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The book “Allometric Tree Biomass and Volume Models in Tanzania” documents biomass 
and volume models and various processes involved in their development for different 
vegetation types and some tree species in Tanzania. This book is organized into 14 chapters:

• Chapter 1 is an introductory part which covers forests and forest types in Tanzania 
and the importance of forest biomass and volume models in Tanzania;

• Chapter 2 gives background information on development of biomass and volume 
models;

• Chapter 3 is on biomass and volume models for the vast miombo woodlands in 
Tanzania;

• Chapter 4 provides models for predicting biomass of individual trees in lowland and 
humid montane forests (AGB, BGB, twigs and leaves, branches and stem);

• Chapter 5 presents general and species-specific models for AGB and BGB for three 
main mangrove species (Avicennia marina, Rhizophora mucronata and Sonneratia 
alba);

• Chapter 6 focuses on AGB and BGB biomass models and total volume models for 
Itigi thickets of central Tanzania dominated by Pseudoprosopi fischeri and Combretum 
celastroides;

• Chapter 7 is on Acacia-Commiphora woodlands biomass and volume models. 
Site-specific (AGB and BGB) and general (AGB, BGB and stem) biomass models are 
presented;

• Chapter 8 is about general and site-specific allometric models for estimating 
biomass of Pinus patula;

• Chapter 9 describes models for predicting biomass and volume of Tectona grandis.
• Chapter 10 deals with biomass and volume allometric models for coconut trees 

(Cocos nucifera);
• Chapter 11 presents cashewnut trees (Anacardium occidentale) biomass and volume 

allometric models;
• Chapter 12 is on biomass and volume models of baobab (Adansonia digitata). AGB 

and total volume allometric models are presented;
• Chapter 13 compares biomass and volume estimates for different vegetation types 

and forests obtained by applying models presented in this book with corresponding 
previously published estimates; and

• Chapter 14 expresses concluding remarks.
The book covers useful knowledge for scholars who wish to engage in tree allometric 
modelling, and expert practicing forestry for the determination of forest stocking levels 
needed for forest planning and other processes such as forest carbon trading. It is a book 
of great interest not only for forest experts but also for forestry students undertaking forest 
resources assessment at different levels.
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2.1 History and approaches on the determination of 
biomass and volume

There are two main approaches to estimation of tree biomass. One is to obtain 
biomass as a product of tree volume and wood basic density. However, since 
most of the volume equations consider only the merchantable part of the 
tree, a biomass expansion factor that expands merchantable volume directly 
to total aboveground biomass is usually applied. The second approach is the 
direct use of biomass models.

The development of both biomass- and volume models has been based on 
relating easily measurable tree variables, such as diameter at breast height 
(dbh) and total tree height (ht), to biomass or volume. These variables are 
considered to be the most efficient input variables for tree level biomass and 
volume prediction (Brown, 1997; IPCC, 2003; Chave et al., 2014). 

Global models have the advantage of being, in principle, applicable anywhere. 
However, due to great variation in climatic and edaphic factors, such models 
can yield large errors locally. Thus, a model developed on data from a smaller 
region, will within that region give more accurate estimates. Similarly, a 
model developed generally for a large number of species is more versatile 
in the application phase, but will yield estimates with large errors for those 
species that are atypical relative to the mean relationship between the response 
and the input variables. A species specific model has a more narrow range 
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of application, but will give better estimates for that particular species. A 
recent review of biomass and volume models for sub-Saharan African forests 
done by Henry et al. (2011) revealed that for tropical forests, a large number 
of species-specific and few general models existed. However, in Tanzania, 
development of biomass and volume models has been limited in terms 
of coverage of tree species, tree components, tree sizes and sample sizes 
(Temu, 1979; Malimbwi and Temu, 1984; Malimbwi, 1987; Malimbwi and 
Mbwambo, 1990; Malimbwi et al., 1994; Malimbwi et al., 1998; Chamshama 
et al., 2004; Munishi and Shear, 2004; Malimbwi et al., 2005).

In highly diverse ecosystems such as tropical forests, global models (Brown, 
1997; Chave et al., 2005; Chave et al., 2014) have been applied in the absence 
of general- or species-specific local models. Species-specific models are 
generally more desirable. In a tropical natural forest with a large number 
of different species, though, developing species-specific models is almost 
impossible and consequently general models are the most appropriate.

2.2 Basic steps in the development of allometric models
Several important issues need to be considered before developing allometric 
biomass and volume models (see for example Vanclay, 1994). First of all one 
should decide exactly for what purpose the model is needed and what kind 
of results are expected from the model. This is then followed by a decision on 
what data is needed in order to develop a model that is in accordance with 
expectations and requirements. A consideration of the available resources for 
developing the model should also be done to enable planning and assessment 
of the magnitude of data collection. Already existing data sets could be 
supplementary to the final pool of data and should therefore be considered. 
However, it is important that sampling and measurement protocols are 
harmonised between the existing data and the planned data collection.

Both biomass and volume models are developed from empirical observations 
of sample trees. The response (biomass or volume) is accurately measured for 
each sample tree using destructive methods. Easily measurable variables such 
as dbh and ht are also recorded for each sample tree, and these measurements 
are later regressed against the response. This results into models that by 
means of easily measurable variables can predict biomass or volume. 

The first consideration that has to be made in the model development 
process is to know the geographical extent and tree species for which the 
model will be applied. This is important because tree allometry varies with 
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location, tree sizes and species. Thus, it is important to do the sampling 
so that the population ranges of these factors are covered when selecting 
sample trees for biomass and volume modelling. If these guidelines are 
followed, extrapolations in the model application phase are minimised. 
This is particularly important to avoid if the model has a linear relationship 
between the response and the input variables.

Selection of sites and sample trees
As indicated above, the selection of sample trees should be carefully planned 
so that all tree species and size ranges are covered. However, in tropical 
forests where there are many tree species within small areas, a prioritisation 
of species that are important to be sampled has to be done because of limited 
resources. Such a decision can either be made on the basis of how frequent 
different species are or how important different species are for various uses. 
Either way, information on the frequency and distribution of species is 
necessary to make this prioritisation. A forest inventory of some kind prior to 
selection of sample trees is therefore required. If no local inventory has been 
carried out in the area of interest, sample plot information from the national 
forest inventory (NFI) can be used, if it exists. If no prior information is 
available, a separate sample plot inventory should be carried out with plots 
systematically distributed throughout the area of interest. Diameter and 
species registration on each plot enable the establishment of both species 
and size range for the area of interest. Later, sample trees can be purposely 
selected for destructive sampling according to the species frequency and 
size range information. The selection of sample trees can be carried out as 
single observations over the area of interest. However, it is possible to plan 
which trees to sample before even going to the field if a plot inventory has 
already been carried out and the sample trees selected among these trees. 
Additional plots can be established in-between the inventory plots for 
selection of additional sample trees if needed. Furthermore, selecting sample 
trees from plots where also information on the neighbouring trees is available 
enables calculation of stand variables, such as stand basal area, that can be 
included in the model single tree biomass or volume. Even if such variables 
are not directly included as an input variable in the final model, they can be 
informative with respect to giving insight to the accuracy assessment of the 
model, and with respect to learning for which forest conditions the model 
works particularly well.

The most important aspect when it comes to selection of sample trees is to 
cover the range of tree sizes, which is approximated from the prior inventory 
plot information. There will always be trees with more extreme sizes than 
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those measured in sample plots, but extremely big trees will also occur 
quite rarely when the model is applied later on. If there is a concern that 
the upper tail of the tree size distribution is underrepresented, additional 
extreme value observations can purposely be selected subsequent to the 
main sampling effort. The reason for this is that it is important to cover the 
size range in order to avoid extrapolations in the application phase. Using a 
model calibrated for small trees to do predictions for larger trees can result 
in large systematic errors.

Aboveground biomass and volume models
The development of biomass and volume models requires that the biomass 
or volume of each sample tree be measured accurately through destructive 
sampling procedures, even though terrestrial laser scanning can be used 
to build three dimensional models of trees which can be used to calculate 
volume of the different tree components. If information on wood basic 
density is also available, for example from a core sample, biomass can also be 
established. However, destructive sampling where the sample trees are felled 
and separated into different components (stem, branches, twigs and leaves) 
and further into billets, so far been the most common way of establishing 
the observed biomass or volume. For the determination of aboveground 
biomass (AGB), each billet is weighed in the field immediately after cutting. 
The weights of billets from different tree components are summed up for 
each tree. To estimate the biomass of tree components, samples are then 
taken from each component of each tree, measured for fresh weight in the 
field and later taken to the laboratory for oven drying. Thereafter, each 
sample is once again weighed, followed by calculation of a dry to fresh 
weight ratio (DF-ratio). The biomass of each tree component is obtained 
by multiplying component specific DF-ratios with the corresponding fresh 
weight, while tree biomass is obtained by summing the biomass values of 
different tree components.

The determination of the volume of sample trees is carried out as follows: 
The sample tree is divided into two main components, namely merchantable 
stem and branches. Subsequently, these components are divided into billets 
and measured for length and mid diameter. Then, the cross sectional area is 
calculated and volume determined by multiplying with the length of the billet 
(Huber’s formula). It can be shown that this formula slightly underestimates 
the volume and that the underestimation increases with increasing section 
length. Sections should therefore be kept short, typically less than 1 m.
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Belowground biomass models
The determination of belowground biomass (BGB) values basically follows 
the same procedures as for the AGB with regard to separation into different 
components (root crown, main roots and side roots) and with regard to 
determination of DF-ratios. However, there is a huge difference with regard 
to the resources needed to get the samples available for measurements 
because of the excavation need. Not only is the excavation work demanding 
in itself, but it can also be difficult to retrieve all of the root biomass from 
the ground. Thus, with a limited budget and if the goal is to get as much as 
possible model accuracy out of that budget, it may be more effective to do 
sampling of the BGB rather than doing an exhaustive excavation. 

The sampling procedure indicated above can be carried out in the following 
way (see also Mugasha et al., 2013): First, the root crown is excavated and 
each root that is therefrom (main root) is cut at the base and the diameter 
is measured. Three of the main roots; one small, one medium, and one large 
with respect to basal diameter are selected for excavation in full length. Side 
roots branching from the excavated main roots are also sampled in the same 
fashion. Other unexcavated main and side roots are measured for their 
basal diameters. The excavated root components are further processed in 
the same way as the aboveground components. First, the roots are weighed 
fresh in field and then samples are taken to the laboratory for oven drying 
and are subsequently weighed. Then DF-ratio is calculated for each root 
and multiplied with the corresponding fresh weight. However, as opposed 
to the aboveground procedures, models must be developed to predict the 
biomass of the roots that are not excavated and weighed. Models for the 
side roots biomass are first developed. Such models cannot be made for 
each tree because the observations are too few, so they must be developed 
by species and/or within some geographical limits. The root basal diameters 
are regressed against the observed biomass of corresponding roots. The 
models are then applied to estimate the biomass of unexcavated roots. 
These side roots biomass predictions are then added to the biomass of 
their respective main root to adjust for the entire main roots which were 
not excavated. Having established the total biomass of every main root, 
main root biomass models are developed. As for the side root model, also 
these models must be developed by species and/or geographical area. The 
main root models are then applied to the base diameters measured for non-
excavated main roots. A sample is also taken from the root crown itself, 
and a DF-ratio is calculated and multiplied by the fresh weight of the root 
crown. By summing the partly measured and partly estimated biomass of 
the different belowground components, BGB is obtained.
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The advantage of carrying out this procedure, as opposed to excavating 
every root in full, is that more observations can be made available for the 
final development of the model for BGB. This ensures that more between-
tree variation is covered in the data material and that more combinations 
between tree size and site factors are covered. However, since the observed 
biomass values used as response in the modelling partly are results of model 
predictions, an error is imposed. This is an error that to some degree will 
draw the observed biomass towards the mean for a given tree size. But, if 
the modelling is sound, the only effect is that the criteria of model fit will 
seem a little bit better compared to if the sample were excavated in full. 

The procedure described above, was used in several previous studies. Kuyah 
et al. (2012) for example, did not excavate roots that went deeper than 2 m 
below the ground surface. Instead diameters were measured and the weight 
estimated by regression equations. Later the estimated weights were added to 
the observed biomass and BGB models were developed. Similarly in Niiyama 
et al. (2010) (Illustration Pg. 275), the stump was pulled from the ground 
and a lot of roots were broken. The weights of broken roots were estimated 
using a similar approach as described above, and finally estimated and 
observed biomass was added together and a model for BGB was developed.

Model form selection, fitting, selection and evaluation
Model is a general term that means simplification of reality. The allometric 
models that are the topic of the current book are simplifications in the sense 
that they yield approximations of the true biomass and volume with the use of 
measurements of dbh and ht. These are direct, easy to obtain, measurements 
of tree size, and they correlate quite closely to both biomass and volume. 
An empirical, statistical relationship between biomass or volume and the 
input variables, dbh and ht, can then be fitted using regression analysis. This 
estimates parameter coefficients for the input variables so that the residual 
errors between fitted values and the corresponding observed response values 
are minimised. Equation 1 displays a linear model form. This is a simple 
model where the response (Y) is linearly dependent on the input variables 
(dbh and ht) through constants β1 and β2, and an intercept term, β0.
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simple model where the response (Y) is linearly dependent on the input variables (dbh 
and ht) through constants β1 and β2, and an intercept term, β0.

Y = β0 + β1 × dbh + β2 × ht (1)

However, the relationship between dbh and/or ht and biomass and/or volume is not 
linear. For some tree species, or for parts of a diameter range, the relationship may be 
close to linear, but in most cases a model need to have the capability to describe non-
linear patterns between the response and measurements that are taken in the field. This 
does not mean that the model form displayed in Equation 1, cannot be used. Linear 
regression (e.g. Montgomery et al., 2001) is easy to use, and the ordinary least square 
estimation of the parameter coefficients, always ensures that the best solution is 
obtained. Thus, if the relationship between the measurements of dbh and ht are non-
linear to biomass or volume, transformations of dbh and ht can be carried out. 
Potential transformations could be for example square, square root or logarithmic. 
Equation 2 shows an example of a model where the response is linearly dependent on 
square transformations of dbh and ht. A square transformation of dbh is equivalent to 
using basal area as input variable.

Y = β0 + β1 × dbh2 + β2 × ht2 (2)

However, the relationship between dbh and/or ht and biomass and/or 
volume is not linear. For some tree species, or for parts of a diameter range, 
the relationship may be close to linear, but in most cases a model needs to 
have the capability to describe non-linear patterns between the response 
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and measurements that are taken in the field. This does not mean that the 
model form displayed in Equation 1, cannot be used. Linear regression 
(e.g. Montgomery et al., 2001) is easy to use, and the ordinary least square 
estimation of the parameter coefficients, always ensures that the best solution 
is obtained. Thus, if the relationship between the measurements of dbh and 
ht are non-linear to biomass or volume, transformations of dbh and ht can be 
carried out. Potential transformations could be for example square, square root 
or logarithmic. Equation 2 shows an example of a model where the response 
is linearly dependent on square transformations of dbh and ht. A square 
transformation of dbh is equivalent to using basal area as an input variable.
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Y = β0 + β1 × dbh2 + β2 × ht2 (2)
Interaction terms can also be used. Products of dbh and ht or even products 
of transformations of dbh and ht can sometimes prove to be good input 
variables. Equation 3 shows an example where the response is linearly 
dependent on dbh and ht and an interaction term between dbh and ht.
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However, in many cases a linear model is not sufficient to represent the relationship 
between response and the input variables. Non-linear functional forms are more 
flexible than linear models and there are many that have been used previously. 
Equation 4 gives an example of a multiplicative model where the parameter 
coefficient estimates can be determined by a non-linear regression technique. This 
particular model could actually be fitted on linear form by logarithmic transformation 
of both response and input variables, but this will introduce the need for correcting 
bias introduced when transforming the response. However, many non-linear 
functional forms are not possible to fit linearly through transformation.

Y =   β0 × dbhஒభ × htஒమ (4)

Fitting of non-linear models requires more knowledge and skills compared to fitting 
of linear models. The parameter coefficients are estimated through some iteration 
procedure based on, for example, minimizing of root mean square error (RMSE). 
Basically non-linear regression procedures start with some values (random or pre-
selected) for the parameter coefficients and then they are changed. Subsequent to each 
change, a goodness-of-fit criterion is evaluated and it is decided if the change made 
the model better or worse. The changing of parameters is carried out until a marginal 
change does not improve the goodness of fit criterion any more. However, for some 
non-linear functional forms, there exist many combinations of parameter coefficients 
that give local solutions where the goodness-of-fit criterion changes to worse in any 
direction. Thus, it is therefore important to use a range of different starting values for 
the parameter coefficients to ensure that the best solution is the global one.

If the modelling data originate from field plots, where several sample trees are 
selected from each plot, trees within the same plot will tend to be similar in terms of 
allometry since they have the same growing conditions. This is a challenge to the 
modelling, since observations that originate from a particular plot will have similar 
effect on the model. For example, if the number of sample trees varies between plots, 
those plots where many trees were sampled will have large impact on the model. This 
means that the growing conditions on plots with many sampled trees will be over 
represented. In the modelling this can be dealt with by allowing for random effects in 
the model to account for that the observations were sampled in clusters where 
observations are correlated. Such models are called mixed effects models and they 
treat the different hierarchical levels specified by the modeller as different 
populations. The model parameters are affected by the choice of modelling technique 
and it may also alter which input variables that are statistically significant.
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coefficients that give local solutions where the goodness-of-fit criterion 
becomes worse in any direction. Thus, it is therefore important to use a 
range of different starting values for the parameter coefficients in order to 
ensure that the best solution is global one.

If the modelling data originate from field plots, where several sample trees 
are selected from each plot, trees within the same plot will tend to be similar 
in terms of allometry since they have the same growing conditions. This 
is a challenge to the modelling, since observations that originate from a 
particular plot will have a similar effect on the model. For example, if the 
number of sample trees varies between plots, those plots where many trees 
were sampled will have a considerable impact on the model. This means 
that the growing conditions on plots with many sampled trees will be over 
represented. In the modelling this can be dealt with by allowing for random 
effects in the model to take into account that the observations were sampled 
in clusters where observations are correlated. Such models are called mixed 
effects models and they treat the different hierarchical levels specified by 
the modeller as different populations. The model parameters are affected by 
the choice of the modelling technique which may also alter input variables 
that are statistically significant.

There are always assumptions related to every modelling technique. If 
these assumptions are not fulfilled, the resulting model may perform badly 
in the application phase. Thus a careful check of the assumptions should 
always be carried out. An example is the assumption that the variance of 
the residual error should be homoscedastic (equal). In those cases where 
it is not homoscedastic, a variance function can be applied in the fitting of 
the model, see for example Mugasha et al. (2013).

In order to select which model form to use, a lot of initial scrutiny of the 
data should be done. First, graphical plots of the relationship between the 
response and the input variables should be made. Such plots will easily give 
the researcher an impression of the relationships investigated. Similar plots 
with transformed variables should also be made to see if there might be linear 
relationships on a transformed scale. Different alternative models should 
also be fitted, both linear and non-linear, and assess which form fits best to 
the data. To be able to compare the models, common criteria for evaluation 
must be used. One option could be to do a leave-one-out cross validation of 
all alternative models and compare RMSE and mean prediction error (MPE). 
Graphical plots of the residuals are also useful, especially with relation to 
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the selection between a linear and a non-linear model. The distribution of 
the residuals will reveal in many cases quite clearly if a linear model form 
does not fit the data at hand.

When models for large areas (say, countries) are developed, considerations 
about stratification have to be made. More specifically, the relationships 
between response and input variables may change with factors that are 
known. Forest type, climate and soil type are examples of such factors, and 
the model developer must consider if stratified models should be chosen 
over models fitted for the entire data set. A model fitted on soundly stratified 
data will fit better to the data compared to a common model because the 
stratification itself will define parts of the variation in the response. The 
downsides are that the model will be based on fewer observations, and that 
the stratification information must be available also in the application phase. 

Evaluations of the final models are carried out just like the evaluation of 
alternative models explained above. A cross validation and calculation of 
RMSE will give an indication of the expected error that will occur when the 
model is applied. For a linear model, it is common to report the coefficient 
of determination (R2), which expresses the proportion of variance of the 
response that is explained by the input variables. For non-linear models, 
a pseudo-R2 can be computed from the residuals. Both of these enable 
comparisons between the goodness-of-fit for different models. For non-
linear models, there are many more criteria indicating goodness of fit, such 
as the Akaike Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC) that enable selection between alternative models. Before 
models are finally selected, the model behaviour outside the range of the 
data material should also be tested. In the application phase, there will be 
certain situations when the models are applied to much larger trees than 
those sampled in the calibration data set. It is therefore of interest to push 
the model beyond this limit by applying it to a diameter range that goes 
towards values that can be considered as what is maximum.

Documentation of data, model fit and model application
Documentation of both data material and models is important so that the 
user is not only able to apply the model within its ranges of validity, but also 
is informed of its expected accuracy. This section only briefly describes the 
documentation requirements for further elaboration and details the reader 
is referred to Jara et al. (2015) which provides an excellent compilation of 
guidelines for documentation of allometric equations.



18

The location from which the data set used for model development is collected, 
needs to be clearly reported since it defines the core area where the model 
can be used. A simple way of providing this information is to give the 
coordinates of the outer edges and/or refer to location names in addition 
to a map displaying the origin of the data. Further information about the 
location like elevation, climate (average precipitation, mean temperatures), 
soil types and landscape characteristics are very useful.

Furthermore, the documentation must include information on definitions 
of the response values. This means that for each tree component for which 
biomass or volume is modelled must be clearly defined. For example, 
does the AGB include the stump or not, and what is the cut-off diameter 
between stem and branches? Moreover, it is essential to report the units of 
measurement for both the response and input variables (kilogramme vs 
tonne, cm vs mm, m3 vs dm3). Otherwise it will be difficult for the users to 
interpret the results from the models. 

The sampling scheme and the samples themselves must also be described. 
Which were the criteria for selecting the different sample sites? How were 
the sample trees selected within sites? Information on the distribution of 
tree species and tree sizes is also essential, because it enables the user of the 
model to disclose where the models might be more prone to yield errors. 
Both scientific and local species names should be reported too. 

Preparation of the sample trees and subsequent measurements are important 
to document. For biomass models this includes the cutting into billets and 
the weighing in field. How large were the billets and what was the accuracy 
of the scale used in field? The number of samples taken from each tree 
component for drying in the laboratory must also be disclosed. 

Documentation of the modelling is also important because it gives information 
on how trustworthy the models are. As a minimum, the model fit as described 
by R2, RMSE and MPE should be reported together with the functional form 
of the model and a table with all parameter coefficients. A leave-one-out 
cross validation of the model could also add useful documentation of the 
model accuracy.

Lastly, recommendations on the use of the model should also be included 
in the model documentation. This will certainly ensure that the models are 
appropriately applied. 
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