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ABSTRACT 
 

This study investigated and established the variation of soil nitrogen, total carbon and phosphorus 
across closed forest; crop-agriculture and livestock disturbed sites. The study provides useful 
information for local management strategies. It sets initial basic data on the soil status of Uzigua 
Forest Reserve after 50 years of crop-agriculture and livestock grazing pressure. Forty-seven (50 m 
× 50 m) quadrats were established on each land uses for soil samples collection. Total nitrogen 
was analyzed by Kjeldahl acid-digestion, total carbon by the Walkley-Black procedures and 
phosphorus by Bray-II method. The mean values (percentage) were nitrogen = 16.07 ± 0.34, 1.75 ± 
0.25, 6.5 ± 0.20; carbon =14.48 ± 0.23, 11.81 ± 0.13, 12.24 ± 0.30; phosphorus =14.12 ± 6.57, 
17.74 ± 3.96, and 13.31± 2.86 for closed forest; agriculture disturbed and grazed sites respectively. 
There was a slightly lower amount of total carbon on crop agriculture disturbed sites than on the 

Original Research Article 



 
 
 
 

Ligate and Chen; IJPSS, 27(1): 1-12, 2019; Article no.IJPSS.47162 
 
 

 
2 
 

livestock grazed land uses. Carbon-nitrogen ratio was higher in closed forests than in the disturbed 
sites. The relationship between forest degradation and soil nutrient status is an indication that the 
below-ground nutrient pools are mainly determined by activities, which disturb the above-ground 
components mainly vegetation. To restore soil fertility status, it is important to establish the 
management of the disturbed sites through restoration of vegetation and minimization of 
disturbances. 
 

 
Keywords: Coastal-forests; agriculture; grazing; disturbances. 
 

1. INTRODUCTION 
 
The dependence of human life on forest 
ecosystems is evident [1,2]. This dependence is 
based on the fact that forests play important 
roles, ranging from ecological functions 
(regulating the climate and water sources and by 
serving as habitats for plants and animals). 
Indeed, forests provide goods (wood, food, 
fodder and medicines), recreation, spiritual 
values and other services [3,4,5,6]. 
 
Although forest ecosystems are important in 
providing all these services, these ecosystems 
are under pressure of deforestation from 
increasing demand of land use-based products 
and services [7]. The human based forest 
disturbances are brought mainly by harvesting of 
forest resources, crop-farming, livestock grazing, 
and damage by fire [1,2]. In Tanzania, crop-
agriculture and livestock grazing are the major 
activities for deforestation and disturbances. 
These activities cause massive loss of forest and 
forestry resources [6,8,9]. For example, 
deforestation has caused loss of forest area from 
55 920 in 1990 to 46 060 million ha in 2015 [2]. 
The current operations on crop-agriculture and 
livestock grazing cause forest ecosystem 
disturbances particularly along the coastal zone. 
This zone is located within 100 kilometers of the 
Indian Ocean, where by about 800 km

2
 of forest 

ecosystems are located [9,10]. Forest 
disturbance is highly pronounced along this zone 
because human activities are accelerated by 
climate change impacts. Certainly, climate 
change forces the crop growers to expand 
farming activities by encroaching forest 
ecosystems broadly. Similarly, forest 
disturbances are acerbated by the increasing 
number of livestock along Tanzania coastal zone 
just like many other coastal zones globally [5]. 
 
Forest disturbances have impacts on soil 
properties [11]. Previous studies show that 
deforestation results into soil degradation and 
loss of total nitrogen, organic carbon and 
phosphorus in the tropics [11]. Forest 

disturbances affect the properties of soils by 
causing loss of soil organic matter due to 
imbalance between materials entering and those 
leaving the ecosystem [12]. Disturbances affect 
the interplay between inputs to soil organic 
matter by increasing or lowering decomposition 
of above-and belowground plant litter and animal 
excreta [13]. Indeed, disturbance affects outputs 
from soil organic matter pools by accelerating 
mineralization and leaching of nutrients [13]. 
However, research to establish the status of the 
coastal soil nutrient in Tanzania is lacking like in 
many tropical countries [1,2]. Specifically, there 
is deficit on the comparative research about the 
status and variations of soil nutrients across 
crop-agriculture, livestock grazing and intact 
forest sites along the coastal forest ecosystems. 
Hence, we conducted this study to address this 
deficit by establishing baseline information, which 
is crucial in the management of coastal forests 
[14]. Therefore, addressing the interplays 
between soil nutrients and vegetation in the 
disturbed and intact sites of coastal forests is 
important in forest small sub-sector. The 
information on the status of soil health under 
crop-agriculture and livestock grazing 
disturbances is important on the management of 
tropical coastal forests. We conducted this study 
to test the following two hypotheses. (i) Closed 
forest sites have higher content of carbon, total 
nitrogen and phosphorus than crop-agriculture 
and livestock disturbed sites at 5% level of 
significance. The following question guided this 
research. How do total carbon, total nitrogen and 
phosphorus differ in closed forest sites from 
agriculture and livestock disturbed sites? 
 
2. MATERIALS AND METHODS 
 

2.1 Description of the Study Area 
 
This study was conducted at Uzigua Forest 
Reserve (UFR), which is found in Mbwewe Ward 
in Bagamoyo District, in Pwani Region in the 
coast of Tanzania mainland (Fig. 1). The forest 
covers an area of about 24,730 ha [6]. This forest 
is within 100 km of the coast of Indian Ocean and 
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thus is considered a coastal forest [15]. The 
Uzigua forest is supposed to be completely 
restricted from human use, serving for catchment 
and biodiversity conservation [6]. Unfortunately, 
this forest is overexploited by anthropogenic 
activities such as collection of fuel-woods, 
fodder, grazing pressure and encroachments for 
agriculture. These activities put UFR into among 
a few remaining coastal forests of Tanzania that 
are in danger of being highly exploited. 
 
The UFR is located in the tropical and sub humid 
area with 700 mm to 1000 mm rainfall, with the 
temperature fluctuating within the annual mean 
of 24.3°C. The soils are well-drained, red, sand 
clay, loamy with brown friable top soils covered 
by more or less decomposed litter. The area is 
progressing with continuous hills ranging 
between 300 to 600 meters above the sea level. 
This altitudinal range crated a wide range for 

coastal forests to harbor high diversity of forest 
trees species [16]. However, the current climate 
change and human activities along the coast 
have greatly influenced temperature, rainfall, and 
the distribution pattern of plant species and their 
composition at large [17]. 
 

2.2 Sampling Design 
 
A systematic sampling design was used in this 
study. To cover a representative sample of 
forested blocks and disturbed sites in UFR, the 
stratification approach was adopted from [6,18]. 
A comparison between impacts of disturbances 
on soils was studied under each site subjected to 
different land uses (LU). For comparing impacts 
of disturbance on soils chemistry, 47 random 
plots were established in the three major LU (i.e., 
closed forests (CFS) crop-agriculture (ADS) and 
livestock disturbed sites (DGS). 

 

 
 

Fig. 1. A map of study area [19] 
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2.3 Sample Collection 
 
Prior to intensive field data collection, 
reconnaissance surveys were conducted to get 
geographical coordinates, which were used to 
produce stratified different LU. We used satellite 
image interpretation to identify areas for ground 
study [20]. The LU classes were identified and 
developed by checking on the images and 
corresponding mean layer values, and 
normalized difference vegetation index (NDVI). 
The NDVI was used in LU classification together 
with a support of vector machine classifier for 
processing images. The closed forest, agriculture 
and grazing lands were classified from mean 
layers. Site selection was conducted based on 
patterns of human activities (crop-agriculture and 
grazing) as supported by the maps. Conspicuous 
land-cover changes because of deforestation, 
agriculture and grazing were considered as the 
main criteria to obtain ADS and DGS for 
collection of soil samples [21].  
 

2.4 Soil Sampling 
 
Soil survey and sampling were conducted from 
May to August 2016 at UFR sites. The soil 
sampling sites were based on the classified land 
use and management characteristics (i.e., closed 
sites, disturbed by crop-agriculture and livestock 
grazing sites). From each of the three strata 
(CFS, ADS, DGS), soil samples were collected 
using an Edelman auger at 1-30 cm (topsoil) 
[22,23,24]. The soil samples in each quadrat 
were then mixed together to make one 
composite sample to eliminate variability.  One 
hundred and forty one (141) soil samples were 
collected (47 soil samples at each LU) drawn at 
50 m × 50 m sampling plots, which were 
stratified and purposively selected. 
Representative samples put into tightened 
double plastic bags, labeled and stored at 4°C to 
reduce further microbial degradation. Fresh air 
dry and oven dry weights were determined 
before subjecting soil samples to further 
laboratory analysis. 
 

2.5 Soil Sample Analysis 
 
Soil total nitrogen (TN), total carbon (TC) and 
phosphorus (P) were analyzed by following the 
standard protocols for soil analysis as follows: (i) 
Determination of TN was done following the 
Kjeldahl acid-digestion procedures [25], (ii) Soil 
TC was analyzed by the Walkley-Black 
Procedures where by Potassium Dichromate 
(K2Cr2O2) and concentrated Sulphuric acid 

(H2SO4) were used to produce the reaction and 
products as shown in the following chemical 
reaction [26]. 
 

2Cr2O7
2- + 3C0 +16H+ → 4Cr3+ + 3CO2 + 

8H2O ……….                                              (1) 
 

In computing the results, a correction factor of 
1.33 applied to adjust the organic carbon 
recovery because of incomplete oxidation in 
Walkley-Black combustion procedures. (iii) 
Available phosphorus was determined by the 
Bray-II method [27]. The Statistical Package for 
Social Sciences (SPSS) version 20.0 was used 
together with MS-Excel computer program to run 
statistical analysis for getting mean and t-values 
at 5% significance level for TN, TC, and P 
between and across CFS, ADS and DGS. 
 

3. RESULTS 
 

For comparing the differences between and 
across closed forests, agriculture and livestock 
disturbed sites; the following consistence was 
maintained in the presentation of results. The 
mean and t-values were kept constant in the 
order of TN (CFS vs. ADS), TN (CFS vs. DGS), 
and TN (ADS vs. DGS); TC (CFS vs. ADS), TC 
(CFS vs. DGS), TC (ADS vs. DGS); P (CFS vs. 
ADS), P (CFS vs. DGS) and P (ADS vs. DGS) 
for total nitrogen, carbon and available 
phosphorus consecutively. 
 

3.1 Variation of Total Nitrogen across 
Land Uses 

 
The total nitrogen variation between CFS vs. 
ADS was t =11.66, p < .001. There was a 
significance difference (%) of TN in CFS and 
ADS from 13.07 ± 0.34 to 11.75 ± 0.25, a 
difference of 1.32 ± 0.11; TN variation in CFS vs. 
DGS was: t = 2.21 , p < .032, with a mean 
difference from 13.07 ± 0.34 to 12.57 ± 0.20, a 
variation of 0.50 ± 0.23; TN in ADS and DGS 
showed a variation of t = 5.34, p < .001, with 
mean difference from 11.75 ± 0.25 to 12.57 ± 
0.20, i.e. 0.82 ± 0.15. TN-variation between ADS 
and DGS showed that TN in DGS is higher than 
in ADS. 
 

3.2 Variation of Total Carbon across Land 
Uses 

 

The total carbon difference between CFS vs. 
ADS was: t =11.80, p < .001. There was 
significant difference (%) of TC from CFS to ADS 
(i.e. 14.48 ± 0.23 to 11.81 ± 0.13), a difference of 
2.67 ± 0.23; the difference of TC between CFS 
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vs. DGS was: t = 7.66, p < .001 with the mean 
values differing from 14.48 ± 0.23 to 12.24 ± 
0.30, a significant difference of 2.24 ± 0.29, and 
TC in ADS vs. DGS was: t = 2.18, p < .035 and 
the mean difference was 11.81 ± 0.13 to 12.24 ± 
0.30, showing a variation of 0.43 ± 0.19. This 
variation shows that there was less TC in ADS 
than in DGS. 
 

3.3 Variation of Available Phosphorus 
across Land Uses 

 
The available phosphorus variation between CFS 
vs. ADS was: t = 24.78, p <.001. There was a 
significant difference of the available phosphorus 
between these two LU from 13.12 ± 6.57 to 
11.97 ± 6.96, a variation of 1.15 ± 0.93; variation 
of the available P between CFS vs. DGS was: t = 
4.04, p < .001, with the mean difference from 
13.12 ± 6.57 to 10.12 ± 2.86, a difference of 3.00 
± 1.56 and variation in the available phosphorus 
between ADS vs. DGS was: t = 1.54, p < .131, 
with a mean difference from 11.97 ± 6.96 to 
10.12 ± 2.86, and a difference of 1.85 ± 01.10. 
 

3.4 Carbon-Nitrogen Ratio across Land 
Uses 

 
Carbon-nitrogen ratio variation between CFS vs. 
ADS was: t = 3.97, p < .001. There was a 
significant difference of CN ratio between these 
two LU i.e. from 8.62 ± 2.84 to 9.88 ± 2.91, a 
difference of 1.26 ± 2.77; variation of CN ratio 
between CFS vs. DGS was: t = 2.33, p < 0.02, 
with the mean difference from 8.62 ± 2.84 to 6.53 
± 2.06, a difference of 2.09 ± 0.57, and variation 
in CN ratio between ADS vs. DGS was: t = 2.94, 
p < .001, with a mean difference from 9.88 ± 2.91 
to 6.53 ± 2.06, a difference of 3.35 ± 1.39. 
 

3.5 Variation of TN, TC and P against 
Elevation 

 
Between 300-390 m elevations, differences in 
each nutrient (percentage) were TN in ADS > 
CFS >DGS; TC was in the order of CFS > DGS 
> ADS, while P was in the order of CFS > ADS > 
DGS. Between 391 to 447 m, TN was in DGS > 
ADS >CFS; TC was recorded in CFS > DGS > 
ADS; while P was in CFS > ADS > DGS orderly. 
At the elevation of 448-500 m, TN was DGS > 
ADS > CFS; TC order was TFS > ADS > DGS; P 
was DGS > CFS > ADS. The results showed 
that, with the increase in elevation there is unit 
loss of nutrients (Fig. 2-1: a, b, c, d, e, f, g, h and 
i). 

3.6 Correlation (R2) of TN, TC and P 
within Land Uses 

 
The correlation (p = .05) between TN, TC and P 
within LU were: (i) positive correlation between 
TN & TC in ADS (R2 = 0.59); TN & TC in DGS 
(R

2
 = 0.84); (ii) weak positive correlation between 

TN & TC in CFS (R2 = 0.18); TN & P in CFS (R2 
= 0.14); TN & P in ADS (R

2
 = 0.01); TN & P in 

DGS (R
2
 = 0.12); TC & P in DGS (R

2
 = 0.11; (iii) 

negative correlation between TC & P in CFS (R2 
= 0.07) and TC & P in ADS (R

2
 = 0.17). 

 

3.7 Correlation of TN, TC and P across 
Land Use 

 
The correlation (p = .05) between TN, TC and P 
between LU showed both positive and negative 
relationships as follows: (i) strong positive 
correlation between TN in CFS and ADS (R

2
 = 

0.62), TN in CFS and DGS (R2 = 0.96), TN in 
ADS and DGS (R

2
 = 0.61), TC in ADS and DGS 

(R2 = 0.97), P in CFS and ADS (R2 = 0.98), (ii) 
weak positive correlation between TC in CFS 
and DGS (R2 = 0.09), TC in CFS and DGS (R2 = 
0.15), (iii) weak negative correlation between P in 
CFS and ADS (R

2
 = 0.14) and P in ADS and 

DGS (R2 = 0.18). 
 

4. DISCUSSION 
 
This discussion is presented on the basis that 
this work had some challenges emanating on the 
lack of baseline data about TN, TC and P status 
along the coastal zone of Tanzania. Hence, the 
discussion mainly focuses on the existing 
differences of soil nutrients and identifying the 
possible causes of variation under the hypothesis 
that disturbance type and the associated 
cumulative severity affect the distribution and 
structure of forest vegetation and soil properties 
[28]. To establish the variation, we based our 
discussion on closed forest sites as our control 
for comparison with the disturbed sites. Indeed, 
our findings suggest that disturbances cause 
impacts on above-ground and under-ground 
forest ecosystems hence resulting in differences 
in nutrients across different land uses [6,29]. 
 

4.1 Variation of Total Nitrogen across 
Land Uses 

 
Forests subjected to crop-agriculture and 
livestock grazing have different TN status. 
Closed forest sites contain a higher amount of 
TN than that found in ADS or DGS. It is 



explained that both crop-agriculture and livestock 
grazing contribute in making the soil susceptible 
to erosion and hence loss of nutrients 
Indeed, the impacts are not the same between 
agriculture and livestock disturbed sites 
[13,30,31]. That is why, DGS had the lowest 
amount of TN across all the three LU as 
supported by [30,31]. 
 
The findings suggest that disturbance reduces 
nitrogen mineralization, a process occurring in 
DGS and ADS than CFS because there is low 
moisture content following the fact that 
disturbances affect vegetation and thus the land 
is exposed to solar radiation [32]. These findings 
agree with other research works that low TN 
content in DGS (for example), is because 
livestock grazing decreases the input of organic 
matter and exposes litter to photo
[32,33,34]. Therefore, we establish that photo
degradation causes excessive loss of N 
DGS than in ADS (Golluscio et al. 2009). 
However, this low content of TN in DGS is 
contrary to findings by Britton, Pearce and Jones 
[35,36]. This controversial observation is that, we 
 

Fig. 2. Correlation between nutrients levels (%) and elevation (masl×10
elevation, b = TN in ADS vs. Elevation, c = TN in DGS vs. Elevation, d = TC in CFS vs. 

Elevation, e = TC in ADS vs. Elevation, f = TC in DGS vs. Elevation, g = P 
h = P in ADS vs. Elevation and i = P in DGS vs. Elevation
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agriculture and livestock 
grazing contribute in making the soil susceptible 
to erosion and hence loss of nutrients [13]. 
Indeed, the impacts are not the same between 
agriculture and livestock disturbed sites 

. That is why, DGS had the lowest 
amount of TN across all the three LU as 

The findings suggest that disturbance reduces 
nitrogen mineralization, a process occurring in 
DGS and ADS than CFS because there is low 
moisture content following the fact that 
disturbances affect vegetation and thus the land 

. These findings 
agree with other research works that low TN 
content in DGS (for example), is because 

k grazing decreases the input of organic 
matter and exposes litter to photo-degradation 

. Therefore, we establish that photo-
degradation causes excessive loss of N from 
DGS than in ADS (Golluscio et al. 2009). 
However, this low content of TN in DGS is 
contrary to findings by Britton, Pearce and Jones 

. This controversial observation is that, we 

expected DGS to contain higher amount of TN 
because of inputs from livestock ex
urine [37] but now in this current study it has 
been reflected to be differently. 
 
From our results, it seems that a small amount of 
N inputs from excreta does not make up for the 
amount lost because of disturbed biomass. Low 
return of N from grazing animals is explained in 
part by the fact that that livestock grazing in 
these forest sites is mainly a free-
under which animals are randomly grazed. As a 
result, there is no guarantee of the return of 
nutrients from excreta in a particular piece of 
grazed land. The low amount of TN in DGS as 
compared to that in ADS is explained by the fact 
that, while grazing sites are left bare, cultivated 
farms have the advantage of harboring plant 
species (crops and weeds) that check soil 
erosion and photo-degradation. In addition, there 
is partial recycling of nutrients from crop residues 
and weed decomposition. Therefore, it is 
reasonable for DGS to contain relatively low 
amount of TN as compared to ADS and CFS 
[31]. 

 
Correlation between nutrients levels (%) and elevation (masl×10

2
) (a = TN in CFS vs. 

elevation, b = TN in ADS vs. Elevation, c = TN in DGS vs. Elevation, d = TC in CFS vs. 
Elevation, e = TC in ADS vs. Elevation, f = TC in DGS vs. Elevation, g = P in CFS vs. Elevation, 

h = P in ADS vs. Elevation and i = P in DGS vs. Elevation 
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4.2 Variation of Total Carbon across Land 
Uses 

 
Grazing within coastal forest ecosystems is 
randomly done, so the current grazing system 
does not provide redistribution of carbon and 
rapid increase in soil TC is also reported in [38]. 
The low amount of TC in ADS and DGS proves 
that most degraded and depleted soils of agro-
ecosystems contain lower soil organic carbon 
pool than those under natural ecosystems, as is 
supported by Lal [39]. The low amount of TC in 
ADS as compared to that in any of the other LU 
sites indicates that farming activities are 
responsible for soil carbon reduction which is 
supported by Syswerda et al. [40] and Kane [38]. 
In this view, farming accelerates soil 
heterotrophic activity and typically leads to 
carbon loss [40]. Indeed it is possible that low 
amount of carbon in ADS and DGS is limited by 
nutrients, predominantly nitrogen and 
phosphorus in addition to other environmental 
constraints [41]. 
 
Carbon depletion in the degraded coastal forest 
as represented by the Uzigua ecosystem is 
contributed by clearing and burning vegetation 
for farm preparation. It reported that farming in 
this way has been a common practice for over 50 
years since independence in 1960s. During all 
these years, crop production had been 
characterized by conversion of forest into 
agricultural land without addition of mineral 
fertilizer or manure, so the natural nutrients pool 
is depleted [39]. Although DGS showed a high 
amount of TC, yet it is below to that found in 
CFS. This implies that grazing practices 
accelerated forest cover loss and hence affected 
carbon sinks above and below the ground [40]. 
The effect of livestock grazing in soil TC storage 
shows that herbivores may facilitate or depress 
TC deposition rates as compared to crop-
agriculture and closed forests [33]. The impacts 
of livestock grazing in TC show that there is an 
indirect relationship between animal grazing 
activities above the ground and underground 
ecosystems [42]. This relationship is explained 
by the difference in values of TC between CFS 
and DGS [13,35,36]. 
 

4.3 Variation of Phosphorus across Land 
Uses 

 
The available phosphorus is among the 
important nutrients in any ecosystem as it plays 
roles in driving cellular energy cycles and 
building the molecules of DNA and RNA in plants 

[43]. The difference for P across CFS, ADS and 
DGS implies that ecosystem disturbances cause 
positive or negative impacts on the availability of 
this nutrient [44]. The results showed low content 
of P in ADS and DGS, which is explained by the 
fact that conversion of forest land into ADS and 
DGS reduces the amount of P because of the 
exposure of bare land to processes of soil runoff, 
erosion and percolation [43]. However, [45,46] 
and [42] challenge the establishment of P decline 
in the livestock disturbed sites. This literature 
shows that livestock grazing supplements P by 
excretion and egestion processes contrary to our 
results. Therefore, our findings suggest that 
coastal forest disturbances affect the above 
ground biomass and hence lower the amount of 
P in soils supporting the findings of [36]. 
 

4.4 Carbon-Nitrogen Ratio across Land 
Uses 

 
Carbon-nitrogen ratio, as an important factor for 
determination of the capability of soil and storage 
of carbon varied from CFS to ADS and DGS in 
our study of UFR; this finding is the same to a 
study by Swangjang [47]. The variation in CN 
ratio is important in forest ecosystem health 
because carbon plays an important role in the 
energy content (carbohydrate) of plant species 
and production of CO2 in soil ecosystem, and 
nitrogen is essential for plant growth [48]. This 
ratio plays a significant role in regulating soil 
organic matter mineralization [47]. Thus, this 
ratio has implications in soil fertility. The findings 
showed that soil CN ratio in the coastal forest 
decreased in the order CFS > ADS > DGS, 
possibly reflecting a higher degree of breakdown 
of humus stored in ADS and DGS as compared 
to CFS [49]. However, these results contradict 
the trend in the CN ratio discovered by Zhang et 
al. [50]. Our results portray that as breakdown of 
organic matter proceeds, those easily 
decomposed materials disappear and nitrogen 
possibly get immobilized in microbial biomass 
and decay products supporting some findings in 
Kennedy et al. [49]. The process of breakdown 
and immobilization leaves behind more 
recalcitrant material characterized by slower 
decomposition rate because only a few 
microorganism such as fungi can break these 
materials [50]. These processes lower the CN 
ratio in ADS and DGS than in CFS. The low CN 
ratio influences TN dynamics as it causes faster 
decomposition of organic matter and 
mineralization of nitrogen by microorganisms 
[45]. From our findings, it can be understood that 
the impacts of converting land from native forests 
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to ADS and DGS have contributed to affect 
microbial activities. As a result, forest 
disturbances are considered to degrade the rate 
of organic matter, which is the main source of 
nutriments in soils [50]. 
 
4.5 The Variation of TN, TC and P across 

Land Uses 
 

The differences in soil TN, TC and P across 
CFS, ADS and P as presented in this study 
generally indicate that activities such as crop-
agriculture and livestock grazing contribute to 
different alteration of nutrients depending on the 
differences in LU. Lower amounts of TN and TC 
were found in ADS and DGS as compared to 
CFS; this agrees with the findings in Groppo et al 
[45]. However, the trend of P was contrary to 
Groppo et al. [45]. In our study, these three 
nutrients declined from CFS to ADS and DGS. 
Based on this trend, it is evident that 
anthropogenic activities have a major 
contribution in the variation of nutrient pools in 
forest ecosystems as supported by the findings 
in Bai et al [36]. Agriculture and livestock grazing 
activities affect the health status of soils by 
altering vegetation cover and the physical 
properties of soil [51]. 

 
Lower content of the three nutrients in ADS and 
DGS across the study sites is an indication that 
disturbed soils contained little organic matter 
because of inadequate vegetation life in the past 
years, which leads to a lack of humus and 
therefore low nutrient content [52]. The 
differences in nutrients status between ADS and 
DGS show that, although all disturbances cause 
impacts in soil properties, there are some 
degrees of variation between the category of 
disturbances and any particular nutrient. For 
example, across all the nutrient states, DGS has 
the least amount of any of the nutrients except 
TC, which was higher than that in ADS. The 
difference in nutrients status across is used to 
explain that any conversion of natural forest 
lands to artificial LU results into loss of nutrients 
such as TN and TC [50]. 
 

4.6 Correlation of TN, TC and P across 
Land Uses 

 

We found a positive correlation between soil TN 
and TC in this study. This correlation was 
significant especially in ADS and DGS than in 
other land uses. Correlationally, this relationship 
shows that TN variation goes hand in hand with 
TC spatially and quantitatively as supported by 

Groppo et al. [45]. These findings suggest that 
there are some degrees of TN decline in the 
same direction of TC in disturbed forest sites. 
These observations agree with the existing 
documentations that loss of vegetation because 
of human activities such agriculture and livestock 
grazing affects bulk density, hence the 
decomposition organic matter and mineralization 
of soils nutrients are effected too [13,36]. 
 

In addition, such effects have contributed to the 
nature of variation of correlations, which were 
found in ADS and DGS in this study. We 
observed weak positive correlation between TN 
and TC in CFS, TN and P in CFS, TN and P in 
ADS, TN and P in DGS, and TC and P in DGS. 
These kinds of relationships show that variations 
existing between these elements in these land 
uses are partially independent. Weak to negative 
correlation between either TN and P or TC in 
CFS and ADS shows that TN or TC do not 
increase or decrease to the same direction as 
supported by a study by Bai et al. (2012). 
However, the weak correlation in variables is 
contrary with Block et al. [44]. This controversy 
could emanate on different ecological systems 
with differing climatic conditions such as 
temperatures and rainfall, which could affect TN, 
TC and P mineralization differently [44]. 
 
In this article it is established that the variation of 
nutrients across land  uses provides useful 
information that clearing vegetation for various 
human activities contributes to physical losses of 
organic compounds from leaching and other 
processes that may alter the nutrient content of 
litter and returns to the soil and plants uptakes 
[53]. The assumption that the loss of vegetation 
above the ground influences soil fertility status is 
also supported by Xuluc-Tolosaa et al. [54] as 
leaf litter above the ground is the main input of 
nutrients to the soil. Indeed, the amount of plant 
available nutrients affects natural and managed 
ecosystems largely [53]. Therefore, processes 
that disturb vegetation can also have a significant 
effect on nutrient cycles and nutrient limitation 
[41]. 
 

5. CONCLUSION 
 
We conclude that the comparison of soil nutrients 
between closed forests, agriculture and livestock 
disturbed sites of Uzigua Forest Reserve 
indicated that there are significant degrees of 
variations in TN, TC and P content across 
different forms of land use. However, these 
differences were not directly defined as caused 
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by human activities; the findings gave useful 
information to establish the relationships 
between nutrient status of intact coastal forests 
from the crop and livestock grazing disturbances. 
The study suggests that if crop-agriculture and 
livestock grazing are to be integral part of coastal 
forest management, further studies are needed 
to devise crop-agriculture systems and grazing 
stocking rates that will sustain coastal forests. 
These activities should take place within limits, 
for example to take advantage of nutrient cycling 
between grazed animals, crop residues and 
forest ecosystems. Nevertheless, the detection of 
total nitrogen by Kjeldahl method has some 
limitations acknowledged in this work. By using 
Kjeldahl, we were unable to detect oximes, 
nitriles, nitrite or nitrate that might have slightly 
affected total nitrogen across different land uses. 
Therefore, we suggest further studies to detect 
total nitrogen by using an oxygen combustion 
chamber followed by mass spectroscopy or auto-
fluorescence after reaction with O3. 
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