
Lessons and 
Implications for REDD+ 

Editor     Kassim Kulindwa
Co-editors    Dos Santos Silayo
    EliakimZahabu
    RazackLokina
    Joseph Hella
    AloyceHepelwa
    DeogratiusShirima
    SamoraMacrice
    SeverinKalonga

Language editing and layout. E&D Vision Publishing Ltd

Implementation Experiences from Tanzania



ii

© 2016 by the Climate Change Iimpacts and Adaptation and Mitigation Project (CCIAM) - Sokoine 
University of Agriculture (SUA) 

All rights reserved.
Printed in Tanzania

ISBN: 978 9987 735 53 2

Kulindwa, K. A., Silayo, D., Zahabu, E., Lokina, R., Hella, J., Hepelwa.,Shirima, D., Macrice, S and Kalonga, 
S. (eds) 2016 Lessons and Implications from REDD+ Implementation: Experiences from Tanzania. 
CCIAM-SUA, Dar es Salaam, Tanzania.

Photo credits:

Cover © KKulindwa

Chapters: 1. Josiah Katani, 2. Ephraim Mtengeti 3. Meley Mekonnen Rannestad 4. Joseph Hella 
5. Rogers Malimbwi 6. Deo Shirima 7. SuzanaAugustiono 8. Frank Brentrup, 9. Amos Majule, 10. Dos 
Santos Silayo 11. Henry Chalu 12. Severin Kalonga13. ArildVatn 14. Jennifer Joy West 15. Joyce Ndumbala

Designed by E&D Vision Publishers

Language editing, project management and layout by E&D Vision Publishers
Dar es Salaam

Tanzania
Tel: 
Email: info@edvisionpublishing.co.tz
Website: www.edvisionpublishing.co.tz

Declaimer
Any views expressed in this book are those of the authors. They do not necessarily represent the views 
of CCIAM project - SUA, the editors, the authors’ institutions, the financial sponsors or the reviewers.

Climate Change Impact, Adaptation and Mitigation
The 5 year CCIAM programme which ended in December 2015, focused on promoting natural forest 
conservation, afforestation, reforestation and better agricultural practices for improved livelihoods 
related to the “Reduced Emissions from Deforestations and Forest Degradation (REDD)” initiative.



105 5Chapter

Biomass and volume models for different 
vegetation types of Tanzania

Rogers E. Malimbwi1, Ernest W. Mauya1, Eliakimu Zahabu,1 Josiah Z. 
Katani1, Shabani A.O. Chamshama1, Tron Eid2, Ole M. Bollandsås2, Salim 
S.M. Maliondo1, Wilson A. Mugasha3, Abeli M. Masota4, Marco Njana4, 
Joseph S. Makero5, Joachim S. Mshana1, Haruna Luganga1, Agustino 
Mathias1, Pastori Msalika1, Juma Mwangi1,Humphrey E. Mlagalila1

1Sokoine University of Agriculture, P.O. Box 3009, Morogoro, Tanzania
2Department of Ecology and Natural Resource Management, Norwegian 

University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
3Tanzania Forestry Research Institute, P.O. Box 1854, Morogoro, Tanzania
4Tanzania Forest Services Agency, P.O. Box 40832, Dar es Salaam, Tanzania
5Forestry Training Institute, Olmotonyi, P.O. Box 943, Arusha, Tanzania

Abstract

Climate change and high rates of global carbon dioxide (CO2) emissions have 
increased the attention paid to the need for high-quality monitoring systems to 
assess how much carbon (C) is present in terrestrial systems and how these change 
over time. The choice of a system to adopt relies heavily on the accuracy of the 
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method for quantifying biomass and volume as important primary variables 
for computing C stock and changes over time. Methods based on ground 
forest inventory and remote sensing data have commonly been applied in the 
recent decade to estimate biomass and volume in the tropical forests. However, 
regardless of the method, accurate tree level biomass and volume models are 
needed to translate field or remotely sensed data into estimates of forest biomass 
and volume. Therefore, the main goal of this study was to develop biomass and 
volume models for the forests, woodlands, thickets, agroforestry systems and 
some selected tree species in Tanzania. Data from destructively sampled trees 
were used to develop volume and above- and below-ground biomass models. 
Different statistical criteria, including coefficient of determination (R2), relative 
root mean square error (RMSE %) and Akaike Information Criterion (AIC), 
were used to assess the quality of the model fits. The models selected showed 
good prediction accuracy and, therefore, are recommended not only to support 
the ongoing initiatives on forest C Measurement, Reporting and Verification 
(MRV) processes but also for general forest management in Tanzania. 

1.0 Introduction

Tanzania is endowed with vast forest resources. The total forest area on mainland 
Tanzania is estimated at 48.1 million hectares (ha), which is 55 percent of the 
total land area of 88.3 million ha (MNRT, 2015). The main vegetation types 
include forests and woodlands. Forests include montane and lowland forests, 
mangroves and plantations of mainly Pinus patula, Tectona grandis and Eucalyptus 
spp. The woodlands are either closed or open but can also be distinguished in 
terms of species composition into, for example, Miombo woodlands, Acacia-
Commiphora and Thickets. Woodlands occupy 44.7 million ha or 92 percent 
of the total forest area or 50.4 percent of mainland Tanzania whereas forests1 
occupy 4.2 percent, bushland and grassland 17.2 percent and cultivated land 
24.4 percent (MNRT, 2015). The cultivated land includes Agroforestry systems 
such as coconut and cashewnut trees-rich plantations. The total wood volume 
of growing stock is 3.3 billion cubic metres (m3) (MNRT, 2015). About 97 
percent of the total volume is from trees of natural origin and only three percent 
is from planted exotic tree species. About half of the total volume is found 
in forestry and wildlife protected areas and, therefore, legally inaccessible for 
harvesting (MNRT, 2015). Forests account for 11.3 percent of growing stock 
whereas Miombo woodlands contain 73.9 percent of the growing stock. Total 
forest Carbon(C) content in the country is about one billion tonnes (t).

1 Forests here collectively refer to Low= land forests, Montane forests, Mangroves and Plan-
tations
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The importance of forests in climate change mitigation have prompted 
negotiations towards a post-Kyoto agreement to include Reducing Emissions 
from Deforestation and forest Degradation (REDD). Subsequently, REDD+ 
started in the context of the United Nations Framework Convention on Climate 
Change (UNFCCC) and the Kyoto Protocol annual meeting of 2005 held 
in Montreal, Canada (UNFCCC, 2005). The submissions also considered 
whether and how incentives to reduce tropical deforestation could be included 
in future climate regimes. Furthermore, this has led to the discussion of how to 
address REDD+ in developing countries. In fact, recent policy advances include 
drawing lessons and experiences drawn from pilot projects at the country level 
that addressed REDD+.

At the core of the discussion on REDD+ is the creation of an incentive mechanism 
(payment) for those responsible for reducing deforestation and degradation. 
Establishing a REDD+ mechanism along these lines leads to numerous challenges. 
The basic challenge, however, is the requirement of information on changes 
in biomass and Carbon (C) stock of the forests at the national and regional as 
well as local levels. Information on such changes can be based on inventories 
relying on field plots only or on field plots combined with remote sensing 
methods. Field plots inventories for REDD+ involve the estimation of C in five 
Intergovernmental Panels on Climate Change (IPCC) pools of above-ground 
biomass (AGB), below-ground biomass (BGB), deadwood, foliage and soil 
organic C. Out of these, AGB and BGB are the most important pools as they 
are vulnerable to changes. To estimate accurately AGB and BGB, allometric 
models are imperative. Country-specific allometric models enable the country and 
forest managers to report on C estimates at higher IPCC tiers. IPCC identifies 
three reporting tier levels whereby tier 1 utilises global models whereas tiers 
2 and 3 utilise site-specific models and information. Volume and C estimates 
also provide important information as a basis for implementing sustainable 
forest management.

Tree biomass and volume models comprise easily measureable tree variables, 
usually diameter at breast height (dbh) and total height (ht) that are correlated 
to the biomass or volume. Provided that information on individual trees is 
available, the use of biomass and volume models is the best option to quantifying 
amounts of C and volume of wood. Quantification of biomass is also essential 
for issues related to energy production (fuelwood and charcoal production) in 
conventional forest management planning. Tree volumes are also important for 
forest management purposes such as the assessment of growing stock, timber 
valuation, selection of forest areas for harvesting, and for growth and yield studies. 
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Tanzania has recently completed its National Forest Inventory popularly known 
as the National Forest Resources Monitoring and Assessment (NAFORMA) 
(MNRT, 2015). The inventory was based on tree measurements in field plots. 
The tree measurements could only be converted to biomass/C and volume 
estimates using appropriate allometic models. Before the implementation of 
this project, tree allometric models that existed in Tanzania were deficient in 
terms of narrow tree species coverage, narrow tree size range and narrow spatial 
representation (Malimbwi et al., 1994, Chamshama et al., 2004). NAFORMA 
was, therefore, bound to utilise these models and other general models regardless 
of their deficiencies.

2.0 Objectives of the study

The main objective of the study was to develop models and methods for assessing 
and monitoring C stocks in Tanzania required for the implementation of 
REDD+ initiatives at the local as well as national levels. The study developed 
individual tree biomass and volume models for all major vegetation types such 
as Miombo woodlands, montane and lowland forests, mangroves, Acacia-
Commiphora, thicket and plantations of mainly Pinus patula, and Tectona 
grandis. Species-specific models for baobab trees and agroforestry system trees 
composed of mainly coconut and cashewnut were also developed. Baobab was 
picked from the woodlands due to its significant contributions to volume (4% 
of total volume in the country) (MNRT, 2015) whereas its biomass is believed 
to be low due to high water content.

3.0 Methodology

3.1 Study sites
The study sites were spatially distributed across the country to cover different 
vegetation types that exist in the country (Table 5.1; Figure 5.1). 
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Vegetation types Site and Location Elevation 
(m) Soil type

Mangrove Pangani(5024ƍS, 380 59ƍ E) Alluvial, clay and sandy 
soils

Bagamoyo (60 26ƍS, 38054ƍ�E) Alluvial and sandy soils

Rufiji (7049 ƍS,39015ƍ�E) Alluvial, silt and clay 
soils

Lindi (1002�ƍS, 39039ƍ E) Alluvial and sandy soils

Mtwara ( 10 0 15ƍ S, 40010ƍ 
E) Alluvial and sandy soils

Miombo Manyara (40 20’ S, 350 47ƍ E) 1300-1800 Clay and alluvial soils

Lindi (90 47ƍS, 370 55ƍ E) 330-600 Sand and loam soils

Katavi (60 21ƍ S, 300 57ƍ�E) 755-766 Sand and clay soils

Tabora (60 2�ƍ S, 300 57ƍ E) 1096-1103 Sand, clay and loam soils

Lowland and 
Sub-Montane Amani (50 05ƍ�S, 380 40ƍ E) 190-1130 Red loam soils 

Thicket Manyoni, Itigi (50 31’ – 340 
31’E) 1244-1300 Granite soils

Acacia Kiteto(4° 31ƍ S, 36° 03ƍ�E)
Same (4° 02ƍ S, 37° 48ƍ E)

1325
2133

Sand and clay soils
Loamy soils

Boabab Kilosa, Ruaha Mbuyuni

Forest 
Plantation

Pinus patula Sao Hill
 Meru

1740-2000
1700-2320

Dystric nitisols
Volcanic soils

Tectona grandis Mtibwa
Longuza

640
160-560

Clay loamy soils
Loamy soils

Agroforestry
Cashew nut Kisarawe <400 Sandy soils

Coconut Kisarawe and Mkuranga <400 Mbuga and fluvisols soils

Table 5.1: Studied vegetation types and description of the study sites in Tanzania
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3.2 Sampling procedures
Destructive sampling procedures (see, for example, Snowdon et al., 2002; 
Mugasha et al., 2013;Mauya et al., 2014) were adopted to collect data used for 
the development of AGB, BGB and tree volume models for all major vegetation 
types and selected species. Destructive sampling was conducted following steps 
described in 3.3.

3.3 Selection of the sample trees
For all study sites, the selection of sample trees was done to ensure representation 
of tree size and species distribution of respective sites. This selection was based 
on published and unpublished information from previous forest inventories. 
Prior to tree felling, the entire sample trees were identified for species name (local 
and scientific name) and tree variables such diameter at breast height (dbh), 
and total height (ht) were measured. Callipers and diameter tapes were used to 
measure dbh whereas ht was measured with Suunto and Vertex hypsometers. 
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3.4 Data collection and laboratory procedures for 
biomass determination

To obtain the relevant dataset to achieve the objectives of the study, each of the 
sample trees was divided into above- and below-ground parts. The above-ground 
part was considered as all biomass above stump height of 30cm, was further 
divided into three sections, namely, the stem, branches including tops (up to 
a minimum diameter of 2.5 cm) and twigs (with diameter less than 2.5 cm). 
Stems and branches were trimmed and cross cut into billets ranging from 1 to 
2.5 m in length and then weighed for green weight (see, for example, Mugasha 
et al., 2013, Njana et al., 2015). Two or three small samples (depending on the 
stem length) from stem and branches, respectively, were extracted and weighed 
green and finally oven-dried in laboratory to obtain the dry weight. Twigs were 
collected in separate bundles and the green weight of each was determined. 
Small disk samples from each bundle were collected, labelled, measured for 
green weight and finally oven-dried.

For BGB, the excavation of the below-ground part of the individual tree was 
firstly done to ensure that all main roots initiating from the root crown were 
clearly visible. Then three main roots from the root crown (largest, medium and 
smallest in diameter) were selected and excavated (see, for example, Mugasha et 
al., 2013, Njana et al., 2015). These main roots were measured for diameter at 
the branching point from the root crown and then weighed. Three side roots 
were also selected from the excavated main roots and measured for diameter 
at the branching points from the main root and then weighed. The remaining 
side roots from the excavated main roots were measured for diameter at the 
branching point. All the main roots that were not excavated were measured 
for diameter at the branching point of the root crown. Then the root crown 
was also recorded for green weight. To obtain estimates of the dry weights of 
the belowground components, a minimum of two samples was taken from all 
main and side roots and two from the root crown. They were all weighted for 
green weight, labelled and oven-dried.

3.5 Computations of above- and below-ground biomass 
of the sample trees

For the above-ground part of the trees, we computed all the mean dry to green 
weight ratio (DG-ratio) for each tree section (stem, branches and twigs). The 
dry weight of each section was obtained as a product of mean DG-ratio and the 
green weight of the respective tree section. Total AGB was computed as the sum 
of stem, branches and twigs. For the below-ground parts of the excavated trees, 
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we first converted all green weights from different parts to dry weight biomass 
as the product of the DG-ratio and their green weights. Models developed 
from the excavated main and side-roots were applied to predict biomass of 
those parts of the root system not excavated (see, for example, Mugasha et al., 
2013, Njana et al., 2015).

3.6 Data collection for tree volume
The data used for the development of AGB models was also used to develop 
tree volume models. This started with the computation of the volume of the 
individual logs obtained from the destructive sampling. The volume of each log-
section (i.e. stem and branches) was calculated by multiplying the cross-sectional 
area at the midpoint of each log with its length. Then the total tree volume 
was obtained as a sum of stem and branches volumes. A detailed description is 
provided by Mauya et al. (2014). 

3.7 Characterisation of the biomass and volume models 
data

The data used for developing tree biomass and volume models covered a wide 
range of conditions in terms of vegetation types and geographical locations. 
The statistical summary of the data is presented in Table 5.2:
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3.8 Statistical analyses
Ordinary least square regression, non-linear regression, weighted non-linear 
regression and nonlinear mixed effects modelling techniques were applied to 
develop AGB, BGB and tree volume models (see, for example, Mugasha et al., 
2013;  Mauya et al., 2014; Njana et al., 2015). R software (R Development Core 
Team 2013) and SAS software (SAS® Institute Inc., 2004) were applied during 
data analyses. The model development procedure started with the selection of 
appropriate model forms commonly used in previous studies. Similarly, forest 
mensuration literature was used to suggest appropriate model forms (Philip, 
1983; Köhl et al., 2006;). Different model forms were tested for each forest 
type and study site with the aim of getting models with dbh only and models 
with both dbh and ht as input variables.

Regression assumptions on homoscedasticity and normal distribution of 
residuals were examined by means of graphical plots. In cases where these 
assumptions were not met, weighted regression procedures were used to account 
for heteroscedasticity (i.e. non constant variance). Likewise, in other studies 
logarithmic transformation of both response and predictor variables were applied.

Different statistical criteria were used to assess the quality of the models and to 
guide the selection of the best models. The criteria used included coefficient of 
determination (R2), pseudo-R2, Akaike information criterion (AIC), relative 
root mean square error (RMSE) and mean prediction error (MPE%). Details on 
how the model selection criteria were applied are available in individual studies 
(see, for example, Mugasha et al., 2013; Mauya et al., 2014; Njana et al., 2015). 

4.0 Results and discussion

4.1 AGB models
AGB models covering different vegetation types and some species in Tanzania 
were developed.  General site and species-specific models were developed as 
presented in Table 5.3. Different criteria for the assessment of model fits were 
used in individual studies (see, for example, Mugasha et al., 2013; Njana et al., 
2015). For the Miombo woodlands, lowland and sub-montane forests, thickets 
and Acacia-Commiphora, the R2 ranged from 0.80 to 0.97 (Mugasha et al., 
2013; Masota et al., 2015; Mathias, 2015 ). RMSE% was used for assessing 
the model quality for mangroves, where the values ranged from 23.1 percent to 
42.6 percent (Njana et al., 2015). The R2 for the species specific models were 
all above 0.80, indicating that the majority of AGB variations were explained 
by the models. All the models developed were further evaluated over sites and 
diameter classes. None of the selected models produced MPE% values that 
were statistically significantly different from zero (p > 0.05). Additional tests for 
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model evaluations are given in the individual studies (see Table 3). Therefore, 
based on the aforementioned model performance statistical criteria, which are 
comparable to results from previous studies in tropical forests (see, for example, 
Malimbwi et al., 1994; Chamshama et al., 2004; Ryan et al., 2011; Chave et al., 
2014; Mwakalukwa et al., 2014), the developed models can be used to estimate 
tree AGB with reliable precision.  In addition, the developed models do not only 
cover a wider geographical range, but also wider ranges of tree sizes and species 
as than the previously reported models in Tanzania (for example, Malimbwi 
et al., 1994; Chamshama et al., 2004). This indicates that the models can be 
used over a wide range of tree sizes and sites in Tanzania. 

4.2 BGB models
Models for predicting BGB were developed for all vegetation types mentioned 
above (see Table 5.3). The model fits for BGB were generally not as good as for 
the AGB models. R2 for the Miombo woodlands and lowland and sub-montane 
forests ranged from 0.71 to 0.93 (Mugasha et al., 2013; Masota et al., 2015;). 
RMSE values for Mangrove tree species for the below-ground biomass models 
ranged from 16.8 percent to 95.1 percent (Njana et al., 2015). The BGB models 
were also evaluated over sites and tree sizes, and the MPE% values were not 
significantly different from zero (p > 0.05). Generally, the poor performance of 
the models can be attributed to methodological approaches to data collection. 
As not all roots were excavated and measured, the use of regression analysis in 
estimating the unmeasured roots might have resulted into accumulated errors 
(Mugasha et al., 2013; Malimbwi et al., 2016). Nonetheless, this weakness could 
not be avoided due to the high cost associated with total tree roots excavation. 
Despite the shortcomings related to the methodology applied, the models are 
far better than the use of biomass default values (IPCC, 2003). 
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4.3 Tree volume models
Tree volume models were developed for Miombo woodlands, lowland and 
sub-montane forests, thickets and Acacia-Commiphora (see Table 4). General 
and some species-specific volume models were also developed for different sites 
(see Table 5.4). The pseudo-R2 of the models ranged from 0.69 to 0.96 (Masota 
et al., 2014; Mauya et al., 2014; Makero et al., in press; Mathias, 2015).The 
models were evaluated by testing their performance over different sites and 
tree sizes, which resulted into MPE% that were not significantly different from 
zero (p > 0.05), thus indicating that the developed models were unbiased. The 
models are considered to be unique in terms of wider geographical and species 
coverage. For example, the models which were developed for Miombo woodland 
(see, for example, Malimbwi et al., 1994; Chamshama et al., 2004) covered 
only one site in eastern Tanzania, but the newly-developed models cover four 
regions endowed with abundant and diverse Miombo tree species (MNRT, 
2015). Moreover, previously there were no tree volume models available for 
Acacia-Commiphora and mountain forests. 
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4.4 Key lessons learnt
Normally, the development of species and site-specific models are preferred 
in  bid to boost accuracy. However, this can hardly be achieved for the entire 
country such as Tanzania with not only a large geographical coverage but also 
with more than 800 tree species. In this study, general models that aggregate 
species and sites were developed and their prediction accuracy were within 
acceptable ranges. This implies that general models can be used in the absence 
of species and site-specific models.

It was further learnt that, utilising students in research projects is an effective way 
of facilitating capacity-building and sustaining research. In fact, the developed 
models reported in this chapter are based on dissertations and theses of seven 
MSc and five PhD students. In addition, a total of ten scientific papers have been 
published in peer-reviewed journals. Moreover, a book detailing the procedures 
and findings on allometric models has been published (Malimbwi et al., 2016). 
It should, however, be noted that these studies on the construction of AGB and 
BGB allometric models through destructive sampling procedures are limited 
since they are tedious and costly and, therefore, not easily repeatable. In this 
regard, the support rendered by the Government of Kingdom of Norway was 
invaluable and the documented results will ensure their long-term and wide 
application.

5.0 Implications of the lessons learnt for 
REDD+ and climate change mitigation and 
adaptation in general

REDD+ involves the estimation of C in five IPCC pools of AGB, BGB, 
deadwood, litter and soil organic C. Out of these, AGB and BGB are the most 
important pools since they are vulnerable to changes. To estimate accurately AGB 
and BGB, allometric models are imperative. This study has developed biomass 
and volume models for major vegetation cover types identified in Tanzania by 
NAFORMA (MNRT, 2015). The developed models can facilitate accurate 
estimation of C stocks for the AGB and BGB. This will enable the country 
to report on C estimates at higher tiers, in particular tier 32. Volume and C 
estimates also provide important information for sustainable forest management.

2 IPCC identified three reporting tier levels where by tier 1 utilizes global models while tiers 
2 and 3 utilize site specific models and information.
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