation tasks from a single type of source or similar data sets. 
There is a research gap for assessing training data extracted 
from multiple heterogeneous data sets, particularly open-
source–based training data sets.

Open-source data sets vary in many ways, such as in qual-
ity, quantity, and modeling schemes, to name a few. Assess-
ment of training sets collected from different sources requires 
a robust procedure to assess the quality of samples and to 
optimize them for the classification task. In pixel classifica-
tion, spectral analysis is the foundation of quality assessment. 
Various distance functions have been proposed for image 
quality evaluations. To identify a suitable distance function 
for accurately processing remotely sensed images, Deborah 
et al. (2015) compared existing distance functions, such as 
Manhattan, Chebyshev, and Euclidean distance functions; 
the spectral angle mapper; and the Levenshtein distance. 
Based on their results, they concluded that Euclidean spectral 
distance (ESD) is the most appropriate distance function. A 
study by Forget et al. (2018) applied the ESD function to assess 
the quality of training samples extracted from a single type of 
open source, namely, OSM, but the study did not discuss the 
efficiency of its evaluations. This article extends this tech-
nique to define the fitness of open-source training samples 
from volunteered geographic information and OGD. The study 
relies on the basic ESD principles to model different aspects 
of data quality in various contexts to effectively measure the 
quality of training data sets for image classification tasks. The 
proposed quality measures are evaluated on eight different 
data sets from two case study cities using Landsat 8 imagery.

Case Studies and Data
Case Studies
Dodoma and Arusha are two cities in Tanzania with differ-
ent characteristics chosen as study sites (Table 1). Arusha is a 
major city with a temperate climate. It is a vibrant city that is 
considered an international diplomatic hub. In 2018, it was 
declared the capital of the East African Federation. On the 
other hand, tourism contributes a significant part to Arusha’s 
economy, making it Tanzania’s “safari capital” (Bigurube 2004).

In contrast to Arusha, Dodoma, the capital of Tanzania, is 
a growing city. It has been growing at a slower pace due to the 
delayed relocation of government activities. This city has a 
semi-arid climate (Shemsanga et al. 2016).

Data
Satellite Imagery
This study used Landsat 8 imagery from the US Geological 
Survey through the Earth Explorer website (https://earthexplor-
er.usgs.gov). The scenes were acquired as level 1 data products. 
Therefore, they are expected to be radiometrically calibrated 

and orthorectified (Forget et al. 2018; Shao et al. 2018, 2019; 
Twumasi et al. 2019). Table 2 shows the product identifiers and 
the acquisition dates of each scene. The latest set of cloud-
free scenes were found for both study areas. Both scenes were 
acquired on the same date. For comparison purposes, it was 
found necessary to convert the DN values to surface reflectance 
values. The scene for each city was resized according to the 
area of interest (AOI) to reduce processing time.

Built-Up Training and Validation Data
OSM provides the most mature and reliable crowdsourced 
data in this region. The current literature shows that temporal 
accuracy, up-to-datedness, and lineage quality parameters of 
OSM in the Tanzania data sets are of higher quality in cities 
than in peripheral areas (Minghini et al. 2018). Therefore, we 
acquired OSM data for Dodoma and Arusha for August 2020 
(Table 3). Data were downloaded via TurboPass. Building 
footprint layers were downloaded; other data objects were 
less represented and contained very little information, not 
sufficient to be used as training data.

Table 3. Data.

Class/ Data Source Arusha Dodoma Source

OSM buildings  
footprints (OSM BF)

36 236 23 230 overpass-turbo.eu

Distribution points of water 
users (WDP) data sets 

503 412 opendata.go.tz

School facilities  
data points (SF)

253 156 opendata.go.tz

Health facilities  
data points (HF)

41 77 opendata.go.tz

Tanzania’s OGD source is a rich collection that remains 
mostly untouched in geospatial applications (Lyimo et al. 
2020). This collection contains spatial and nonspatial data. 
In this research, we were interested in spatial data that fall 
on the built-up area; hence, health facilities (HF), distribution 
points of water users (WDP), and school facilities (SF) data 
were selected (Table 3). The assumption behind the inclu-
sion of water users’ distribution points is that they represent 
domestic users’ residential locations.

For pre-classification quality assessment, we used no more 
than 10% of OSM data to reduce processing time; the data 
were randomly selected across the entire region. However, 
pre-classification analysis for OGD included complete data sets 
since they are small in size.

Approximately 2900 polygons were digitized from very 
high spatial resolution imagery from Google Earth. The data 
were randomly collected throughout the entire area popula-
tion to provide a standard measure for comparison of ac-
curacy assessment. Forty percent of the samples (randomly 
selected) assessed the open data set fitness as training data for 
a supervised classification task. The remaining amount (60%) 
of the data set was used to evaluate the performance of built-
up classification results.

Table 1. Environmental and demographic characteristics of Dodoma and Arusha.

City Climate Population

Dodoma Semi-arid Total population of 410,956 residents, according to the 2012 census (National Bureau of Statistics, Tanzania 2013).

Arusha
Temperate 
climate

Population of 416,442 in the city center plus 323,198 in the surrounding Arusha districts (National Bureau of Statistics, 
Tanzania 2013)

Table 2. Product identifiers and acquisition dates of each Landsat scene.

City Landsat Product Identifier Acquisition Date Size of AOI 

Dodoma LC08_L1TP_168064_20190929_20191017_01_T1 29 September 2019 51 × 47 km2

Arusha LC08_L1TP_168062_20190929_20191017_01_T1 29 September 2019 14 × 13 km2
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Training and Validation Samples for Other Land Use/Land Cover Classes
This article’s main goal is to assess the quality of open data 
as training samples; however, none of the sources listed in 
Table 3 had sufficient data to represent other land cover 
classes apart from the built-up class in both case study areas. 
Even if a study has a particular class of interest, conventional 
supervised classification requires that all categories that 
occur in the study area be included in the training stage to 
avoid substantial errors that may be difficult to detect even 
during accuracy assessment (Foody 2002; Foody et al. 2006). 
Therefore, we collected data from very high spatial resolution 
imagery from Google Earth for other land cover subclasses 
in each city, including water, farmland, bare land, vegetation 
fields, forest/trees, shrubs, and wetlands. After classification, 
these subclasses were combined into major classes, including 
water, bare land/low vegetation, and high vegetation.

Methodology
This methodology’s basic idea is to generate suitable quality 
assessment measures by considering the selected classifier’s 
requirements and by assessing variations in characteristics of 
training samples collected from different open data sources. 
Figure 1 provides an overview of the proposed methodology 
for quality assessment and validation.

Selection of Classifier
Several classification algorithms exist. We selected the maxi-
mum likelihood classifier (MLC), a simple, common classifica-
tion algorithm that fits our the purpose, image characteristics, 
and training data of our analysis. MLC is a pixel-based clas-
sification approach that is based on Bayes’ theorem. It uses 
a discriminant function to assign pixels to the class with the 
highest probability (Ahmad and Quegan, 2012). It achieves 
that by calculating statistical distances based on the clusters’ 
means and covariance matrices (Ahmad and Quegan 2012; 
Stein and Tolpekin 2012). MLC is a supervised classification 
scheme that assumes that spectral classes are statistically 
characterized by their means and variances (Richards 1993). 
Statistical distances are probability values that measure spec-
tral uncertainty, and a cell is assigned to the class (cluster) for 
which it has the lowest uncertainty.

Pre-Classification Training Data Quality Measures
Measuring Spectral Similarity
In pixel-based classification, individual image pixels are char-
acterized by spectral information. Spectral classes represent 
surface characteristics, or land cover classes. The classifica-
tion procedure considers a distance to the class’s mean as 
a key to deciding to which class to assign pixels; therefore, 
assessing spectral differences or similarities is important. We 
are evaluating the similarity of open-source training data sets 

Figure 1. An overview of the methodology.
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with reference data. This section improves the ESD formula 
to determine similarity uncertainties for multiple heteroge-
neous training data sets. Let us consider k to be one of the 
heterogeneous training data sets in a given study area and R a 
reference data set for the study area under investigation. We 
measure each data set’s spectral signature S for the feature 
class object it represents in six nonthermal Landsat bands,

 S x x xk n= … …( )1 6, , , , ,  (1)

 S y y yR n= … …( )1 6, , , , ,  (2)

where Sk represents the spectral signature of the kth data set 
with k = (1, 2, …, m), SRrepresents a spectral signature of a 
reference data set, and x–n and y–n are mean pixel values of the 
featured objects in the two data sets for band n.

According to Forget et al. (2018), the ESD d between two 
featured objects x and y is given by
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Since we are assessing each of the heterogeneous training 
data sets separately, Equation 3 can be rewritten to represent 
the cumulative ESD of data set k:
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We can then normalize the ESD (dk) results between values 
a and b for each data set using the normalization Equation 5 
to measure the basic similarity between the open-source train-
ing data sets and the reference data set. Therefore, we refer to 
the normalize dk values as measures of similarity uncertainty 
(SimU). The smaller the SimU value, the higher the similarity 
of data set k to the reference data; hence, it is a higher-quality 
data set and vice versa:

 
SimU

min
min

= −( ) ×
− ( )

( ) − ( )








 +b a

d d
d d

ak k

k kmax
.

 
(5)

Distribution of Training Data Sets in the Feature Space
In this section, we assess the ESD in a different context to 
determine the intensity of the distribution of feature points 
in the feature space. Ideally, it is considered that each data 
set’s pixel values will accumulate around certain areas in the 
feature space and form very dense clusters. The concentration 
of heterogeneous samples in the clusters will vary from one 
training data set to another. We assume that a data set whose 
feature points are very close to one another will have lower 
uncertainty than a data set whose feature points are far from 
each other (Figure 2). In other words, a data set whose feature 
points are very close will have higher quality than a data set 
whose feature points are far from one another.

This section modifies another Euclidean distance–based 
method proposed by a recent study of Zhang et al. (2019) for 
modeling uncertainties in remotely sensed images to facilitate 
uncertainty measurements of heterogeneous training samples 
in the feature space. The scholars applied the Euclidean dis-
tance formula to calculate the distance between feature points 
in the feature space, as shown in Figure 2. Our feature space 
is composed of N nonthermal spectral bands of Landsat im-
agery. We measure the intensity of distribution of the feature 
points of a given data set in the feature space as follows:
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(6)

where Φk represents distribution density of training data set 
points k, m is the total number of pixels representing the fea-
ture points of a training data set k, and dpj represents the ESD 
of the jth feature point of a training data set to the cluster’s 
reference center point p. We calculate dpj using the following 
equation:

 
d f fpj

n

N

p
n

j
n= −( )

=
∑

1

2
,
 

(7)

where fp
n represents the nth feature of the central reference 

feature point p in the cluster and fj
n is the nth feature of the 

jth pixel of the training data point in the feature space; in this 
study, n corresponds to the six spectral nonthermal bands of 
a multispectral image, and the total number of dimension of 
feature space N is 6.

To obtain a measure for the assessment of feature space 
uncertainty (FSU) of the training data sets, we normalize the 
distribution density Φk to values between a and b for each 
training data set k with Equation 8, and just like Zhang et al. 
(2019), we refer to this type of uncertainty as FSU:

 
FSU = −( ) ×
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( ) − ( )
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Integrating Spectral Similarity and Distribution Measures
We have derived two variations of ESD-based measures from 
two different contexts or domains. To obtain a more compre-
hensive measurement model, we combine the two measures 
using a simple average formula. We refer to the resulting qual-
ity measure in Equation 9 as spectral uncertainty (SpU):

 
SpU

SimU FSU= +
.

2  
(9)

Our analysis evaluates the effectiveness of these measures 
for ranking the quality of heterogeneous open-source training 

Figure 2. Example of calculating dpj.
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data sets for classification tasks. The lower the uncertainty 
value, the higher the data set quality. The decision to include 
or exclude a particular data set as a training sample relies on 
the selected threshold. The assumption is that the lower the 
uncertainties, the lower the risk of using a low-quality train-
ing dataset and hence the higher the classification accuracy.

Classification System
The classification system was developed to represent major 
land use/land cover types based on the land surface’s heteroge-
neity, as shown in Table 4. The majority filtering process was 
applied to remove isolated unclassified pixels from the classifi-
cation output. Majority analysis filtering is a standard smooth-
ing procedure to reduce some salt-and-pepper noises (Su 2016).

Table 4. Land use/land cover classification system. 

Land Use/Land Cover Description

Built-up
Residential/industrial/commercial areas 
where rooftops dominate

Bare land/low vegetation
Cleared land/farmland/bare land/areas 
with low vegetation growing

High vegetation Areas covered with trees/shrubs/forest

Water
Water bodies, such as reservoirs, ponds, 
and rivers

Post-Classification Accuracy Measures
Even though pre-classification quality assessment measures 
provide a useful prediction of how the training samples will 
perform, the real effect of the given training data’s quality 
will be observed in the classification results (Ge et al. 2012). 
Therefore, we assess the correlation between pre-classification 
quality measures and post-classification quality measures. For 
comparison purposes, we evaluate the classification results of 
a given city with the same test set.

Here we consider accuracy measures, which allow us to 
effectively compare probabilities of either correct or incorrect 
classification for each result based on the training data set. 
The first measure is overall accuracy, referred to as a propor-
tion of correctly classified pixels, given as (Foody 2002)
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Another measure is the kappa coefficient. Kappa statistics 
are useful for evaluation and comparison classification results 
based on different data or methods (Shao et al. 2017). Let xij 
denote the element of the error matrix in row i and column j, 
r denote the number of classes, and N denote the total sum of 
all elements of the error matrix. Then kappa coefficient k is 
computed as (Cohen 1960)
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row i and column i, respectively.
Other measures include errors of omission and commis-

sion and user and producer errors. Omission errors refer to 
the number of pixels that were not included in interpret-
ing the class results. In contrast, commission errors occur 
when samples have been wrongly classified as belonging to 
a particular class (Stehman and Czaplewski 1998; Stein and 
Tolpekin 2012; Sumari et al. 2020).

Analysis and Results
The study has derived quality measures based on ESD metrics 
to assess the fitness of four open-source training data sets 
for urban area classification in two cities. The open data are 
from two sources: OSM and OGD. We observe variations among 
the open-source data sets. For example, in OSM, we obtained 
building footprints (OSM BF) that contain 20 000 to 30 000 
polygons. In OGD, we found three data sets that were related 
to built-up land use/land cover: SF, HF, and WDP. The amount 
of OGD data sets varied from hundreds to a few tenths. We also 
observed that different open data sources have variations in 
data types and formats. Data set types are of two categories: 
points and polygons. The data sets vary in quality, data size, 
and data type; considering all these variations, we would like 
to observe whether the proposed quality measures can suc-
cessfully rank the quality of the training data sets for image 
classification.

Apart from built-up related data, we did not find enough 
freely available data for an accurate representation of other 
land use/land cover classes. Since we did not find such data 
in both study areas, we collected data from Google Earth for 
other land cover classes for each city. Training samples ex-
tracted from open sources were used for the classification of 
the built-up class. Therefore, quality assessments are carried 
out based on the variations of several open data sets used to 
train the built-up class.

Pre-Classification Quality Assessments
In the methodology, we derived three quality measures based 
on the ESD function: SimU, FSU, and a combination of the 
two, referred to as SpU. SimU measures the similarity between 
open-source training data sets and reference data using the 
mean of the ESD. FSU is a normalized measure of the spread or 
the concentration of the feature points of the data sets in the 
feature space. Finally, SpU takes advantage of the two mea-
sures’ varied capabilities by combining them to determine the 
overall spectral uncertainty of the training data sets.

Tables 5 and 6 show a summary of pre-classification quality 
assessments. A lower dk leads to a lower SimU value; hence, 
the data set is ranked as having a higher similarity in qual-
ity with the reference data set since it has lower similarity 
uncertainties and vice versa. On the other hand, when a data 
set cluster in the feature space is densely concentrated (Φk), it 
leads to lower FSU, reflecting that the data set has good spectral 
coverage to represent a given training class. Values of 0.1 and 
0.9 were used as scale values a and b in Equations 5 and 8.

The graphs in Figures 3 and 4 provide us with some visu-
alizations of the variations in the data sets. We observe lim-
ited variations of spectral values for the data sets in Arusha 
compared to Dodoma. In Dodoma, the data are more similar 
in lower bands, but we notice a higher discrepancy between 
bands 5 and 7, except for OSM BF and reference data.

The WDP data set in Figure 3 has the largest difference from 
reference data in bands 6 and 7. Also, in Table 5, the WDP has 
a dk value of 0.099329; the difference is about seven times 
larger than OSM BF data. For clarity, we analyzed this section 
further in the two-dimensional feature space in Figure 5. The 
results show a significant shift of WDP data point for bands 6 
and 7 in Dodoma.

The box chart type in Figure 5 enables us to picture and 
compare the distribution of the data sets by grouping them 
based on five fundamental values: minimum, first quartile, 
median, third quartile, and maximum. The chart’s box section 
is also referred to as the interquartile range (IQR); it represents 
50% of the data values. The graph also shows the minimum 
and maximum spectral reflectance values in the data set via 
vertical statistical lines extending from the box.

OSM has the largest data sets in both cities, while HF data 
sets are the smallest, with the least having 41 data points 
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Table 5. Summary of pre-classification quality assessments for Dodoma.

OSM BF Data SF Data WDP Data HF Data

Mean spectral distance (dk) 0.014 779 0.05 442 085 0.099 329 0.047 625

Similarity uncertainty (SimU) 0.1 0.475 088 969 0.9 0.410 788

Distribution of spectral values in the feature space (Φk ) 7.16E-07 0.000 355 692 0.000 242 0.001 162

Feature space uncertainty (FSU) 0.1 0.344 628 671 0.266 462 0.9

Spectral uncertainty (SpU) 0.1 0.40 985 882 0.583 231 0.655 394

Table 6. Summary of pre-classification quality assessments for Arusha.

SF Data OSM BF Data HF Data WDP Data

Mean spectral distance (dk) 0.0 111 979 0.031 139 503 0.012 942 0.028 260 712

Similarity uncertainty (SimU) 0.1 0.9 0.169 967 0.78 451 115

Distribution of spectral values in the feature space (Φk) 4.57 057E-05 1.16 444E-06 0.000 168 5.72 079E-05

Feature Space uncertainty (FSU) 0.313 482 577 0.1 0.9 0.36 861 173

Spectral uncertainty (SpU) 0.206 741 288 0.5 0.534 983 0.57 656 144

Figure 3. Mean reflectance values for (a) Dodoma and (b) Arusha.

Figure 4. Distribution of spectral reflectance values for (a) Dodoma and (b) Arusha.
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some data sets, such as SF, have comparable distribution cov-
erage despite having a small size compared to OSM.

Classification Results
Classification accuracy measures were derived from the error 
matrix of classified images. The proposed post-classification 
measures include overall accuracy (OA, with all classes), 
overall kappa coefficient including all classes (OKC), built-up 
class accuracy (BA), kappa coefficient for built-up class (KCB), 
built-up unclassified pixels, a built-up area classified as bare 
land, a built-up area classified as an area with thick vegeta-
tion, and the errors of commission and omission for built-up 
class. Results of the OA, which include the OSM BF, OGD SF, 
OGD HF, and OGD WDP data sets, are 86.55%, 85.01%, 71.65%, 
and 59.44% in Dodoma and 85.86%, 86.52%, 84.42%, and 
81.09% in Arusha, respectively (Figure 6).

Discussion
Role of the ESD for Modeling Quality Measures
The modeling quality measures depends on the assessment 
of spectral information in various contexts. Inspired by ESD 
metrics, we derived three quality measures for open-source 
training data sets: SimU, FSU, and SpU. Tables 7 and 8 present 
a visualization of a ranking correlation between pre-classifica-
tion and post-classification quality measures.

A total of eight data sets were collected from OSM and 
OGD. The data sets are truly heterogeneous, with significant 
variations from one another in terms of quality, quantity, and 
data type. The evaluations are focused on the built-up class to 
determine the variations of different open data sets used for 
the training.

Tables 7 and 8 show a comparison between the proposed 
quality measures and overall built-up class accuracy. FSU 
ranks only five out of eight cases correctly, while SimU ranks 
six out of eight tested cases. When used alone, none of the 
two measures rank the quality of all the data sets success-
fully; each one is limited since it relies on a single perspec-
tive to assess the data. But when combined to produce a 
third metric, SpU, a more comprehensive quality assessment 
happens to rank all eight cases correctly. SpU performance 
proves the versatility of ESD for modeling different aspects of 
data to facilitate measuring the quality of training data sets for 
image classification purposes, especially those collected from 
diverse free sources.

Previous works have considered a single perspective for 
assessing data quality for training purposes; moreover, these 
works use data from single or similar sources (Forget et al. 
2018; Viana 2019). Our results demonstrate that modeling 
the quality of training data from diverse open sources is more 
complex and takes a combination of different models for the 
successful quantification of quality. Spectral analysis is the 
key to examining data set quality for pixel-based classifica-
tion. ESD has proven to be a powerful metric for modeling 
different aspects of quality measures on spectral similarity 
and FSU.

However, it should be noted that each data set should meet 
a minimum limit of data size for the selected classifier for a 
reliable SpU ranking. For example, MLC requires at least 10 p, 
where p is the number of bands used; for six bands, a data 
set with fewer than 60 pixels may have some inconsistencies, 
like in the case of HF data sets with 41 pixels for Dodoma. 
Its classification results have some discrepancies with kappa 
accuracy. However, some researchers in accuracy assessment 
have cautioned against using the kappa coefficient (Stehman 

Figure 5. Distribution the open data sets in a two-dimensional feature space of bands 6 and 7 for Dodoma.

Figure 6. Classification results for Dodomaand Arusha.
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and Czaplewski 1998); our future works will address this 
aspect further.

Effect of Different Sizes of Training Sets
In some cases, the increase in training data size has been 
shown to influence the decrease in FSU and even to minimize 
the overall SpU, leading to better classification results despite 
having a higher SimU. For example, Arusha OSM BF data with 
the largest SimU are ranked as the second-best data set by 
SpU. Compared with post-classification accuracy, it is also 
ranked as the second-best results in that city. It should be not-
ed that OSM BF is the largest training data set in this city and 
so has smaller FSU. On the other hand, results show that when 
the data size is below a minimum requirement, significant 

increases occur in FSU, and overall performance drops drasti-
cally, such as in the case of classification results based on HF 
data points (37.13%). Despite the HF training class having 
a smaller SimU than SF data in Dodoma, the HF class size is 
almost half of the SF data set. Therefore, we can conclude that 
when all data sets are within the acceptable range of SimU, 
the amount of data size can positively influence the results. 
The derived measures can capture this aspect before classifi-
cation begins and rank the data sets accordingly.

Impact of Different Data Types
The open-source training data sets comprise two main data 
types: points and polygons. For spectrally homogeneous 
land cover class, point-based training data sets have similar 

Table 7. Comparison between pre-classification and post-classification quality measures for Dodoma.

OSM BF Data SF Data WDP Data HF Data

Data set properties

 Data type Polygons Points Points Points

 Data size (in pixel counts) 20 635 153 410 41

Quality measures

 Similarity uncertainty (SimU) 0.1 0.47 509 0.9 0.410 788

 Feature space uncertainty (FSU) 0.1 0.34 463 0.266 462 0.9

 Spectral uncertainty (SpU) 0.1 0.40 986 0.5 832 308 0.655 393

Post-classification accuracy assessment

 Built-up class accuracy (%) 80.64 77.81 41.48 37.13

 Kappa coefficient for built-up class 0.73 0.70 0.12 0.31

 Built-up area classified as bare land (%) 12.33 11.75 16.03 30.24

 Built-up area classified as thick vegetation (%) 0.15 0.22 0.29 0.15

 Built-up area classified as area water (%) 0 0 0 0

 Error of commission with respect to built-up class (%) 15.76 17.78 56.03 32.01

 Error of omission with respect to built-up class (%) 19.36 22.19 58.52 62.87

 Overall accuracy including all classes (%) 86.55 85.01 59.44 71.65

 Kappa coefficient including all classes 0.7906 0.77 0.43 0.57

Table 8. Comparison between pre-classification and post-classification quality measures for Arusha.

 SF Data OSM BF Data HF Data WDP Data

Data set properties

 Data type Points Polygons Points Points

 Data size (in pixel counts) 245 26 742 77 494

Quality measures

 Similarity uncertainty (SimU) 0.1 0.9 0.169 967 0.7 845 112

 Feature space uncertainty (FSU) 0.31 348 0.1 0.9 0.3 686 117

 Spectral uncertainty (SpU) 0.20 674 0.5 0.534 983 0.5 765 614

Post-classification accuracy assessment

 Built-up class accuracy (%) 84.29 83.10 78.68 75.62

 Kappa coefficient for built-up class 0.78 0.765 0.751 0.673

 Built-up area classified as bare land (%) 7.69 9.75 11.39 11.57

 Built-up area classified as thick vegetation (%) 3.25 3.14 0.32 3.01

 Built-up area classified as area water (%) 0 0 0 0

 Error of commission with respect to built-up class (%) 2.93 2.82 3.77 3.82

 Error of omission with respect to built-up class (%) 15.71 16.90 21.32 24.38

 Overall accuracy including all classes (%) 86.52 85.86 84.42 81.09

 Kappa coefficient including all classes 0.7741 0.764 0.7638 0.6963
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performance to polygon-based training data (Chen and Stow 
2002). For spectrally heterogeneous surface cover, polygons 
have the advantage of capturing a better range of available 
spectra information. However, pixels found along the borders 
of polygons usually contain mixed spectral values and can be 
detrimental to classification accuracy (Boudewyn et al. 2000). 
This phenomenon may impact the classification results of 
images with higher resolution than coarse resolution levels 
(Chen and Stow 2002). This factor’s influence cannot be no-
ticed for small buildings whose area is less than or equal to a 
pixel for medium-resolution imagery like Landsat 8. However, 
it was interesting to discover that there are approximately 
266 polygons whose area is larger than one or more pixels 
of Landsat 8 in Arusha. Despite the possible effect of mixed 
pixels in the boundaries, these polygons also have a higher 
chance of capturing pixels of higher purity levels. Hence, the 
polygons ensure more comprehensive coverage of the spectral 
range for a given training class.

This phenomenon is well modeled with FSU quality mea-
sures. Consider OSM BF and WDP results for Arusha. OSM BF is 
ranked with the highest level of uncertainty regarding SimU 
(0.9) and hence is considered a data set that is more dissimi-
lar to the reference data set than WDP (SimU ≈0.78). However, 
this data set has the lowest FSU (0.1); a plausible explanation 
for this is the contribution of good spectral coverage caused 
by the polygon data type in this set. On the other hand, a rea-
son for a lower SimU would be due to some mixed pixels of 
polygon boundaries, but it seems that this was not big enough 
to affect the overall quality of the data in SpU (0.5). Further-
more, point-based training data are more likely to have gaps 
in spectral information, causing a higher FSU and leading to 
an increase of unclassified pixels, as in the HF results in both 
case study areas.

Conclusions
Existing research has assessed training samples from a single 
or from similar open data sources. Such procedures may not 
be sufficient to examine the quality of heterogeneous data 
sets extracted from diverse sources. Eight different data sets 
from OSM and OGD were collected. We relied on ESD metrics 
to derive three quality measures for assessing the quality of 
the open-source training samples: SimU, FSU, and SpU. The 
lower the uncertainties, the higher the data quality. The study 
analyzes the relationship between pre-classification quality 
measures and post-classification accuracy measures.

Correlation analysis aimed to determine the robustness of 
the proposed quality measures against data sets of varying 
quality, data set size, and data types. A comparison with clas-
sification accuracy proves that SpU, which is the combination 
of FSU and SimU, can successfully rank the quality of training 
data sets despite their variations. These findings demonstrate 
the versatility of ESD for modeling different quality aspects of 
heterogeneous data sets based on spectral information in vari-
ous contexts.

Other key findings include the following:
• Polygon data set type can help to reduce FSU because of 

continuous coverage of spectral information; however, at 
the same time, polygon boundaries can be the primary 
source of mixed pixels, which increases uncertainties in 
similarity measurements.

• Point data type can lead to higher FSU because of limited 
coverage of spectral information, especially for heteroge-
neous land surface covers, such as in urban areas.

• An increase in data set size has a positive influence and 
can even minimize the overall spectral uncertainty for data 
sets with low similarity uncertainties.

• However, data set size below the minimum requirements for 
a selected classifier can cause inconsistencies in the results.

This article provides a more comprehensive approach for the 
quality assessment of open-source training sets than exist-
ing works. With the increasing availability of open data, this 
method facilitates predetermination of the data set’s quality 
to empower researchers to choose suitable training sets for 
image classification. It also allows optimizing the data sets 
before the classification procedures take place.

This work has applied a simple average to combine two 
derived quality evaluation metrics to measure the spectral un-
certainty of heterogeneous data sets in different contexts. Our 
future works will include experiments with different weights 
and combinations of parameters to further test and analyze 
the validity, applicability, and robustness of the proposed ap-
proach and to optimize it accordingly.
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