Annals of Forest Science (2016) 73:353-369
DOI 10.1007/s13595-015-0524-3

@ CrossMark

ORIGINAL PAPER

Above- and belowground tree

biomass models for three mangrove species in Tanzania:
a nonlinear mixed effects modelling approach

Marco Andrew Njana' - Ole Martin Bollandsas? - Tron Eid” - Eliakimu Zahabu' -

Rogers Ernest Malimbwi'

Received: 23 April 2015 /Accepted: 18 September 2015 /Published online: 14 October 2015

© INRA and Springer-Verlag France 2015

Abstract

+ Key message Tested on data from Tanzania, both existing
species-specific and common biomass models developed
elsewhere revealed statistically significant large prediction
errors. Species-specific and common above- and below-
ground biomass models for three mangrove species were
therefore developed. The species-specific models fitted bet-
ter to data than the common models. The former models
are recommended for accurate estimation of biomass
stored in mangrove forests of Tanzania.

« Context Mangroves are essential for climate change mitiga-
tion through carbon storage and sequestration. Biomass
models are important tools for quantifying biomass and car-
bon stock. While numerous aboveground biomass models
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exist, very few studies have focused on belowground biomass,
and among these, mangroves of Africa are hardly or not
represented.

+ Aims The aims of the study were to develop above- and
belowground biomass models and to evaluate the predictive
accuracy of existing aboveground biomass models developed
for mangroves in other regions and neighboring countries
when applied on data from Tanzania.

+ Methods Data was collected through destructive sam-
pling of 120 trees (aboveground biomass), among these
30 trees were sampled for belowground biomass. The
data originated from four sites along the Tanzanian
coastline covering three dominant species: Avicennia
marina (Forssk.) Vierh, Sonneratia alba J. Smith, and
Rhizophora mucronata Lam. The biomass models were
developed through mixed modelling leading to fixed
effects/common models and random effects/species-
specific models.

* Results Both the above- and belowground biomass models
improved when random effects (species) were considered.
Inclusion of total tree height as predictor variable, in addition
to diameter at breast height alone, further improved the model
predictive accuracy. The tests of existing models from other
regions on our data generally showed large and significant
prediction errors for aboveground tree biomass.
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+ Conclusion Inclusion of random effects resulted into
improved goodness of fit for both above- and below-
ground biomass models. Species-specific models there-
fore are recommended for accurate biomass estimation
of mangrove forests in Tanzania for both management
and ecological applications. For belowground biomass
(S. alba) however, the fixed effects/common model is
recommended.

Keywords Avicennia-Sonneratia-Rhizophora - Carbon -
Fixed and random effects

1 Introduction

Mangroves are forests found in the tropical and subtrop-
ical coastlines between 30° south and north of equator
(FAO 2007). In Africa, there are mangroves both at the
western and eastern coasts. At the eastern coast of
Africa, 14 mangrove species are growing naturally, and
10 among these are found in Tanzania. Avicennia
marina (Forssk.) Vierh, Sonneratia alba J. Smith, and
Rhizophora mucronata Lam. are the three most domi-
nant mangrove species in Tanzania (MNRT 1991; Luoga
et al. 2004; Nshare et al. 2007).

Mangroves provide a range of goods and services of
biological and economic importance. In addition, man-
groves store large amounts of carbon per unit area
(Donato et al. 2011; Murray et al. 2011) and are there-
fore also important for climate change mitigation
(UNEP 2014). Although mangroves in many countries
are legally protected, for example in Tanzania, Kenya,
and South Africa (FAO 2007), mangroves suffer from
deforestation and forest degradation (Wang et al. 2003).

A climate change mitigation strategy under the
United Nations Framework Convention on Climate
Change (UNFCCC), aiming at Reducing Carbon
Emissions from Deforestation and Forest Degradation
(REDD+), offers an opportunity for conservation and
management of mangroves. Successful implementation
of REDD+ relies on the capabilities of participating
countries to routinely and reliably monitor changes of
carbon stocks and associated greenhouse gas emissions
through establishment of a Monitoring, Reporting and
Verification (MRV) system (Hewson et al. 2013). In line
with this, Tanzania has, under the National Forestry
Resources Monitoring and Assessment (NAFORMA)
program, established a national grid of permanent sam-
ple plots, which will be monitored for biomass and car-
bon over time (URT 2010). For Tanzania to be able to
report carbon stocks at tier 2 or 3 (IPCC 2003), the
development of country-specific biomass models is
therefore imperative.
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Biomass models, based on allometric theory, relating
easily measurable tree variables such as diameter at
breast height (dbh) and total tree height (ht) to biomass,
are considered to be the most efficient tools for tree level
biomass prediction (Brown 1997; IPCC 2007; Chave
et al. 2014). The tree variables used as model input are
obtained through forest inventories (Husch et al. 2003;
URT 2010). Development of biomass models requires
destructive sampling of trees. Above- and belowground
fresh weights of the trees are measured in field, and
subsequently, dry weights are determined by using the
dry to fresh weight ratio (DF ratio) derived from oven-
dried subsamples. Aboveground biomass usually refers to
stem, branch, and foliage, while belowground biomass
refers to all live roots down to 2 mm in diameter
(IPCC 2006).

Many models for prediction of both above- and be-
lowground biomass of mangrove forests have been de-
veloped previously. A review by Komiyama et al.
(2008) identified 13 species-specific and two common
(i.e., multi-species) models for prediction of above-
ground biomass of mangroves, while nine species-
specific models and one common model were identified
for belowground biomass. Additional studies on man-
groves that developed models for prediction of biomass
not present in this review also exist (e.g., Kairo et al.
2009; Kauffman and Donato 2012; Sitoe et al. 2014).
With the exception of the models developed by Kairo
et al. (2009) in Kenya and Sitoe et al. (2014) in
Mozambique, most of the models have been developed
for mangroves in Asia. The relatively few existing
models for belowground biomass may be associated
with the labor-intensive nature of sampling belowground
biomass for mangrove tree species (Njana et al. 2015).

No biomass models have been developed for man-
groves of Tanzania, yet numerous models have been
developed based on data from other regions and some
from neighboring countries in Africa. If these models
are applied to quantify biomass of mangroves in
Tanzania, they would be used beyond their spatial va-
lidity. Since mangrove trees may respond differently to
different environmental conditions, this could also result
into morphological and architectural differences between
trees originating from different sites. Furthermore, it is
also important that models are used within valid ranges
in terms of species and tree size (dbh and ht). Models
calibrated on data from other regions are more likely to
violate these requirements. For example, the above-
ground model by Chave et al. (2005) is based on man-
grove data from a limited geographical area (French
Guiana and Guadeloupe); thus, the model does not rep-
resent mangroves found in Africa and it does not in-
clude any dominant species found in Africa. Similarly,
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the aboveground biomass models from mangroves in
Kenya and Mozambique are both based on data from
one site, and they have limited sample size (e.g., n=5,
Kairo et al. 2009; n=31 for six species, Sitoe et al.
2014) and tree size ranges (dbh up to 42 cm, Sitoe
et al. 2014). Trees with dbh > 40 cm are likely to be
found in Tanzania (e.g. Mattia, 1997). Therefore, if such
models are applied in Tanzania, they are likely to pro-
vide biased estimates since the tree sizes are beyond
size range of the model data.

Even though models should in principle not be used
outside their geographical area and tree size ranges, this
is sometimes necessary due to lack of local models.
However, if no suitable data exist for testing, the user
remains unaware of the nature of the prediction errors.
Thus, model tests on real data are preferable, but this is
of course seldom possible since suitable data would
mostly be collected for calibrating local models, which
renders the use of the alien model unnecessary.
However, Njana et al. (2015) tested selected existing
belowground biomass models on relevant data from
Tanzania, both common (Komiyama et al. 2005) and
species-specific (Tamai et al. 1986; Comley and
McGuinness 2005; Kairo et al. 2009). The results re-
vealed large prediction errors for both the common
(26—63 %) and species-specific (55-63 %) models.
These results support the development of new biomass
models for Tanzanian mangrove forests.

The main objective of this study was therefore to de-
velop tree biomass prediction models for the dominant
mangrove species in Tanzania. Specifically, the study
aimed to (1) provide basic information on the distribu-
tion of biomass between tree components and the root-
to-shoot ratio, (2) develop both common and species-
specific models for above- and belowground biomass,
(3) develop models for aboveground biomass compo-
nents (stem, branch, leaf, and twig), and (4) assess the
predictive accuracy of the existing models and of those
developed here in predicting the aboveground biomass of
mangroves. A mixed modelling approach was applied.

2 Materials and methods
2.1 Study area

In Tanzania, mangroves grow naturally along the coastline
between the borders to Kenya in the north and Mozambique
in the south. Mangroves cover about 158,100 ha of Tanzania
(MNRT 2015) and include 10 different species, namely
A. marina, Bruguiera gymnorhiza, Ceriops tagal (Perr.) C.
B. Rob., Heritiera littoralis Dryand., Lumnitzera racemosa
Willd., Pemphis acidula J.R. & G. Forst., R. mucronata,

S. alba, Xylocarpus granatum Koen., and Xylocarpus
moluccensis (Lamk.) Roem. These species are also found in
Kenya and Mozambique (Tamooh et al. 2008; Fatoyinbo et al.
2008; Mohamed et al. 2009). All mangroves in Tanzania are
declared as forest reserves and managed by the Tanzania
Forest Service Agency under the Ministry of Natural
Resources and Tourism (URT 2002). The study was carried
out at four sites: Pangani, Bagamoyo, Rufiji, and Lindi-
Mtwara (Table 1) covering the northern, middle, and southern
parts of the costal belt of Tanzania.

2.2 Tree sampling and measurement procedures

Site conditions in mangrove forests usually vary perpen-
dicular to the shorelines of the sea/rivers. To cover as
much variation as possible, we established nested sam-
ple plots of 2- and 10-m radii along 37 transects run-
ning from the shorelines across the entire extension of
the mangrove vegetation. For each transect, the first plot
was located close to the shoreline, while the remaining
plots were located at distances varying from 150 to
250 m depending on the total extension of the man-
groves. For some transects, it was not possible to estab-
lish all plots because of impenetrable mangrove vegeta-
tion or inaccessibility due to rivers/streams. Therefore,
the number of plots sampled within transects varied
from one to four. In total, we measured 120 plots.
Fifteen plots were measured in Pangani and Lindi-
Mtwara, respectively, while 45 plots were measured in
Bagamoyo and Rufiji, respectively (Njana et al. 2015).

Within 2-m radius of each plot, we measured dbh for
all trees with dbh>1 cm and total tree height>2 m, while
within 10-m radius, we measured dbh for all trees with
dbh>5 cm. For A. marina and S. alba trees, dbh was
measured at 1.3 m above soil surface, while for
R. mucronata trees, dbh was measured at 0.3 m above
the highest stilt root.

In each plot, one tree was selected subjectively for
destructive sampling, while ensuring an adequate repre-
sentation of all the three species across sites, and diam-
eter ranges from the sample plot. In total, 120 trees
were sampled for aboveground biomass (40 for each
of the three species), and among these, 30 were sam-
pled for belowground biomass (10 for each of the three
species). Among the sites, 15 trees (five for each spe-
cies) were sampled in Pangani and Lindi-Mtwara, re-
spectively, while 45 trees (15 for each species) were
sampled in Bagamoyo and Rufiji, respectively (Njana
et al. 2015). One S. alba sample tree had hollow and
sandy sections, and since our focus was to develop
models predicting biomass of healthy mangrove trees,
this tree was excluded during modelling.
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Table 1  Site, location, dominant soil type, temperature, and precipitation for the study sites

Site and location Dominant soil type Annual temperature (°C) Annual rainfall (mm)
Mean+STD Mean+STD

Pangani (5° 38’ S, 38° 54’ E-5° 40’ S, 38° 53'E) Alluvial, clay, and sandy soils 26.6+0.4 1,240+333

Bagamoyo (6° 20" S, 38° 50" E-6° 33’ S, 39° 06' E) Alluvial and sandy soils 26.1+0.6 940+239

Rufiji (7° 38’ S, 39° 16 E-7° 55’ S, 39° 24’ E) Alluvial, silt, and clay soils 27.0+0.3 879+200

Lindi-Mtwara (10° 02' S, 39° 39" E-10° 15’ S, 40° 10" E) Alluvial and sandy soils 25.7+0.4 1,072+249

Source: Tanzania Meteorological Agency, rainfall and temperature data; Pangani and Lindi-Mtwara (1970-2012); Bagamoyo (1964-2013) and Rufiji

(2005-2012)

Before the sample trees were cut, we measured dbh,
basal diameter (bd, diameter 15 cm above ground level
for A. marina and S. alba or immediately above the
highest stilt root for R. mucronata) using a diameter tape.
We also measured ht, crown diameter (crd), and bole
height (bht, height from ground level to first branch)
(Fig. 1). Total and bole tree height was determined using
a Suunto hypsometer. Crown length (crl) was determined
from the difference between ht and bole height.

Three R. mucronata sample trees were multi-stemmed. For
these trees, diameters of individual stems (dbh;) were com-

bined and a surrogate for dbh was determined as dbh =

\/Y.dbh;? (e.g., Zhou et al. 2007) while we used the heights
of individual stems to determine basal area-weighted mean
heights that were used as surrogate for ht. Table 2 summarizes
statistics for plot (i.e., for trees>5 cm) and sample tree
variables.

Using a chainsaw, trees were cut 15 cm above ground level
for A. marina and S. alba, while R. mucronata trees were cut
immediately above the highest stilt root (URT 2010) (see

— Twig and leaf

— Branch
AGB pool/ L .
Total height (ht) Bole height (bht)
 SEEmm—— Stem

Root crown

BGB C pool

r Crown length (crl)

Fig. 1). After felling, the aboveground part for tree with
dbh>15 cm was partitioned into (i) stem, (ii) branch
(>5 cm), and (iii) twig and leaf, and among these, 10 trees
for each of the three species were further partitioned into twig
and leaf. Stem and branch were cross-cut into billets and their
corresponding fresh weights determined using a spring bal-
ance measuring weight to the nearest 0.1 kg. Fresh weights of
small trees (<5 cm) were determined using a digital balance.
Saw dusts from the chainsaw were not included in the fresh
weight. For the large trees partitioned into twig and leaf, fresh
weights were determined separately for each component. For
all other trees, the aggregate fresh weights, i.e., twig plus leaf,
were recorded.

For determining belowground biomass of A. marina and
S. alba trees, we first excavated the root crown and then se-
lected two main cable roots from the root crown and two side
cable roots from each of the two main cable roots, including
their respective pneumatophores, for full excavation. The root
selection included one small and one large main and side cable
root, respectively, so as to cover as wide ranges of root sizes as

— Twig and leaf

~ Crown length (crl)

— Branch

— Bole height (bht)

AGB pool/ &—————Stem

Total height (ht)

p & "=~ Root crown

Aboveground stilt root

Belowground stilt root

Fig. 1 Schematic sketch of 4. marina and S. alba trees (upper panel) and R. mucronata trees (lower panel) showing different tree components and
variables. Note: 4GB total aboveground biomass, BGB total belowground biomass
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Table 2 Statistical summary of plot variables, sample tree variables, and tree biomass for different tree components
Item A. marina S. alba R. mucronata
n Mean+STD  Min  Max n Mean+=STD  Min  Max n Mean+STD  Min  Max
Plot variables®
N (no. ha ") 40 622+402 1,879 39  859+873 0 4,076 40  651+460 2,038
G (m>hal) 40 15.3+108 35.7 39 13.8493 0 38.4 40 10.0£6.2 27.1
Sample tree variables
bd (cm) 40  26.9+18.1 1.7 83.6 39 235+15.0 3.9 57.0 40  21.2+13.0 1.9 429
dbh (cm) 40  22.7£15.6 1.1 70.5 39  18.2+134 1.1 47.5 40 1924123 1.4 41.5
ht (m) 40  12.6£6.3 3.1 30.6 39  11.8483 3.1 28.1 40 10269 0.8 322
bht (m) 40 6.2+4.7 0.8 20.0 39 5.9+6.2 0.6 222 40 4.5+33 0.2 12.5
crd (m) 40  6.0t4.2 0.7 18.8 39 3.9+27 0.3 10.1 40  4.5+3.1 0.5 12.1
crl (m) 40 6.5£29 1.2 15.1 39 6.0+3.1 0.9 13.0 40 5.8+43 0.6 21.6
Sample tree biomass data®
LeafB (kg tree ") 22 37.5+245 6.4 88.8 12 22.8+19.3 32 71.9 21 32.8+21.8 52 90.0
TwigB (kg tree ") 22 100.7+63.7 157 2613 12 55.7+59.1 5.0 246.9 21 86.8+60.0 143 2513
BranchB (kg tree’) 22 204.0+2468 2.2 1,1602 12 95.0+67.5 5.4 2322 21 191.0+2142 3.7 814.3
StemB (kg tree ') 22 404.8+3593 737 14185 12 4022+3262 229 1,081.6 21 310.8£166.2 30.6 5643
AGB (kg tree ") 40  447.0+£5799 0.5 2,7766.0 39  263.0+3432 0.6 1,2024 40 335.9+406.5 90.0 1,524.0
BGB (kg tree ") 10 100.5+93.7 2.1 2459 10 273243467 29 851.7 10 2324+168.0 1.1 569.7

N number of trees, G basal area, bd basal diameter, dbh diameter at breast height, /4 total tree height, bAt bole height, crd crown diameter, cr/ crown
length, LeafB leaf biomass, TwigB twig biomass, BranchB branch biomass, StemB stem biomass, 4GB total aboveground biomass, BGB total below-

ground biomass

 The statistical summary for plot variables include only trees with dbh>5 cm

® Since only tree with dbh> 15 cm were partitioned into different aboveground tree components, the sample (1) is less than the expected 40 for each of the

three species

possible. Fresh weights as well as root basal diameter of all
excavated roots were determined. These measurements were
later used to develop side and main cable root regression
models, which were applied to predict biomass of roots not
excavated (for details on excavation and biomass determina-
tion procedures, see Njana et al. 2015). For R. mucronata,
fresh weights were determined through harvesting of all
aboveground stilt roots followed by complete excavation of
all belowground stilt roots. Finally, the total belowground
fresh weight was determined by summarizing weights of root
crown and above- and belowground stilt roots.

For each tree, three subsamples were extracted from
the stem, two from the branches, and two from the twigs.
The weight of the subsamples for the aboveground tree
components ranged from 0.05 to 4.5 kg. All subsamples
were extracted at random locations except for the stem
subsamples, which were extracted at 0, 40, and 70 % of
the total tree height. The fresh weight of all subsamples
was determined immediately after extraction using a dig-
ital balance (to the nearest 0.01 g). This was followed by
labelling and packing for further measurements in labora-
tory. In total, the numbers of stem, branch, and twig sub-
samples were 119, 50, and 72, respectively, for 4. marina,

118, 39, and 68, respectively, for S. alba; and 117, 46, and
72, respectively, for R. mucronata. The numbers of root
crown and root subsamples were 10 and 19, respectively,
both for A. marina and S. alba. For R. mucronata, 7
subsamples were extracted from root crown, 17 from
aboveground stilt roots, and 19 from belowground stilt
roots (see Njana et al. 2015).

2.3 Laboratory procedures and dry weight determination

In the laboratory, subsamples were oven-dried to constant
weight at 105 °C and their dry weight determined by a digital
balance. DF ratio of subsamples (unit less) was determined as
oven dry weight (kg) per fresh weight (kg). Exploratory anal-
ysis of covariance (ANCOVA) with dbh as a covariate re-
vealed that the DF ratio varied significantly between above-
ground tree components and with tree dbh (p<0.05). In gen-
eral, DF ratio varied from 0.28 to 0.66 for A. marina, 0.22 to
0.69 for S. alba, and 0.33 to 0.71 for R. mucronata. Since only
10 trees for each of the three species among the larger trees
(dbh>15 cm) were partitioned into twig and leaf, we initially
computed species-specific twig to leaf ratio based on the 10
observations for each species which was used to partition the
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aggregate twig and leaf component into twig and leaf for trees
not partitioned into that level. Then, total tree aboveground
biomass was calculated as the product of tree- and component-
specific fresh weight and DF ratio:

Ry ny
AGB; =Y (FWy;, x DF),) + > (FW,;, x DFy,)
is=1 ip=1

ny n

+ Z( FW);, x DF,) + Z( FW,,;, x DF},)

=1 =1

where AGB,, = observed total tree aboveground dry weight
(kg) of the Ath tree, n = total number of billets/twig bundles/
leaf weights for a given aboveground tree component, s =
stem, b = branch, ¢ = twig, / = leaf, i = ith subsection, FW,_,
FWy;,, FW},; , and FW,;, are stem, branch, twig, and leaf fresh
weights (kg), respectively, and DF;, , DF;,, DF,,, and DF,,
are stem, branch, twig, and leaf DF ratios, respectively.

Belowground dry weight determination for A. marina and
S. alba involved conversion of fresh weight of excavated root
components using species-, tree-, and component-specific DF
ratios. From excavated sample root dry weight data, regres-
sion models for prediction of dry weight of unexcavated
roots were developed and dry weights of unexcavated
roots were predicted (for details, see Njana et al. 2015).
Therefore, total root dry weights comprised excavated
and unexcavated (i.e., predicted) root dry weights.
Total tree belowground dry weight, i.e., belowground
biomass, was derived as the sum of root and root crown
dry weight. For R. mucronata, tree belowground dry
weight was obtained by converting total tree fresh
weight to dry weight using tree-specific DF ratios.
This was the case because for this species, tree below-
ground fresh weight was not distinguished into root
components. Statistical summary for sample tree dry
weights are presented in Table 2.

2.4 Model specification

Model specification involves selection of functional
form as well as selection of predictor variables.
Initially, we tested various functional forms; however,
power functional form was the best. Power functions
have been widely used to model biomass of mangrove
trees (e.g., Tamai et al. 1986; Komiyama et al. 2005;
Kairo et al. 2009; Ray et al. 2011; Patil et al. 2014). In
this study, two variants of power functions with an
additive error term (g;) were considered (model forms
Model form 1 and Model form 2):

B; = fBy x (dbh)” + ¢ (Modelform1)
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B; = By x (dbhy)” (ht;)™ + ¢ (Modelform?2)

where i represent ith observation, and B; represent
aboveground biomass, leaf biomass, twig biomass,
branch biomass, or stem biomass. Model form Model
form 1 represents biomass as a function of dbh;, while
model form Model form 2 represents biomass as a func-
tion of both dbh; and ht;, while the betas (3) are model
parameters.

Diameter at breast height (dbh;) is highly correlated
with biomass (B;). However, also ht; is highly correlated
with biomass and could be a useful variable in biomass
models to reflect that trees reach their maximum height at
an earlier stage than maximum diameter. This means that
models depending on dbh only may overpredict biomass
of large trees because the biomass increase per unit in-
crease in diameter is reduced when trees approach maxi-
mum height. Thus, ht; represents additional information
not reflected by dbh; (e.g., Chave et al. 2005).

2.5 Nonlinear mixed effects (NLME) modelling
2.5.1 Nonlinear mixed effects models

Three important assumptions for regression modelling are
normality, homoscedasticity (if residual variance increases as
a function of dbh), and independency of residuals. Results and
conclusions based on regression analysis are only reliable if
these assumptions are met (Ritz and Streibig 2008; Zuur et al.
2009). For biological data, however, such assumptions may be
difficult to meet. Non-normal residuals, for example, may be
due to outliers, while lack of independency of residuals may
occur due to the structure of data itself (Zuur et al. 2009). Non-
normal and heteroscedastic residuals may be dealt with by
transformation (Ritz and Streibig 2008; Zuur et al. 2009),
although this leads into change of the original scale and intro-
duces bias (O’Hara and Kotze 2010; Packard 2009).

NLME modelling is one way to confront challenges en-
countered in conventional regression approaches since it re-
laxes regression assumptions and take into account the com-
plex nature of biological data (Pinheiro and Bates 2000; Zuur
et al. 2009). Within the mixed effects model framework, pa-
rameters may also be allowed to vary by grouping variables(s)
(i.e., random variables(s)) (Ritz and Streibig 2008). NLME
models may generally be expressed as follows (Lindstrom
and Bates 1990; Vonesh and Chinchilli 1997; Pinheiro and
Bates 1998):

Vi = F (i A By ) + e
where i = ith observation, j = jth random-effect variable, y;; =

response variable for observation i and random-effect variable
J» x;; = predictor variable for observation 7 and random-effect
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variable j, \; = random-eftect variable for j, 3 = fixed effects
parameters, «; = random effects parameters, and £; = error
term, which is assumed normally distributed with a mean of
Zero.

Our data originated from four different sites and comprised
three different species, where one tree was destructively sam-
pled from each sample plot spatially distributed along tran-
sects. Since our data structure is hierarchical and the biomass—
dbh relationship is nonlinear (Fig. 2), tree biomass was
modelled using the NLME modelling approach in order to
preserve the original scale.

Biomass models based on mixed effects modelling
frameworks have also previously been developed (e.g.,
Moore 2010; Li et al. 2011; Xu et al. 2014). The mixed
effects modelling provides a statistical capability where
fixed- (i.e., populations average) and random effects
(i.e., group specific) parameters may be estimated simul-
taneously (West et al. 2007). Under the mixed effects
modelling framework, models including fixed effects pa-
rameters may therefore be regarded as common or
multi-species models, while those including random ef-
fects may be regarded as species-specific models.

2.5.2 Modelling procedures

Model development was carried out using the R software ver-
sion 3.1.2 (R Core Team 2014) using the NLME function in
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Fig. 2 Above- and belowground tree biomass over dbh across species
and sites. Symbols black up-pointing triangle, gray up-pointing triangle,
and white up-pointing triangle, respectively, represent A. marina, S. alba,
and R. mucronata tree species, while black circle, white circle, gray plus
sign, and black plus sign, respectively, represent trees from Pangani,
Bagamoyo, Rufiji, and Lindi-Mtwara. Note: 4GB = total aboveground
biomass, BGB = total belowground biomass

the NLME package (Pinheiro et al. 2015). In order to specify
which parameter to be treated as solely fixed effects and which
one as both fixed and random effects, we initially tested each
parameter as both fixed and random effects parameters against
prospective random effects variables. Prospective random ef-
fects variables included species (j) and site (k). The influence
of random effects variable(s), individually or in combination
on a given parameter, was evaluated using Akaike information
criteria (AIC). Accordingly, 3y (model forms 1 and 2) and 3,
(model form 2) were considered as solely a fixed effects pa-
rameter, while 3; was considered as both fixed and random
effects parameters. Model forms 1 and 2 were then re-
specified to include a random effects parameter () (model
forms Model form 3 and Model form 4):

B+

Biji = By x (dbhy)

Bijx = By x (dbhijk)ﬂlwfk (htijk)ﬂz + Eijk

+ €ijk (Modelform3)

(Modelform4)

Site did not result into significant random parameters
(1), so relevant parameters estimated were not reported.
Three sets of biomass models were developed: (i) above-
ground biomass models, (ii) belowground biomass
models, and (iii) aboveground tree component (leaf, twig,
branch, and stem) biomass models. Both model forms 3
and 4 were fitted for total aboveground biomass, while
only model form 3 was fitted for belowground biomass
and aboveground tree component biomass. Model form 4
was not considered for belowground and aboveground
tree components due to limited number of observations
(Harrell 2001; Roxburgh et al. 2015).

During explorative data analysis, we observed that residual
variances (0 (&%) were heteroscedastic. Consequently, we as-
sumed heteroscedasticity, and residual variances were modelled
as a function of dbh using varPower function in R (Pinheiro and
Bates 2000; Ritz and Streibig 2008; Zuur et al. 2009);

02 (Eijk) = 02 X |dbh,‘jk 20

where ¢ = variance function coefficient. We initially also tested
other functions in R (varExp, varldent, varConstPower, and
varComb). However, the varPower function appeared to be
the best.

The effects of the variance function were evaluated
using AIC. The variance function is implicitly part of
the mixed effects model but is not explicitly stated; there-
fore, the variance functions are not reported in the results
(Smith et al. 2014; de Miguel et al. 2014). Since one tree
was sampled from each plot and the distance between
plots ranged from 150 to 250 m, observations between
plots were considered spatially independent; thus, no cor-
relation structure was assumed.

During tests for random and variance function ef-
fects, model parameterization was done by using
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maximum likelihood (ML), while we for the final
models used restricted ML (REML) (Lindstrom and
Bates 1990; Pinheiro and Bates 2000). The models were
evaluated using root mean squared error (RMSE (%))
and mean prediction error (MPE (%)) (Chai and
Draxler 2014; Walther and Moore 2005) as measures
of goodness of fit while model selection was done using
AlC:

> ()

RMSE (%) = MBoo. x 100
Z (efjk)/”
MPE(%) = T()bs x 100
AIC=nx [In % +2x(p+1)+C

where e;; = residuals, i.e., difference between predicted and
observed tree biomass (kg), n = sample size, MB,; = mean
observed tree biomass (kg), In = natural logarithm, p = number
of parameters, and C = constant.

RMSE (%) represents a measure of accuracy and MPE (%)
a measure of bias. A model with lower RMSE (%) than the
reference model implied the model to be more accurate than
the reference model and vice versa. Similarly, MPE (%) values
significantly different from zero implied biased aboveground
biomass predictions, i.e., under- or overpredictions; otherwise,
they implied unbiased aboveground biomass predictions. The
commonly used model selection criterion R* was not consid-
ered since its use has been criticized (e.g., Johnson and
Omland 2004; Sileshi 2014).

2.6 Evaluation of predictive accuracy of existing biomass
models

Based on a literature review, relevant existing above-
ground biomass models were selected and tested on
our data to determine their predictive accuracy. The se-
lected models ensured representation of various regions
and included four common and eight species-specific
biomass models (Table 3). RMSE (%), MPE (%), and
AIC served as model evaluation criteria. After compu-
tation of these criteria, the existing models were ranked
in descending order based on AIC. The existing models
were ranked without stratification into model type or
predictor variable included since AIC as a model selec-
tion criteria is capable of detecting such differences
(Burnham et al. 2011).
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3 Results
3.1 Distribution of biomass into different tree parts

The three mangrove species considered in this study stored
between 49 % (R. mucronata) and 72 % (S. alba) of above-
ground biomass in the stem, while the rest in descending order
was stored in branch, twig, and leaf (Fig. 3). On average,
about 41 % of the total tree biomass is stored in the root
system (Fig. 4). Figures 3 and 4 show that S. alba had rela-
tively higher stem biomass and higher root biomass compared
to the other species. The root-to-shoot ratios for 4. marina,
S. alba, and R. mucronata were 0.38, 1.29, and 0.62, respec-
tively, with an overall mean of 0.70. Generally, the root-to-
shoot ratio depicted a decreasing trend from lower to higher
dbh classes.

3.2 Biomass models

All parameter estimates for the above- and belowground bio-
mass models were statistically significant (Table 4). For the
aboveground biomass fixed effects models (FE1, FE2), inclu-
sion of ht as a predictor variable was important since RMSE
decreased from 42.6 to 38.4 %, which is equivalent to a de-
cline of about 10 %. Based on AIC as model selection criteri-
on, the fixed effects model FE2 is better than model FE1. For
the aboveground biomass random effects models, inclusion of
ht resulted in lower RMSE (%) and MPE (%) values for
A. marina (models RE1 and RE4) and S. alba (models RE2
and RES5), while mixed results were observed for
R. mucronata (models RE3 and RE6).

The evaluation of the aboveground biomass models
(Table 5) showed that inclusion of ht as predictor variable
(model form 4) generally improved predictive accuracy, i.e.,
provided lower MPE values. The results also showed that the
random effects models with ht as a predictor variable were
more accurate than the fixed effects models.

For the belowground biomass models (Table 4), the good-
ness of fit statistics, i.e., RMSE (%) and MPE (%), improved
when using random effects for A. marina (model RE7) and
R. mucronata (model RE9) compared to the fixed effects
model (model FE3), while the opposite was observed for
S. alba (model RES).

The [, parameter estimates of the aboveground tree com-
ponents biomass models were statistically non-significant
(p>0.05) except for the stem biomass model (Table 6). All
other parameter estimates were statistically significant
(»<0.05). MPEs were slightly lower than 10 % for the leaf,
twig, and branch biomass models, while MPE was slightly
higher than 10 % for the stem model. The stem biomass model
had lower RMSE (%) values compared to all the other com-
ponent models.
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Table 3  Existing aboveground biomass mangrove models selected for evaluation of prediction accuracy

Model type Model n R* RMSE dbh (cm) Location Author
Common AGB=3.254xexp(0.065 > dbh) 31 0.89 4244 0.5-42 Sofala bay, Sitoe et al. (2014)
Mozambique
Common  AGB=1.3799xdbh* xht*%7 100 0.98 — - India Ray et al. (2011)
Common AGB=0.0509x p(dbh2 xht) 84 096 — dbh,,.,x=42  French Guiana and Chave et al. (2005)
Guadeloupe

Common  AGB=0.251xpxdbh>*° 104 098 0.085 5.0-48.9 Thailand and Indonesia Komiyama et al. (2005)

A. marina

Species- AGB=0.3404x dbh*%?" 110 094 — - Mumbai, India Patil et al. (2014)
specific

Species- AGB=exp(0.2540+0.9140%log(dbh)) 10 031 1.340 §&* Gazi Bay, Kenya Kairo et al. (2009)
specific

Species- AGB=0.1036xdbh*+0.5402xdbh+(—1.5674) — 094 — 2.1-12.1 Taiwan Kuei (2008)
specific

Species- AGB=0.308 xdbh*!! 22 097 0.023 dbh,,,=35 Darwin, Australia Comley and McGuinness
specific (2005)

S. alba

Species-  AGB=0.0825x px (dbh?xht)*5% 345 095 - dbh, =323 Palau Kauffiman and Donato
specific (2012)

Species- AGB=exp(0.6715+0.1473 xlog(dbh)) 10 0.01 0.580 10° Gazi Bay, Kenya Kairo et al. (2009)
specific

R. mucronata

Species-  AGB=0.0311xpx (dbh?xht)" %! 73095 - dbhyy=39.5 Palau Kauffman and Donato
specific (2012)

Species- AGB=exp(—0.1811+0.6590 xlog(dbh)) 5 083 1.050 5* Gazi Bay, Kenya Kairo et al. (2009)
specific

Units of measurement: total aboveground biomass, kilogram; diameter at breast height, centimeter; total height (ht), meter; basic density, gram per cubic

centimeter

AGB total aboveground biomass, dbh diameter at breast height, /¢ total height, p basic density, n sample sizes

* The figure refer to the fixed age of planted mangrove trees which is surrogate to dbh

Using paired ¢ test, comparisons of observed total
tree aboveground biomass with total tree aboveground
biomass predicted the tree components common/fixed
effects models showed that the prediction errors were
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Fig. 3 Distribution of biomass between aboveground tree components.
Am = A. marina (n=23), Sa = S. alba (n=17), and Rm = R. mucronata
(n=21)

non-significant for 4. marina (n=23, MPE=-6.5 %,
p>0.05) and S. alba (n=17, MPE=3.9 %, p>0.05),
while they were significant for R. mucronata (n=21,
MPE=16.0 %, p<0.05).
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Fig. 4 Distribution between above- and belowground biomass. Am =
A. marina (n=10), Sa = S. alba (n=10), and Rm = R. mucronata (n=
10). Note: 4GB = total aboveground biomass, BGB = total belowground
biomass
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Table 4  Above- and belowground biomass models

AGB/  Model Model Model type n  Parameter estimates RMSE MPE AIC Model
BGB form category (%) (%)
Bo SEgy B SEz Ba SE
AGB 3 Fixed Common 119 0.25128° 0.04146 2.24034° 0.05087 — - 42.6 -0.6 1,2039 FEI
effects
Random  Species- Bo SEgo B+ o SEj 5> SE 5
effects specific
A. marina 40 0.25128° 0.04146 2.24351° 0.05087 — - 413 2.8 421.5 REIl
S. alba 39 0.25128° 0.04146 2.21727° 0.05087 — - 342 2.8 355.0 RE2
40 0.25128° 0.04146 2.26026° 0.05087 — - 40.5 -6.6 397.0 RE3
R. mucr-
onata
AGB 4 Fixed Common 119 ﬁo SEﬁO ﬂ] SE@] ﬂz SE/Q
effects 0.19633° 0.03095 2.07919° 0.05652 0.29654° 0.05552 38.4 -1.0 1,180.5 FE2
Random  Species- Bo SEs0 By SEg o3
effects specific
A. marina 40  0.19633° 0.03095 2.08791° 0.05652 0.29654° 0.05552 31.4 1.6 401.6 RE4
S. alba 39 0.19633° 0.03095 2.04113° 0.05652 0.29654° 0.05552 23.1 2.0 326.6 RES5
40  0.19633° 0.03095 2.10853° 0.05652 0.29654° 0.05552 42.5 —-4.6 403.0 RE6
R. mucr-
onata
BGB 3 Fixed Common 30 G SEgo 0B SEj 5> SE 5
effects 1.42040° 0.50833 1.59666° 0.14425 — - 89.6 -182 3159 FE3
Random  Species- Bo SEz0 B+ SEg 05> SE 5
effects specific
A marina 10 1.42040° 0.50833 1.44260° 0.14425 — - 16.8 1.5 60.6 RE7
S. alba 10 1.42040° 0.50833 1.65760° 0.14425 — - 95.1 -32.1 1152 RES8
10 1.42040° 0.50833 1.68979° 0.14425 — - 387 1.6 94.0 RE9
R. mucr-
onata

SE standard error of a parameter estimate, NS not significant at 5 %, 4GB total aboveground biomass (kg), BGB total belowground biomass (kg),

n sample sizes
*Significant at 5 %

® Significant at 1 %

¢ Significant at 0.1 %

3.3 Evaluation of predictive accuracy of existing
aboveground biomass models

The predictive accuracy of the existing aboveground bio-
mass models was evaluated by testing them on our data
(Table 7). Judged by AIC, the common model developed
by Chave et al. (2005) was the best for prediction of above-
ground biomass for A. marina and S. alba, while the com-
mon model developed by and Komiyama et al. (2005) was
the best for R. mucronata (Table 7). Except for the model
developed by Chave et al. (2005) applied for S. alba and
R. mucronata, MPE (%) values for all tested models were
significantly (p<0.05) different from zero.

When ranking the models developed in this study
based on AIC, the common (fixed effects) model was
the best in prediction of aboveground biomass for
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A. marina while the species-specific (random effects)
models were the best for the other two species
(Table 7). The MPE (%) values of all the species-
specific (random effects) models were low and non-sig-
nificant. For the common (fixed effects) models, the
MPE (%) values were low for 4. marina and relatively
high for S. alba and R. mucronata. However, only the
MPE (%) value of common model for S. alba was sig-
nificantly different from zero.

The models developed by Kairo et al. (2009) and
Sitoe et al. (2014), both from eastern Africa, were the
poorest performing models as demonstrated by very
high RMSE (%) and MPE (%) values (Table 7). These
models were also characterized by remarkable disagree-
ment between observed and predicted biomass values

(Fig. 5).
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Table 5 Mean prediction errors (MPE (%)) of the aboveground biomass models over site, dbh class, and ht class

Parameter n MPE (%)
Model form 3 Model form 4
Fixed effects model Random effects model Fixed effects model Random effects model
Site
Pangani 15 —4.4 22 -9.1 4.6
Bagamoyo 45 7.3 8.2 29 -13
Rufiji 45 -9.5 -10.7 22 -0.0
Lindi-Mtwara 15 20.8 229 5.0 8.8
dbh class (cm)
1.0-10.0 45 12.8 12.6 10.3 9.8
10.1-20.0 20 -32 -3.6 -2.7 -29
20.1-30.0 20 —4.7 -34 =55 -3.8
30.1-40.0 24 -14 -0.7 -12 0.1
40.0 10 2.0 1.8 1.1 0.8
ht class (m)
1.0-5.0 24 10.2 11.7 -10.8 -9.5
5.1-10.0 36 25.2 24.7 8.4 7.9
10.1-15.0 29 4.7 6.7 -3.6 -0.2
15.1-20.0 14 —-15.1 -12.0 -14.8 -9.5
>20.0 16 -32 —6.8 11.8 5.6

n sample sizes

4 Discussion

The distributions of the aboveground biomass components
were quite similar for 4. marina and R. mucronata, while for
S. alba, the proportion of stem biomass was higher than for the
two other species (Fig. 3). Although on average 41 % of tree
biomass was stored belowground, S. alba stored the largest
proportion belowground (Fig. 4). The main reason for the rel-
atively large proportion of belowground biomass for S. alba, as
compared to A. marina, is probably due to the large pneumat-
ophores of this species (Njana et al. 2015). This is also in line

Table 6 Aboveground tree component biomass models

with the high root-to-shoot ratio for this species. Apparently,
S. alba has more belowground biomass than aboveground bio-
mass (1.29 root-to-shoot ratio). Variation of distribution of bio-
mass into different tree components between species and a
declining trend in root-to-shoot ratios over dbh classes demon-
strate the strategies of trees as they grow; at early stages, more
biomass is distributed in the belowground for anchorage and
stabilization in the soft substrate, while at later stages, more of
the biomass is distributed to the aboveground part in support of
physiological processes for growth. The distribution of biomass
observed in this study is not unique for mangrove alone as

Component Model form Model category Model type n  Parameter estimates RMSE (%) MPE (%) AIC  Model
Bo SEzo B SEz

Leaf 3 Fixed effects Common 55 091766™ 0.64173 1.04996° 0.20549 62.1 8.2 367.8 CFEl

Twig 3 Fixed effects Common 55 0.83391™ 065931 1.35324° 023032 68.2 8.7 496.9 CFE2

Branch 3 Fixed effects Common 55 0.05140™ 0.05060 2.28062° 027769 78.0 -84 598.5 CFE3

Stem 3 Fixed effects Common 55 024370 0.11111 2.06187° 0.13711 49.9 -11.4 641.2 CFE4

SE standard error of a parameter estimate, NS not significant at 5 %, n sample sizes

*Significant at 5 %
® Significant at 1 %
¢ Significant at 0.1 %
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Table 7  Predictive accuracy of existing aboveground biomass models and models developed in this study

Species Source Model type Predictor variables n RMSE (%) MPE® (%) AIC
A. marina Chave et al. (2005) Common dbh, ht, p 40 41.5 -19.0° 425.8
Comley and McGuinness (2005) Species-specific dbh 40 45.7 —22.7° 429.6
Patil et al. (2014) Species-specific dbh 40 65.6 —-36.8° 458.4
Komiyama et al. (2005) Common dbh, p 40 104.8 36.9% 498.0
Ray et al. (2011) Common dbh, ht 40 118.0 —62.7° 507.4
Kuei (2008)) Species-specific dbh 40 132.4 —80.2° 514.7
Sitoe et al. (2014) Common dbh 40 151.2 —94.0° 5253
Kairo et al. (2009) Species-specific dbh 40 157.3 —95.1° 528.4
This study Common dbh, ht 40 293 16N 395.9
This study Species-specific dbh, ht 40 31.4 16N 401.6
This study Common dbh 40 40.6 16N 419.5
This study Species-specific dbh 40 413 28NS 421.5
S. alba Chave et al. (2005) Common dbh, ht, p 39 47.1 16N 383.9
Kauffiman and Donato (2012) Species-specific dbh, ht, p 39 62.8 —40.4° 406.3
Komiyama et al. (2005) Common dbh, p 39 70.8 29.7° 413.7
Ray et al. (2011) Common dbh, ht 39 87.6 —45.9° 430.3
Sitoe et al. (2014) Common dbh 39 154.8 —94.0° 4727
Kairo et al. (2009) Specific dbh 39 162.3 —98.9° 476.4
This study Species-specific dbh, ht 39 23.1 20N 326.4
This study Species-specific dbh 39 342 28N 355.0
This study Common dbh, ht 39 39.8 16.5° 368.1
This study Common dbh 39 405 11478 368.8
R.mucronata Komiyama et al. (2005) Common dbh, p 40 56.9 29.4° 426.2
Chave et al. (2005) Common dbh, ht, p 40 72.3 -17.8 N8 4474
Kauffiman and Donato (2012) Species-specific dbh, ht, p 40 87.7 —46.0° 462.9
Ray et al. (2011) Common dbh, ht 40 109.9 —60.7° 478.9
Sitoe et al. (2014) Common dbh 40 150.2 —94.4° 501.9
Kairo et al. (2009) Species-specific dbh 40 154.2 —98.4° 504.0
This study Species-specific dbh 40 40.5 6.6 NS 397.0
This study Species-specific dbh, ht 40 425 46N 403.0
This study Common dbh 40 44.7 —-12.7 N8 405.0
This study Common dbh, h 40 47.6 13708 412.0

Existing models and models from this study are ranked separately and according to AIC in descending order

NS not significant at 5 %, n sample sizes
* Two-tailed t-tests

® Significant at 5 %

" Significant at 1 %

¢ Significant at 0.1 %

similar observations have also been reported for miombo
woodlands (e.g., Mugasha et al. 2013).

Our study presents above- and belowground biomass
models based on data from three dominant mangrove species
in Tanzania, i.e., A. marina, S. alba, and R. mucronata. No
similar models have previously been developed in the country,
and only a few models have been developed in Africa or are
based on data from Africa. The existing biomass models from
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Africa (Kairo et al. 2009; Sitoe et al. 2014) are based on
limited sample sizes and data from only one site. Our biomass
models however are based on data from a range of sites along
the coastline of Tanzania, covering a size range beyond data
used in developing the existing aboveground biomass models
both in Africa (e.g., Kairo et al. 2009; Sitoe et al. 2014) and
beyond (e.g., Comley and McGuinness 2005; Chave et al.
2005; Komiyama et al. 2005; Kuei 2008; Patil et al. 2014).
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Fig. 5 Observed and predicted aboveground biomass for existing models and for models from this study. Note: Dashed gray lines represent 1:1
relationship between observed and predicted values. AGB = total aboveground biomass, BGB = total belowground biomass

Accordingly, our belowground biomass models are based on
data size range beyond those reported in existing studies (e.g.,
Comley and McGuinness 2005; Komiyama et al. 2005; Kairo
etal. 2009). In addition, our belowground biomass models are

based on data generated using comprehensive procedures for
quantifying tree belowground biomass involving root sam-
pling (4. marina and S. alba) and complete root excavation
(R. mucronata) (Njana et al. 2015).
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Our models are based on a nonlinear mixed-modelling ap-
proach. Ordinary nonlinear regression is commonly used to
develop biomass models. Such models, however, may violate
regression assumptions of homoscedasticity and
independence of residuals, which are difficult to meet for
biological data. Sampling for biomass model development
often results in hierarchical data. Chave et al. (2005) and
Komiyama et al. (2005) for example developed common bio-
mass models using data originating from more than one site,
such data form hierarchical data structure stratified by site and
species. Observations originating from the same species and
or site are likely to be more correlated hence lack of indepen-
dence. A model based on non-independent observations is
characterized by autocorrelated errors and therefore violate
key assumptions of independence in regression (Ritz and
Streibig 2008). Ignoring lack of independence tends to give
imprecise parameter estimates (ibid.). The mixed effects
modelling comprising both fixed and random effects that we
applied in this study is a useful statistical tool in modelling
hierarchical data (Ritz and Streibig 2008; Zuur et al. 2009).

Our study showed that the aboveground biomass models
improved when random effects modelling was applied and
when ht as an additional predictor variable was considered
(Tables 4 and 5). In model development, it is important that
models are properly specified and that the structure of the data
is taken into account. Our study illustrate that common model
including ht generally performed well across study site, spe-
cies, dbh, and ht classes by resulting into decline in MPE (%)
and that their corresponding random effects/species-specific
further improved predictive accuracy (Table 5). This supports
the role of random effects in explaining unexplained sources
of variation which is only possible within the mixed model-
ling framework. In line with our results, Chave et al. (2005)
reported that the inclusion of ht into a common mangrove
biomass model reduced the standard error of aboveground
biomass from 19.5 to 12.5 % for mangrove trees, while other
authors reported that random effects improved predictive
power of biomass models for non-mangrove trees (e.g., Fu
et al. 2014; Xu et al. 2014).

Despite models including ht being better, in most forest
inventories, due to many reasons such as costs, trees are not
frequently measured for ht. In such cases, users are obliged
either to use models including dbh as the only predictor var-
iable or initially estimate ht using relevant models and subse-
quently apply biomass models based on both dbh and ht as
predictor variables. However, ht prediction models for man-
groves are lacking in Tanzania and the rest of Africa.

Basic density (BD) is another predictor variable which
could have potentially improved predictive accuracy particu-
larly for the common biomass model (Komiyama et al. 2005;
Chave et al. 2005). However, our models did not include BD
as an additional predictor variable for two reasons; firstly, BD
may vary between species and between species-specific tree
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components and between tree size. Therefore, applying BD
determined based on comprehensive sampling in modelling
tree biomass may improve model predictive accuracy. Since
BD is never determined in forest inventories however and that
no BD prediction models exist for mangrove species, such
biomass models would be better yet with limited application.
Secondly, for common biomass models, BD serves as species
distinguishing factor whereby species mean BD values may
be used as opposed to the use of species- and tree-specific BD
values. The mixed modelling approach used in this study is
robust in distinguishing species.

The tests of existing models on our data generally showed
large and significant underpredictions for aboveground bio-
mass (Table 7). The underpredictions were as large as 90 %
for some of the models (Kairo et al. 2009; Sitoe et al. 2014).
Generally, predicted and observed biomass agreed quite well
for small tree sizes, while the underpredictions increased with
tree size (Fig. 5). Similar tests on belowground biomass for
mangroves in Tanzania (Njana et al. 2015) showed prediction
errors (underprediction) as high as 60 % when models by
Komiyama et al. (2005) (common model), Comley and
McGuinness (2005) (species-specific model), and Kairo
et al. (2009) (species-specific model) were applied. Plausible
explanations for the observed prediction errors could be the
application of the models beyond data ranges (size), geo-
graphical locations, and differences in forest structure and
architecture. For the belowground biomass, an additional ex-
planation could also be inadequate excavation procedures ap-
plied when some of these models were developed (see Njana
et al. 2015). Any application of the already existing above-
and belowground biomass models to mangroves of Tanzania
is therefore not recommended.

In the modelling, we applied species as random effects,
which resulted into improved predictive accuracy of both the
above- and the belowground biomass models, except for be-
lowground biomass for S. alba where the models did not fit
well to data (Table 4). This may be due to higher variances of
BGB for this species (see Fig. 2). The contribution of random
effects in improved predictive accuracy suggests that the bio-
mass allometry varies by species. Therefore, the random
effects/species-specific models should be applied since they
are superior to the fixed effects/common models. For S. alba,
however, the fixed effects model is recommended for below-
ground biomass. Since both the above- and the belowground
biomass models performed fairly well across sites, the models
may be applied across sites in Tanzania. However, the use of
the models beyond species considered in this study is not
recommended.

Aboveground tree component biomass estimates derived
using models may be essential in describing forest structure
(e.g., Camacho et al. 2011), determining forest productivity
(e.g., Cox and Allen 1999; Kairo et al. 2008), and understand-
ing ecosystem functions through quantification of carbon
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stocks and sequestration (e.g., Chen et al. 2012; Pandey and
Pandey 2013) which are potentially relevant for climate
change mitigation strategies. For example, the leaf biomass
estimated from relevant models may provide useful informa-
tion on nutrient cycling while the above- and belowground
biomass models may be applied to generate tier 3 carbon stock
estimates for carbon monitoring, reporting, and verification in
REDD+ programs. The models may also be applied to the
NAFORMA data for basic scientific ecological studies and
for management decision-making. Since biomass estimates
are essential for both ecological and management applica-
tions, the models (total AGB, BGB, and tree component
models) from this study are expected to provide ecologists
with the needed information and to support management of
mangroves in Tanzania and elsewhere as deemed relevant.
The aboveground tree component biomass models that we
developed generally gave low prediction errors (<10 %)
(Table 6). In addition, estimates based on tree components
were additive (in agreement with the direct tree aboveground
estimates). Therefore, we recommend the use of the developed
aboveground tree component common models in deriving
aboveground component-specific biomass estimates for utili-
zation and ecological purposes, and the individual estimates
may safely be added up.

5 Conclusions

The biomass models reported in this study are based on com-
prehensive data and modelling approach. The above- and be-
lowground biomass models improved when random effects
were considered. Therefore, random effects/species-specific
models are generally recommended. For estimation of below-
ground biomass for S. alba however, the fixed effects/
common model is recommended. Based on our results, we
discourage species-specific or site-specific model develop-
ment for data entailing more than one species or site, instead
we encourage the use of a mixed modelling approach which is
robust for such data sets. The aboveground tree component
biomass models may also be applied since they yield unbiased
and additive estimates. Based on goodness of fit statistics,
both the above- and the belowground biomass models devel-
oped in this study are the best available and provide an im-
portant tool for accurate estimation of biomass and carbon
stock stored in mangrove forest in Tanzania for both manage-
ment and ecological applications. Our models should be used
within the range of data from which they were developed, and
their use outside this data range should be done with caution.
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