SOILS AND LAND RESOURCES OF MOROGORO RURAL AND URBAN DISTRICTS

ISBN 9987 605 27 3

VOLUME 2

# LAND SUITABILITY EVALUATION FOR THE PRODUCTION OF THE MAJOR CROPS IN THE SOUTHWESTERN PART OF THE ULUGURU MOUNTAINS, MOROGORO RURAL DISTRICT, TANZANIA

Didas N. Kimaro Balthazar M. Msanya Sibaway B. Mwango Gerald G. Kimbi Emmanuel P. Kileo

2001



Department of Soil Science Faculty of Agriculture Sokoine University of Agriculture P.O. Box 3008 Morogoro, Tanzania Correct Citation: Kimaro, D.N., Msanya, B.M., Mwango, S.B., Kimbi, G.G and Kileo, E.P. (2001). Land suitability evaluation for the production of the major crops in the Southwestern part of the Uluguru Mountains, Morogoro Rural District, Tanzania. Soils and Land Resources of Morogoro Rural and Urban Districts, Volume 2. Department of Soil Science, Faculty of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania

"No part of this report may be reproduced, stored in a retrievable system, or transmitted in any form or by any means, without prior written permission of the author(s) or Sokoine University of Agriculture in that behalf"

Published by: Department of Soil Science **Sokoine University of Agriculture** P.O. Box 3008 CHUO KIKUU MOROGORO, TANZANIA Phone +255 23 2603999 Fax +255 23 2603259 E-mail: soil@suanet.ac.tz

© 2001

ISBN 9987 605 27 3

Type setting, cover and graphic design by the authors

### PREFACE AND ACKNOWLEDGEMENTS

This work is a semi-detailed explanatory report for the soil map at a scale of 1:50,000 of southwestern Uluguru Mountains in Morogoro Rural District, Tanzania. It contains information that can be used for sound land use planning activities in the area, particularly for the production of the major crops (cabbage, potato and arabica coffee). The report will be a useful tool for use by the Researchers, District Agricultural & Livestock Development Officer (DALDO) and District Extension Officers in delivering their advisory services to farmers. Detailed description of soil properties is given in both report and map (in form of mapping units), which clearly identify the constraints and potentials of the study area. Ample information on economic suitability of various land use types in the area is also provided as a guidance to land use planning.

The authors wish to thank all those who in one way or another contributed to the successful completion of this work. Many thanks are due to the Norwegian Agency for Development Co-operation (NORAD) for providing funds to carry out this study through the SUA-NORAD TAN 091 project on Soils and Land Resources of Morogoro Rural and Urban Districts. Sincere thanks are also due to Dr. B.P. Mbilinyi of the Department of Agricultural Engineering and Land Planning, Sokoine University of Agriculture (SUA), for his technical assistance in Remote Sensing and Geographical Information Systems.

Prof. B.M. Msanya

Project leader

May, 2001

# TABLE OF CONTENTS

| PREFACE AND ACKNOWLEDGEMENTS                           | iii |
|--------------------------------------------------------|-----|
| LIST OF TABLES                                         | . v |
| LIST OF FIGURES                                        | . v |
| LIST OF APPENDICES                                     | vii |
| LIST OF ABBREVIATIONS                                  | vii |
| EXECUTIVE SUMMARYv                                     | iii |
| 1.0 INTRODUCTION                                       | .1  |
| 2.0 MATERIALS AND METHODS                              | .3  |
| 2.1 Pre-field work activities                          | .3  |
| 2.2 Field work activities                              | .4  |
| 2.3. Post field work activities                        | .4  |
| 2.3.1. Laboratory methods                              | .4  |
| 2.3.2. Data processing and soil classification         | . 5 |
| 2.3.3 Preparation of the soil map and legend           | . 5 |
| 2.4 Land evaluation                                    | . 5 |
| 2.4.1 Description of the land utilisation types (LUTs) | .6  |
| 2.4.2 Rating of land use requirements (LURs)           | .6  |
| 2.5 Land suitability classification                    | .6  |
| 2.5.1 Physical suitability classification              | .6  |
| 2.5.2 Economic suitability classification              | .7  |
| 3.0 RESULTS AND DISCUSSION                             | . 8 |
| 3.1. Physical environment                              | . 8 |
| 3.1.1. Location                                        | . 8 |
| 3.1.2. Climate                                         | . 8 |
| 3.1.3 Geology, landforms and hydrology                 | 12  |
| 3.1.4. Vegetation and land use                         | 13  |
| 3.1.5. Major soils                                     | 13  |
| 3.2 Mapping units description                          | 13  |
| 3.3. Soil classification                               | 34  |
| 3.4. Land evaluation                                   | 39  |
| 3.4.1 Description of land utilisation types (LUTs)     | 39  |
| 3.4.2 Land suitability classification                  | 44  |
| 4.0 CONCLUSIONS AND RECOMMENDATIONS                    | 50  |
| 4.1. Conclusions                                       | 50  |
| 4.2. Recommendations                                   | 51  |
| 5.0 REFERENCES                                         | 52  |
| 6.0 APPENDICES                                         | 55  |

# LIST OF TABLES

| Table 1.     | Climatic data of selected meteorological stations in the study                                                 | 9  |
|--------------|----------------------------------------------------------------------------------------------------------------|----|
| Table 2.     | Summary of land mapping units description of southwestern                                                      |    |
|              | Uluguru                                                                                                        | 15 |
| Table 2      | Mountains.                                                                                                     | 10 |
| Table 5.     | soils                                                                                                          | 19 |
| Table 4.     | Soil chemical properties of the studied soils in the study                                                     | 30 |
|              | area                                                                                                           |    |
| Table 5.     | Morphological and diagnostic features of the studied soils (FAO-<br>WRB system)                                | 35 |
| Table 6.     | Morphological and diagnostic features of the studied soils (USDA                                               | 55 |
|              | system)                                                                                                        | 36 |
| Table 7.     | Classification of the soils of southwestern Uluguru                                                            | 37 |
| Table 8      | Description of land utilisation types in southwestern Uluguru                                                  |    |
| 1 4010 0.    | Mountains                                                                                                      | 40 |
| Table 9.     | Agro-economic results for smallholder improved low input rainfed                                               |    |
|              | cabbage in southwestern Uluguru Mountains                                                                      | 41 |
| Table 10.    | Agro-economic results for smallholder improved low input rainfed                                               | 40 |
| Tabla 11     | A gro according results for smallholder improved low input rainfed                                             | 42 |
|              | coffee in southwestern Uluguru Mountains                                                                       | 43 |
| Table 12.    | Physical suitability classification for smallholder improved low input                                         |    |
|              | rainfed cabbage, potato and arabica coffee in southwestern Uluguru                                             | 16 |
| Table 13     | Predicted yields [kg/ha] for low input rainfed cabbage_potato and                                              | 40 |
| 1000 15.     | arabica coffee in southwestern Uluguru                                                                         | 47 |
|              | Mountains                                                                                                      |    |
| Table 14.    | Predicted gross margins [TSh/ha/yr] for low input rainfed cabbage,                                             | 10 |
| Tabla 15     | potato and arabica coffee in southwestern Uluguru Mountains                                                    | 48 |
| Table 15.    | potato and arabica coffee in southwestern Uluguru Mountains                                                    | 49 |
| LIST OF      | FIGURES                                                                                                        |    |
| Figure 1.    | Climatic trends of Tchenzema and Bunduki Meteorological                                                        | 11 |
|              | stations                                                                                                       |    |
| Figure 2.    | Climatic trend of Mizungu Mgeta meteorological                                                                 | 12 |
| <b>F</b> ' 0 | station                                                                                                        |    |
| Figure 3.    | Particle size distribution from different parent materials of the studied                                      | 21 |
|              | soils                                                                                                          |    |
| Figure 4.    | Soil moisture release curves of the soils of southwestern Uluguru<br>Mountains developed from different parent | 22 |
|              | 1 1                                                                                                            |    |

|           | materials                                                                                                                                   |    |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 5. | Variation of cation exchange capacity with organic matter and clay<br>content of soils developed from different geological formation in the |    |
|           | study area                                                                                                                                  | 32 |
| Figure 6. | Distribution of exchangeable bases in soils of southwestern Uluguru                                                                         |    |
| -         | Mountains developed from different parent                                                                                                   | 33 |
|           | materials                                                                                                                                   |    |

# LIST OF APPENDICES

| Appendix 1. | Soil profi        | le description                | n and            | analytical   | 55 |  |  |  |  |  |  |
|-------------|-------------------|-------------------------------|------------------|--------------|----|--|--|--|--|--|--|
|             | data              |                               |                  |              |    |  |  |  |  |  |  |
| Appendix 2. | Rating of Land u  | se requirements for           | smallholder impr | roved        |    |  |  |  |  |  |  |
|             | low input         | rainfed                       | cabbage          | cultivation  | 81 |  |  |  |  |  |  |
|             | system            |                               |                  |              |    |  |  |  |  |  |  |
| Appendix 3. | Rating of Land u  | se requirements for           | smallholder impr | roved        |    |  |  |  |  |  |  |
|             | low input rainfed | potatoes cultivatio           | n system         |              | 82 |  |  |  |  |  |  |
| Appendix 4. | Rating of Land    | use requirements              | for smallholder  | low input    |    |  |  |  |  |  |  |
|             | rainfed           | arabica                       | coffee           | cultivation  | 83 |  |  |  |  |  |  |
|             | system            |                               |                  |              |    |  |  |  |  |  |  |
| Appendix 5. | Guide to general  | evaluation of som             | e chemical and p | hysical soil |    |  |  |  |  |  |  |
|             | properties        |                               |                  | •            | 84 |  |  |  |  |  |  |
|             | Soil map of of th | Soil map of of the study area |                  |              |    |  |  |  |  |  |  |
|             | 1                 | 5                             |                  |              |    |  |  |  |  |  |  |

## LIST OF ABBREVIATIONS

FAO = Food and Agriculture Organisation of United Nations UNESCO = United Nations Educational Scientific and Cultural Organisation USDA = United States Department of Agriculture NSS = National Soil Service NORAD = Norwegian Agency for Development Co-operation SUA = Sokoine University of Agriculture ILACO = International Land Development Consultants TEB = Total exchangeable basis AWC = Available water capacity CEC = Cation exchange capacity ESP = Exchangeable sodium percent MGP = (1-26)-Mgeta profile (no. 1 - 26) ALES = Automated Land Evaluation System BD = Bulk Density BS = Base saturationC:N = Carbon to Nitrogen ratio ETo = Potential evapotranspiration GIS = Geographical Information Systems GM = Grss margin LMU = Land mapping unit LQ = Land qualityLUR = Land use rquirement LUT = Land utilisation type PRA = Participatory Rural Appraisal URT = United Republic of Tanzania SISTAN = Soil Informatio System for Tanzania

WRB = World Reference Base

### **EXECUTIVE SUMMARY**

Land evaluation study was conducted on the southwestern slopes of the Uluguru Mountains in Morogoro Rural District, Tanzania to assess the potentials and constraints of the various land units for the production of low input rainfed cabbage, round potato and arabica coffee. The study area is located between latitudes 7°00′00″ and 7°11′23.5″S and longitudes 37°30′00″ and 37°38′36.6″E covering the villages of Kibaoni, Langali, Bunduki, Bumu, Kikeo, Luale, Mwarazi, Nyandira, Kibuko and Tchenzema. The areal extent is 419.64 km<sup>2</sup> (41,964 ha) with an average elevation ranging between 900 - 2700 m a.s.l.

The mean annual rainfall in the study area ranges from 1065 mm to 2450 mm. The rainfall distribution pattern is monomodal with the rainy season starting from December to May. The peak rainfall occurs in April in most places of the study area. The high altitude areas receive more rainfall than the lower areas. In some areas rainfall distribution tends more to be bimodal with two peaks occurring in October and in April. There is considerable temperature variability in the study area with the mean monthly temperature ranging from 17.4°C (July) to 22.4°C (December). At high elevations temperatures are much cooler. The shortest reference length of growing period is 180 days while the longest is 270 days.

The geology of the study area consists of a mixture of banded pyroxene granulites with occasional biotite-rich bands, foliated mica gneisses, hornblende gneisses and granulites and some iron-rich meta-anorthositic rocks, all belonging to the Usagaran system. In some places alluvial deposits and kaolinitic clays of Neogene age are found.

The study area consists of strongly dissected mountains with very steep plateau and ridge slopes of about 30-60% and narrow valleys and incisions. Lukwangule plateau is the highest peak in the study area reaching an altitude of 2,623 m a.s.l. The Lukwangule plateau is only slightly dissected and the surface forms quite a mature relief.

Two distinct drainage patterns exist in the study area. A sub-radial pattern which is related to the horse-shoe of high mountains from Mkumbaku through Lukwangule and Magari to Lupanga, which is currently represented by some of the larger rivers such as Mngazi, Mbakana and, in part, the Mgeta. A rectilinear pattern is exhibited where secondary streams and many main rivers show adjustment to geological structure and rock type. The pattern of the minor rivers follows the geological structure more closely and has resulted in river capture, reversed drainage and wind gaps. The edge of the meta-anorthosite is marked by the Mgeta, Mfunesi and Lukangazi river valleys for about two-thirds of its circumference, and this weakness is presumably the cause of the spiral course of the Mgeta River as it cuts back along the junction of rocks, capturing successively all the radial drainage from the north and west of the high level plateaux.

In the study area there are three major types of forests namely, mountain rain forest, tropical rainforest and miombo woodland. The mountain rain forest occurs on high mountain slopes, and has been declared forest reserve. Other areas have been afforested with conifers and eucalypts. The third major type of vegetation is the miombo woodland, whose typical species are *Brachystegia spp*. (miombo), *Isoberlina spp*. and *Acacia nigrescens*. Other vegetation types include ferns, guava, cypress, black wattle (*Acacia mearnsii*) and thatch grass (*Hyperrhenia rufa*). On the summit of Lukwangule plateau there is grassland whose vegetation is mainly composed of coarse grasses with few trees and other plants of temperate climate.

The current major land use types include smallholder rainfed and irrigated farming. Ridge and bench terrace cultivation of maize, millet and beans as staple foods is a common practice. The crops are grown alternately and/or intercropped with cash crops like vegetables and round potatoes, whereas arabica coffee is mixed with bananas and some black wattle trees.

Four major landform units namely, strongly dissected plateau, mountain ridges, piedmont slopes and v-shaped valley sides and incisions were identified in the study area. The soils associated with these landform units are a complex of moderate, well to somewhat excessively drained, dark yellowish brown to dark red, sandy clays to clays; and shallow, well to somewhat excessively drained, dark reddish brown sandy clay loams to sandy clays. According to the FAO-World Reference Base, seven major soil types were identified and classified. The soils of plateau and mountain ridge summits classify as Umbrisols, Cambisols, Leptosols and Acrisols; while those of the the slopes and piedmonts classify as Regosols, Phaeozems and Luvisols. In the river valley sides, river floors and incisions the soils are dominantly Fluvisols and Phaeozems. Generally the soils of the study area have poor soil fertility status. The topsoil reaction ranges from strongly to slightly acid (pH 5.1-6.5). Organic carbon and phosphorus contents are very low while nitrogen content varies from very low to low. The values of CEC are medium. Base saturation levels range from very low to medium in major part of the study area.

Most of the studied land mapping units (about 70% of the study area) are both physically and economically moderately suitable for all three studied land utilisation types (LUTs). The remaining 30% is either marginally or not suitable for the production of the LUTs. The most limiting factors for the production of the three studied LUTs are rooting condition, poor soil fertility and soil erosion hazards. Although most of the lands in the southwestern Uluguru Mountains have moderate potential and are economically moderately suitable for the production of cabbage, round potato and arabica coffee, production of round potato is economically more profitable than cabbage and coffee. Basing on the current farmers' observed and predicted yields, possibilities for obtaining higher yields under high input and improved management levels are high. This forms a strong base infavour of high investment in the area given the potential marketing possibilities in the expanding Morogoro municipality and Dar es Salaam city.

## **1.0 INTRODUCTION**

Mountainous areas in Tanzania including Uluguru Mountains constitute an important agricultural land (Mwango, 2000). These areas are dependable sources of water and production of most crops including vegetables, potato and coffee. Due to favourable climatic conditions these areas and Uluguru Mountains in particular support large population densities (about 250 - 300 persons per km<sup>2</sup>). Excessive deforestation, improper land management and cultivation of areas which are too steep for agriculture, are threatening the fragile ecosystem of these lands (Mwango, 2000). Erosion control has proved difficult due to rapid changes in land use systems (Temple, 1972; Kilasara *et al.*, 1993).

Despite the fact that mountainous areas have high potential for production of many tropical crops such as maize, potato, beans, fruits, vegetables, and coffee, land productivity has remained low (Mwango, 2000). Few attempts, including the Uluguru Land Use Scheme (ULUS), Afforestation Schemes and Soil Erosion Control, have been initiated to solve the problem of low land productivity in these areas (Van Donge, 1992).

The need to increase production in mountainous areas is a prerequisite in order to supply food to the growing population both in rural and urban areas (United Republic of Tanzania (URT), 1992). Increasing production can be achieved to a great extent by formulation and implementation of proper land use planning policy (Temple, 1972; Kileo, 2000). However, formulation of land use policy requires knowledge on the potentials and constraints of the various agro-ecological zones for production of crops and livestock (Temple and Rapp, 1972). Such knowledge will lead to systematic land use planning to improve socio-economic conditions of the population as well as environmental conservation for future generation (Moberg *et al.*, 1982). Inappropriate land use leads to inefficient exploitation of natural resources, destruction of the land resources, poverty and social problems (Rossiter, 1996).

Land evaluation based on human, economic and physical resources is an important tool for attaining proper land use planning of various agro-ecological zones especially in mountainous areas to ensure that land is not degraded and that it is used according to its capacity to satisfy human needs for present and future generation (Msanya, 1980; Rossiter, 1996). To date only limited studies have been done in the mountainous areas of Tanzania and Uluguru Mountains in particular to establish proper land use plans based on principles of land evaluation (National Soil Service (NSS), 1986). Moreover, land evaluation studies that were carried out in Tanzania using traditional techniques cannot cope with the user demands and are time consuming and have limited versatility (Kimaro, 1989; Kimaro and Kips, 1991; Kimaro and Msanya, 1999; and Mwango, 2000). For this reason some investors and land use planners are still forced to do without adequate land evaluation studies.

Automated Land Evaluation System (ALES) is a computer programme, which is versatile and capable of handling and analysing large amounts of land resource data with increased efficiency in identification of areas with potential for different uses (Kimaro, 1989; Kimaro and Kips, 1991). Introduction of ALES to rate lands both in physical and economic terms for a set of land use types in Tanzania is inevitable to allow quick generation of data and decision making on land use policies and timely generation of information to potential investors. The study was aimed at collecting information that would enable land users and investors to make proper decisions on land use planning in the Uluguru Mountains so as to meet the increasing demand for food and cash income for the rapidly growing population. The findings generated from the study could also be used in other areas with similar environmental conditions to provide firm base for future research and assessment of land potential and constraints.

In the current study, Automated Land Evaluation System (ALES) was applied to carry out land suitability assessment for three major crops (cabbage, potatoes and coffee) in the southwestern part of the Uluguru Mountains. Specifically the study addressed the following objectives:

- i. To identify soils and landform characteristics of the study area.
- ii. To characterise soils of the study area in terms of their physical and chemical properties.
- iii. To classify the soils of the area using the FAO World Reference Base and the USDA Soil Taxonomy systems.
- iv. To assess suitability of the study area with respect to production of cabbage, round potatoes and arabica coffee.

### 2.0 MATERIALS AND METHODS 2.1 Pre-field work activities

The tasks performed during this phase include literature search, collection of available data and preliminary study of materials listed below:

- (1) The Geological map of the Uluguru Mountains: (Quarter degree sheet 201) at the scale of 125,000. *Geological survey of Tanganyika 1961. Geological Survey Department, Dodoma, Tanzania.*
- (2) Topographic map of Mgeta. Sheet 201/1 at the scale of 1: 50,000. *Ministry of Lands, 1970. Survey and Mapping Division, Dar es Salaam, Tanzania.*
- (3) Aerial photographs: Nos 143, 144, 145, 146, 149, 150, 151, 152, 153, 154 and 155 of 1978 at the scale of 1:67,000.
- (4) Climatological data: Rainfall data for Tchenzema (1949-1983), Bunduki (1907-1990) and Mizungu station (1951-1986). Temperature of the study area was extrapolated using temperature data from the Morogoro Meteorological Station
- (5) Reference crop evapotranspiration  $ET_o$  mm/day was calculated using the temperature method based on the Blaney-Criddle equation (FAO, 1991) as follows:  $ET_o = p$  (0.46 T + 8), where T is the mean daily temperature, p is the mean daily percentage of total annual daytime (hours) x adjustment factor, which depends on minimum relative humidity, sunshine hours and daytime wind estimates
- (6) The length of the growing period was calculated according to FAO (1984) methodology based on mean monthly rainfall and potential evapotranspiration  $(ET_o)$
- (7) Review of previous works and other relevant literature: Temple, 1972; Temple and Rapp, 1972; Kisanga, 1992 and Mwango, 2000.

In preparation for the mapping of soils and landform characteristics in the field, stereoscopic examination of available aerial photographs scale (1: 67,000) was carried out in conjunction with the study of topographic map at a scale of 1:50,000 and geological map at a scale of 1:125,000. The elements landform/relief, drainage patterns, vegetation cover, land use and drainage conditions were considered as key interpretation attributes for mapping the lands of the southwestern Uluguru Mountains. Finally a physiographic interpretation map at a scale of 1:67,000 with a legend describing the major land units of the area was compiled. The land units established during this phase were then used as a base for the field survey and mapping.

Semi-structured questionnaires were prepared for gathering data and information on land use and socio-economics of the study area. Key attributes used for preparation of the questionnaire were: production packages, farming systems, capital and labour intensity, level of technical know-how, observed yields and prices, land tenure and farm size. Systematic free survey at semi detailed scale (1:50,000) was carried out in the field to establish patterns of soils and other terrain characteristics such as landform, parent material, vegetation and land use (Dent and Young 1981). Using the base map, transects and sites for observation and sampling were selected through reconnaissance survey of the whole study area. At each observation site, data on soil morphological characteristics, landform, elevation, slope gradient, parent material, lithology, vegetation and land use were studied. Observations were done at an intensity of 8 observations per km<sup>2</sup> following procedures outlined by Dent and Young (1981). In each transect, soils were described using soil minipits to a depth of 50 cm and augering to 120 cm or to limiting layer. Correlation of the soil auger observations with landforms and parent materials enabled soils which are similar in characteristics and in arrangements of soil horizons to be singled out and mapped. In this way twelve land mapping units were identified and confirmed on the photo interpretation base map.

Based on the information obtained from field observations for each delineated land mapping unit, representative soil profile pits were identified. Global Positioning System (model GARMIN 12XL) was used to determine the geographical locations of the sites. Soil profile pits were dug to a depth of 2 m or to a limiting layer. A total of twenty six fully geo-referenced soil profile pits were studied and described according to FAO Guidelines for Soil Profile description (FAO, 1990; 1998). Moist and dry soil colours were described using Munsell Soil Colour Charts (Munsell Colour Company, 1992).

In each profile pit, bulk samples were taken from each horizon for physical and chemical analysis. Undisturbed core samples were collected for the determination of soil moisture characteristics and bulk density.

Semi-structured questionnaires coupled with Participatory Rural Appraisal (PRA) techniques were used to collect and identify major land utilisation types and socioeconomic data for use in ALES model for agro-economic suitability evaluation. Such data include: yields, prices, labour, size and status of the farm and levels of management, material inputs, cultural practices, marketing facilities. Information related to population, extension services and social organisations were also gathered. Thirty representative farmers and extension officers were interviewed during this exercise.

### **2.3.** Post field work activities

### 2.3.1. Laboratory methods

The disturbed soil samples were air-dried and ground to pass through 2 mm sieve to obtain the fine earth fractions for chemical and physical determinations. Undisturbed core samples were used for the determination of bulk density and moisture retention characteristics. Soil texture was determined by hydrometer method after dispersing soil with calgon 5% (NSS, 1990). Bulk density was determined according to core sample method (Blake and Hartge, 1986). Soil moisture retention characteristics were

studied using sand kaolin box for low suction values and pressure membrane apparatus for higher suction values (NSS, 1990).

pH was determined potentiometrically in water and in 1N KCl at the ratio of 1:2.5 soil-water and soil-KCl (McLean, 1982). Electrical conductivity (ECe) was determined by conductivity meter in a 1:2.5 soil-water suspension. Organic carbon was determined by the Walkley and Black wet oxidation method as outlined by Nelson and Sommers (1982). Total nitrogen was determined by Kjeldahl method (Bremner and Mulvaney, 1982). Available phosphorus was extracted by Bray and Kurtz-1 method (Bray and Kurtz, 1945) for soils with pH<sub>water</sub> less than 7 and Olsen method for soils with pH<sub>water</sub> above 7 and determined spectrophotometrically (Murphy and Riley, 1962; Watanabe and Olsen, 1965). Cation Exchange Capacity (CEC) and exchangeable bases were determined by saturating soil with neutral 1M NH4OAc and the adsorbed NH4<sup>+</sup> were displaced using 1M KCl and then determined by Kjeldahl distillation method for the estimation of CEC of the soil. The bases  $(Ca^{2+}, Mg^{2+}, Na^{+}, K^{+})$  were determined by atomic absorption spectrophotometer (NSS, 1987). CEC of clay was calculated using the formula outlined by Baize (1993) which corrects for the CEC contributed by organic matter (OM) as follows: CEC clay  $= ({CEC soil - (%OM * 2)} / % clay) * 100.$ 

### 2.3.2. Data processing and soil classification

The field and laboratory analytical data were entered into the digital soil data base management system SISTAN (Magoggo, 1991) and processed using Microsoft Word programme (Appendix 1). Other softwares used for data processing include Microsoft Excel and Freelance. Using both field and laboratory data, the soils were classified to level-3 of the FAO World Reference Base (FAO, 1998), and to subgroup level of the USDA Soil Taxonomy (Soil Survey Staff, 1998).

#### 2.3.3 Preparation of the soil map and legend

The soil map polygons were delineated on the basis of the following hierarchy of elements: geology, landforms and relative position in the landscape, slope classes and soil properties. The analogue map compiled from aerial photo interpretation and during field work was digitised and analysed using ARC/INFO and ARC/VIEW-GIS softwares to produce the final physiographic soil map with a legend elaborating the mapping units at the scale of 1:50,000 (Back cover). The map legend is also given in Table 4.

#### 2.4 Land evaluation

The land evaluation method applied in this study basically follows the procedures laid down in the FAO Framework for Land Evaluation (FAO, 1976). Firstly the land utilization types (LUTs) were described. Data on land resources and socio-economics were coded using land characteristics specification dictionary into a digital dbase file. This step was followed by the comparison of the optimal environmental requirements of the LUTs with the actual conditions of the land; a process refered to as matching. The matching process in this study was done using the Automated Land Evaluation System (ALES) programme (Rossiter and Van Wambeke, 1989; 1994). The tracts of

the land being used for suitability assessment in this study are land mapping units of the soil map (Back cover).

### 2.4.1 Description of the land utilisation types (LUTs)

Land utilisation types in the study area were selected and described on the basis of field observations on farming systems, produce (varieties grown), labour input, farm size, land tenure, yields and prices of the produce as obtained by farmers. Information on land utilisation types was also used to generate data for screening by ALES.

### 2.4.2 Rating of land use requirements (LURs)

Land suitability in this study was assessed on the basis of those land use requirements (LURs) that were considered diagnostic for the identified LUTs. In the study area the diagnostic LURs taken into consideration are: moisture availability, nutrient availability, nutrient retention capacity, erosion hazard, temperature regime and tuber expansion and harvesting. LURs are composed of certain land characteristics (LCs). For example the LUR "Nutrient retention capacity" is composed of the LCs "apparent CEC, sum of basic cations and percentage base saturation".

Using land characteristics specifications and land use requirements, the expert models in the form of decision trees for each specific land utilisation type were constructed in ALES programme. These are structured representations of the reasoning processes (expert knowledge system) needed to reach decisions. Class limit sets in the decision trees for the selected LUTs were mainly based on literature sources and information obtained from PRA and field observations. Rating of the LURs was done using severity levels as follows: (1) no limitation, (2) moderate limitation, (3) severe limitation and (4) very severe limitation.

### 2.5 Land suitability classification

Land suitability classification takes into account a sustainable use of the lands basing on the environmental resources (physical suitability) and socio-economic factors (economic suitability) (FAO, 1976, Kimaro and Kips, 1991, Rossiter, 1995, 1996).

### 2.5.1 Physical suitability classification

Physical suitability ratings of the mapping units were determined using decision trees severity levels constructed in ALES computer programme. The rating followed the Liebig's law of minimum (Rossiter and Van Wambeke, 1989), by which the most limiting LUR determines the suitability class. Four physical suitability classes were defined as (1) good potential, (2) moderate potential, (3) poor potential and (4) very poor potential. In the evaluation, ALES was used to predict yields on the basis of limiting yield factors. Predictions were made by multiplying the chosen yield factors with the optimum attainable yield. The yield factors used were derived from the proposed FAO suitability classes i.e. 80 - 100 % S1, 40 - 80 % S2, 20 - 40 % S3, and 0 - 20 % N of the optimum yield (FAO, 1984). The ALES yield factors were class 1 = 1, class 2 = 0.8, class 3 = 0.4 and class 4 = 0.2. These factors were used to predict the final physical suitability classification.

After the physical suitability classification, ALES programme was instructed to compute the economic suitability evaluation. In this study economic suitability classification was carried out using the predicted yields arrived at in the physical evaluation. As for physical evaluation, FAO suitability classes were used as follows: S1 highly suitable, S2 moderately suitable, S3 marginally suitable and N1 economically not suitable. Economic suitability class limits used in this study were the gross margins. The same factors which were used to set class limits for the physical suitability evaluation were also used in economic suitability evaluation. ALES requires the evaluator to set the economic suitability class limits. These class limits are gross margins based on the maximum attainable yields.

### **3.0 RESULTS AND DISCUSSION**

### 3.1. Physical environment

### 3.1.1. Location

The study was conducted on the southwestern slopes of the Uluguru Mountains in Morogoro Rural District. The approximate geographical co-ordinates are between latitudes 7°00′ and 7°11′23.5″S and longitudes 37°30′ and 37°38′36.6″E covering the villages of Kibaoni, Langali, Bunduki, Bumu, Kikeo, Luale, Mwarazi, Nyandira, Kibuko and Tchenzema. The areal extent is about 419.64 km<sup>2</sup> (41,964 ha) with an average elevation ranging between 900 - 2700 m a.s.l.

### **3.1.2.** Climate

### Rainfall

The mean annual rainfall in the study area ranges from 1065 mm at Mizungu Mgeta to 2450 mm at Tchenzema (Table 1). The rainfall distribution pattern is monomodal (particularly at Tchenzema and Mizungu Mgeta) with the main rainy season from October to May in Tchenzema and Bunduki areas and from December to April in areas around Mizungu Mgeta. The peak rainfall occurs in April in most places of the study area (Figures 1 and 2). The high altitude areas receive more rainfall than the lower areas. The rainfall distribution at Bunduki tends more to bimodal pattern with two peaks occurring in October and in April (Mwango, 2000).

### **Temperature**

There is considerable temperature variability in the study area with the mean monthly temperature ranging from 17.4°C (July) to 22.4°C (December). At Lukwangule plateau temperatures are much cooler.

# Length of growing period (LGP)

The shortest reference LGP is 180 days while the longest is 270 days. LGP is the period of the year when moisture supply and temperature permit crop growth, and this is the period when rainfall exceeds half reference crop evapotranspiration ( $ET_o$ ) plus the period required to evapotranspire an assumed amount of moisture (FAO, 1993, 1996).

# Kimaro et al.

Table 1. Climatic data of selected meteorological stations in the study area

| Tchenzema station (Altitude 1670 m. a s 1; 7 <sup>o</sup> 7'S & 37 <sup>o</sup> 36'E; from 1946 to 1983) |             |                         |                        |            |            |      |      |      |      |      |       |       |        |
|----------------------------------------------------------------------------------------------------------|-------------|-------------------------|------------------------|------------|------------|------|------|------|------|------|-------|-------|--------|
| Month                                                                                                    | Jan         | Feb                     | Mar                    | Apr        | May        | Jun  | Jul  | Aug  | Sep  | Oct  | Nov   | Dec   |        |
| Rainfall (mean) (mm)                                                                                     | 320.5       | 279.9                   | 385.8                  | 596.0      | 253.0      | 50.5 | 28.8 | 11.9 | 44.7 | 66.5 | 197.7 | 251.4 | 2450.2 |
| Temp. average (°C)                                                                                       | 18.9        | 18.9                    | 18.7                   | 17.6       | 16.1       | 14.2 | 13.7 | 14.7 | 15.8 | 17.2 | 18.3  | 19.1  | 16.9   |
| Temp. maximum (°C)                                                                                       | 24.1        | 24.3                    | 24.1                   | 22.2       | 20.8       | 19.9 | 19.8 | 20.9 | 22.4 | 23.8 | 24.4  | 24.6  | 22.6   |
| Temp. minimum (°C)                                                                                       | 13.6        | 13.4                    | 13.4                   | 12.9       | 11.4       | 8.5  | 7.6  | 8.4  | 9.2  | 10.6 | 12.1  | 13.7  | 11.2   |
| Temp. day (°C)                                                                                           | 20.7        | 20.8                    | 20.7                   | 19.2       | 17.8       | 16.2 | 15.9 | 16.9 | 18.2 | 19.6 | 20.5  | 21.1  | 18.9   |
| Temp. night (°C)                                                                                         | 16.8        | 16.8                    | 16.7                   | 15.9       | 14.4       | 12.1 | 11.5 | 12.4 | 13.5 | 14.9 | 16.1  | 17.3  | 14.9   |
| Temp. Difference                                                                                         | 3.9         | 4.0                     | 4.0                    | 3.3        | 3.4        | 4.1  | 4.4  | 4.5  | 4.7  | 4.7  | 4.4   | 3.8   | 4.0    |
| day/night (°C)                                                                                           |             |                         |                        |            |            |      |      |      |      |      |       |       |        |
| ET <sub>o</sub>                                                                                          | 135         | 135                     | 134                    | 130        | 124        | 117  | 116  | 119  | 124  | 128  | 132   | 136   |        |
|                                                                                                          |             |                         |                        |            |            |      |      |      |      |      |       |       |        |
| 1/2 ET <sub>o</sub>                                                                                      | 68          | 68                      | 67                     | 65         | 62         | 58   | 58   | 60   | 62   | 64   | 66    | 68    |        |
| LGP                                                                                                      | +           | +                       | +                      | +          | +          |      |      |      |      | +    | +     | +     |        |
| Bunduki station (Altitude                                                                                | e 1281 m. a | s l; 7 <sup>0</sup> 2'S | & 37 <sup>0</sup> 37'E | ; from 190 | 7 to 1990) |      |      |      |      |      |       |       |        |
| Month                                                                                                    | Jan         | Feb                     | Mar                    | Apr        | May        | Jun  | Jul  | Aug  | Sep  | Oct  | Nov   | Dec   |        |
| Rainfall mean (mm)                                                                                       | 173.5       | 155.2                   | 279.6                  | 356.6      | 151.0      | 32.7 | 22.6 | 45.0 | 79.9 | 161  | 303.2 | 262.9 | 2097.6 |
| Temp. average (°C)                                                                                       | 21.4        | 21.4                    | 21.2                   | 20.1       | 18.4       | 16.7 | 16.2 | 17.2 | 18.3 | 19.7 | 20.8  | 21.6  | 19.4   |
| Temp. maximum (°C)                                                                                       | 26.6        | 26.8                    | 26.6                   | 24.7       | 23.3       | 22.4 | 22.3 | 23.4 | 24.9 | 26.3 | 26.9  | 27.1  | 25.1   |
| Temp. minimum (°C)                                                                                       | 16.1        | 15.9                    | 15.9                   | 15.5       | 13.9       | 10.9 | 10.1 | 10.9 | 11.7 | 13.1 | 14.6  | 16.2  | 13.7   |
| Temp. day (°C)                                                                                           | 23.2        | 23.3                    | 23.2                   | 21.7       | 20.3       | 18.7 | 18.4 | 19.4 | 20.7 | 22.1 | 22.9  | 23.6  | 21.5   |
| Temp. night (°C)                                                                                         | 19.3        | 19.3                    | 19.2                   | 18.4       | 16.9       | 14.6 | 13.9 | 14.9 | 15.9 | 17.4 | 18.6  | 19.8  | 17.4   |
| Temp. Difference                                                                                         | 3.9         | 3.9                     | 4.0                    | 3.3        | 3.4        | 4.1  | 4.5  | 4.5  | 4.8  | 4.7  | 4.3   | 3.8   | 4.1    |
| day/night (°C)                                                                                           |             |                         |                        |            |            |      |      |      |      |      |       |       |        |
| ETo                                                                                                      | 144         | 144                     | 143                    | 139        | 133        | 127  | 125  | 128  | 132  | 138  | 142   | 145   |        |
| 1/2 ET <sub>o</sub>                                                                                      | 72          | 72                      | 71                     | 70         | 66         | 63   | 62   | 64   | 66   | 69   | 71    | 72    |        |
| LGP                                                                                                      | +           | +                       | +                      | +          | +          |      |      |      | +    | +    | +     | +     |        |

# Kimaro et al.

| Tabl | e 1. | continued | l |
|------|------|-----------|---|
|      |      |           |   |

| Mizungu Mgeta statio | n (Altitude | e 1097 m. | a s l; 7 <sup>0</sup> 4 | <u>'S &amp; 37º 3</u> | 5'E; from | 1951 to 1 | 1986) |      |      |      |      |       |        |
|----------------------|-------------|-----------|-------------------------|-----------------------|-----------|-----------|-------|------|------|------|------|-------|--------|
| Month                | Jan         | Feb       | Mar                     | Apr                   | May       | Jun       | Jul   | Aug  | Sep  | Oct  | Nov  | Dec   |        |
| Rainfall (mean) (mm) | 114.2       | 143.5     | 169.1                   | 248.1                 | 61.6      | 8.5       | 8.3   | 6.4  | 21.9 | 47.8 | 92.5 | 127.1 | 1064.6 |
| Temp. average (°C)   | 22.6        | 22.6      | 22.4                    | 21.3                  | 19.8      | 17.9      | 17.4  | 18.4 | 19.5 | 20.9 | 22.0 | 22.8  | 20.6   |
| Temp. Maximum (°C)   | 27.8        | 27.9      | 27.8                    | 25.9                  | 24.5      | 23.6      | 23.5  | 24.6 | 26.1 | 27.5 | 28.1 | 28.3  | 26.3   |
| Temp. Minimum (°C)   | 17.3        | 17.1      | 17.1                    | 16.7                  | 15.1      | 12.2      | 11.3  | 12.1 | 12.9 | 14.3 | 15.8 | 17.4  | 14.9   |
| Temp. day (°C)       | 24.4        | 24.5      | 24.4                    | 22.9                  | 21.5      | 19.9      | 19.6  | 20.6 | 21.9 | 23.3 | 24.2 | 24.8  | 22.7   |
| Temp. night (°C)     | 20.5        | 20.5      | 20.4                    | 19.6                  | 18.1      | 15.8      | 15.2  | 16.1 | 17.2 | 18.6 | 19.8 | 20.9  | 18.6   |
| Temp. difference     | 3.9         | 4.0       | 4.0                     | 3.3                   | 3.4       | 4.1       | 4.4   | 4.5  | 4.7  | 4.5  | 4.4  | 3.9   | 4.1    |
| day/night (°C)       |             |           |                         |                       |           |           |       |      |      |      |      |       |        |
| ETo                  | 149         | 149       | 148                     | 144                   | 138       | 131       | 128   | 133  | 136  | 142  | 146  | 149   |        |
| 1/2 ET <sub>o</sub>  | 74          | 74        | 74                      | 72                    | 69        | 65        | 64    | 66   | 68   | 71   | 73   | 74    |        |
| LGP                  | +           | +         | +                       | +                     |           |           |       |      |      |      | +    | +     |        |

+: Denote growing period, where half potential evapotranspiration is less than precipitation at that particular month.



Figure 1. Climatic regimes at Tchenzema and Bunduki Meteorological Stations



Figure 2. Climatic regimes at Mizungu Mgeta Meteorological Station

# 3.1.3. Geology, landforms and hydrology

# Geology

The geology of the study area consists of a mixture of banded pyroxene granulites with occasional biotite-rich bands, foliated mica gneisses, hornblende gneisses and granulites and some iron-rich meta-anorthositic rocks, all belonging to the Usagaran system. In some places alluvial deposits and kaolinitic clays of Neogene age are found (Wright, 1959; Sampson and Wright, 1964).

# Landforms

The study area consists of strongly dissected mountains consisting of very steep plateau and ridge slopes of about 30-60% and narrow valleys and incisions (Kimaro, 1997; Mwango, 2000). Lukwangule plateau is the highest peak in the study area reaching a height of 2,623 m a.s.l. The Lukwangule plateau is only slightly dissected and the surface forms quite a mature relief (Sampson and Wright, 1964).

# Hydrology

Two distinct drainage-patterns exist in the study area. A sub-radial pattern which is related to the horse-shoe of high mountains from Mkumbaku through Lukwangule and Magari to Lupanga, which is corrently represented by some of the larger rivers

such as Mngazi, Mbakana and in part, the Mgeta. A rectilinear pattern is exhibited where secondary streams and many main rivers show adjustment to geological structure and rock type. The pattern of the minor rivers follows the geological structure more closely and has resulted in river capture, reversed drainage, wind gaps, etc. The edge of the meta-anorthosite is marked by the Mgeta, Mfunesi and Lukangazi river valleys for about two-thirds of its circumference, and this weakness is presumably the cause of the spiral course of the Mgeta River as it cuts back along the junction of rocks, capturing successively all the radial drainage from the north and west of the high-level plateaux.

# 3.1.4. Vegetation and land use

### Vegetation

In the study area there are three major types of forests namely, mountain rain forest, tropical rainforest and miombo woodland. The mountain rain forest occurs on high mountain slopes, and has been declared forest reserve. The areas around Bunduki, Kibuko, Tchenzema and Chigarafumi have been afforested with conifers and eucalypts. The third major type of vegetation is the miombo woodland, whose typical species are *Brachystegia spp*. (miombo), *Isoberlina spp*. and *Acacia nigrescens*. The only timber of importance is *Pterocarpus angolensis* (mninga). Other vegetation types include ferns, guava, Cypress, black wattle (*Acacia mearnsii*) and thatch grass (*Hyperrhenia rufa*). On the summit of Lukwangule plateau there is grassland whose vegetation is composed dominantly of coarse grasses with few trees and other plants of temperate climate. The western foothills of the Uluguru Mountains is a lightly wooded country with very little open grassland. In some places opening up of land for cultivation has left the hill-slopes open without trees and with few grass vegetation.

### Land use

The current major land use types include smallholder rainfed and irrigated farming. Ridge and bench terrace cultivation of maize, millet and beans as staple foods is a common practice. The crops are grown alternately and/or intercropped with cash crops like vegetables and round potatoes, whereas arabica coffee is mixed with bananas and some black wattle trees. Intercropping with deciduous fruit trees like citrus and peaches is also common in some areas. Much greater area is devoted to cash crops production for sale in Morogoro municipality and Dar-es-Salaam city (Sampson and Wright, 1964; Kisanga, 1992; Mwango, 2000).

### 3.1.5. Major soils

The soils of the study area are a complex of moderate, well to somewhat excessively drained, dark yellowish brown to dark red, sandy clays to clays and shallow, well to somewhat excessively drained, dark reddish brown sandy clay loams to sandy clays. Detailed description of soils is given in the section on mapping units description.

### **3.2 Mapping units description**

The description of each land-mapping unit was done taking into consideration landform, parent materials, vegetation cover, and soil morphological, physical and

chemical properties. Some soil profiles representing the mapping units are presented in Appendix 1. An accompanying soil map with descriptive legend is presented in Back cover. The summary of the mapping units description is given in Table 2 while some soil morphological and physical properties are presented in Table 3. Chemical properties of the studied soils are summarised in Table 4 Figure 3 gives percentage particle size distribution with soil depth of some selected soils in the study area. Detailed chemical properties of these soils are presented in Appendix 1. Figure 4. gives soil moisture characteristics of some soils in the study area. Figures 5 and 6 represent relationship between some soil chemical properties of some selected soils in the study area with soil depth. A concise description of the soil-mapping units is therefore presented in conformity to the legend construction.

### Mapping unit G11

Complex of very shallow to shallow, somewhat excessively drained, dark brown sandy clays, and moderately deep, well drained, dark brown sandy loams, with very thin to very thick dark brown to black sandy clay loam topsoils derived from banded pyroxene granulites. In places rock outcrops, stones and gravels occur on the surface.

The unit is a strongly dissected plateau summit occupying the highest position in the mountainous landscape. The slopes range between 5-35 % at mean elevation of about 2600 m a.s.l. The unit is characterised by short grasses, ferns and very few scattered temperate tree species. The area is not used and not managed.

The thin topsoils (5 to 30 cm) are black, friable, sandy clay loam and it is weak to moderately structured while the subsoils to a depth of 70 cm are friable, dark brown, sandy clay and it is weakly structured. In some places stones and gravels limit the surface conditions. The soils classify as **Hapli-Humic Umbrisols** (*Typic Udorthents*), **Hyperferrali-Humic Umbrisols** (*Humic Dystrudepts*) and **Dystri-Lithic Leptosols** (*Lithic Udorthents*). Profiles **MGP-6**, **MGP-20** and **MGP-21** are representative.

The available water capacity of these soils is extremely low (12 mm/18 cm to 49 mm/ 70 cm soil depth) owing to the limitation in depth. These values of AWC suggest that these soils do not store enough water, which is readily available for plant roots. The soils of this mapping unit have bulk density of 1.1-1.3 g/cc in the topsoils.

# Kimaro et al.

| Mapping<br>unit symbol | Landform                                    | Altitude<br>(m. asl) | Dominant<br>slope (%) | Vegetation/Land use                                                                                                                                                                          | Soil description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Area |      |
|------------------------|---------------------------------------------|----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
|                        |                                             |                      |                       |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ha   | %    |
| SOILS DEVE             | ELOPED FRO                                  | M BANDED PY          | ROXENE GR             | ANULITES (G)                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |      |
| G11                    | Strongly<br>dissected<br>plateau<br>summits | 2500-2700            | 5-35                  | Short grasses, ferns with very<br>few scattered trees.<br>Not used and not managed                                                                                                           | Complex of: Rock outcrops, <u>and</u> very shallow to shallow, somewhat<br>excessively drained, black to dark brown sandy clay, <u>and</u> moderately<br>deep, well drained, dark brown sandy loams, with thin to very thick black<br>sandy clay loam topsoils. The soil classify as <i>Dystri-Lithic Leptosols</i><br>( <i>Lithic Udorthents</i> ) and <i>Hapli-Humic Umbrisols</i> ( <i>Typic Udorthents</i> ),<br><i>Hyperferrali-Humic Umbrisols</i> ( <i>Humic Dystrudepts</i> ). These soils are<br>represented by soil profiles MGP-21, MGP-6 and MGP-20 respectively. | 3756 | 8.9  |
| G12                    | Strongly<br>dissected<br>plateau<br>slopes  | 1800-2450            | 40-59                 | Natural forest reserve. In some<br>places cultivation of coffee and<br>ridge cultivation of cabbage and<br>round potatoes                                                                    | Complex of: Rock outcrops, <u>and</u> deep, well drained, dark yellowish<br>brown sandy loams, with very thick very dark brown sandy loam<br>topsoils. <u>and</u> deep, well drained, dark yellowish brown to yellowish<br>brown, loams, with thin dark yellowish brown to yellowish brown loam<br>topsoils, The soils classify as <i>Hapli-Humic Umbrisols</i> ( <i>Humic</i><br><i>Dystrudepts</i> ), <i>Hapli-Orthidystric Cambisols</i> ( <i>Typic Dystrudepts</i> ). These<br>soils are represented by soil profiles MGP-7 and MGP-16 respectively.                      | 6659 | 15.9 |
| G21                    | Strongly<br>dissected<br>ridges<br>summits  | 1200-1300            | 2-5                   | <i>Hyperrhenia spp</i> and few<br>planted <i>Eucalyptus</i> . Fallow<br>land, ridge and bench terrace<br>cultivation of maize, beans, and<br>pigeon peas                                     | Complex of: Rock outcrops, and shallow somewhat excessively drained, dark brown to brown sandy clay loams, and moderatetely deep, well drained, brown sandy loams, with very thick very dark brown to dark brown sandy clay loam topsoils. The soils classify as <i>Dystri-Lithic Leptosols</i> ( <i>Lithic Ustorthents</i> ) and <i>Epidystri-Ferralic Cambisols</i> ( <i>Humic Dystrudepts</i> ). The soils are represented by soil profiles MGP-23 and MGP-10 respectively.                                                                                                | 1753 | 4.2  |
| G22                    | Strongly<br>dissected<br>ridge<br>slopes    | 800-1100             | 35-55                 | <i>Hyperrhenia spp</i> and few<br>scattered planted <i>Eucalyptus</i> .<br>Fallow land, ridge and bench<br>terrace cultivation of maize,<br>pigeon peas, fruit trees, bananas<br>and cowpeas | Complex of: Rock outcrops, <u>and</u> shallow, somewhat excessively drained, dark brown to dark reddish brown, sandy loams to sandy clays, <u>and</u> very deep, well drained, dark brown, sandy clay loams, with thick black sandy clay loam topsoils. The soils classify as <i>Eutri-Lithic Leptosols</i> ( <i>Lithic Ustorthents</i> ) and <i>Hapli-Hypereutric Regosols</i> ( <i>Typic Udorthents</i> ). These soils represented by soil profiles MGP-22 and MGP-9.                                                                                                       | 7204 | 17.2 |

# Table 2. Summary of the land mapping units description of southwestern Uluguru Mountains

 Table 2. Continued

| SOILS DEV | /ELOPED FRC                                | OM META-ANO   | RTHOSITE, M | IETA-GABROIC ANORTHOSITE                                                                                                                                                                                      | AND META-ANORTHOSITIC GABBRO (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |
|-----------|--------------------------------------------|---------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| M11       | Strongly<br>dissected<br>ridges<br>summits | 1400- 1600    | 2-10        | <i>Hyperrhenia sp</i> , ferns and few<br>planted <i>Eucalyptus</i> . Ridge<br>cultivation of maize, green<br>peas, round potatoes, pigeon<br>peas, beans, cowpeas and fruit<br>trees                          | Complex of: Rock outcrops, <u>and</u> shallow, somewhat excessively drained,<br>dark grey to light grey, sandy clay loams, and very deep, well drained,<br>light grey sandy clay loams with thick black to dark grey, clay loam to<br>sandy clay loam topsoils. The soils classify as <i>Eutri-Lithic Leptosols</i><br>( <i>Lithic Udorthents</i> ) and <i>Orthieutri-Ferralic Cambisols</i> ( <i>Dystric</i><br><i>Eutrudepts</i> ). These soils represented by soil profiles MGP-24 and MGP-<br>12 respectively       | 1819 | 4.3  |
| M12       | Strongly<br>dissected<br>ridges<br>slopes  | 1400-1500     | 30-60       | <i>Hyperrhenia spp</i> and few<br>planted <i>Eucalyptus</i> . Cultivation<br>of cabbage, coffee, beans,<br>maize, round potatoes, pigeon<br>peas, green peas, cowpeas,<br>bananas and fruit trees             | Complex of: Rock outcrops, <u>and</u> deep well drained, very dark grey clays<br>over very pale brown clay loam saprolite, <u>and</u> very deep, well drained,<br>very dark grey to dark greyish brown, sandy clay loams over white, sandy<br>loams saprolite. The soils classify as <i>Hapli-Anthric Umbrisols (Typic</i><br><i>Udorthents) Hapli-Orthieutric Regosols (Typic Udorthents)</i> . These soils<br>are represented by soil profiles MGP-25 and MGP-13.respectively.                                        | 5151 | 12.3 |
| SOILS DEV | ELOPED FRC                                 | OM KAOLINITIO | CLAYS(K)    |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |
| K11       | Strongly<br>dissected<br>ridges<br>summits | 1500-1700     | 5-20        | Ferns and few scattered planted<br><i>Eucalyptus, Brachystegia spp</i><br>and <i>Albizia spp</i> . Afforestation,<br>cultivation of coffee, green<br>peas, round potatoes, beans,<br>cabbages and fruit trees | Complex of: Very deep, well drained, strong brown clays to silty clays,<br>with thick dark brown clay topsoils, <u>and</u> very deep, well drained, strong<br>brown and reddish yellow clays, with thick black clay topsoils. The soils<br>classify as <i>Chromi-Ferralic Cambisols</i> ( <i>Typic Dystrudepts</i> ), <i>Chromi-</i><br><i>Hyperdystric Acrisols</i> ( <i>Typic Hapludults</i> ). These soils are represented by<br>soil profiles MGP-2 and MGP-3 respectively                                          | 1212 | 2.9  |
| K12       | Strongly<br>dissected<br>ridges<br>slopes  | 1450-1600     | 40-60       | Few scattered planted<br><i>Eucalyptus, Brachystegia spp</i><br>and <i>Acacia mearsii.</i> Cultivation<br>of maize, round potatoes,<br>coffee, cabbage, green peas,<br>bananas and fruit trees                | Complex of: Rock outcrops, <u>and</u> very deep deep, well drained, brown to<br>strong brown clays, with thick dark brown clay to clay loam topsoils, <u>and</u><br>very deep, well drained, strong brown to yellowish brown clay loams,<br>with thick dark greyish brown clay topsols. The soils classify as <i>Hapli-</i><br><i>Chromic Phaeozems (Typic</i> Argiudolls) <i>Epidystri-Cutanic Luvisols</i><br>( <i>Inceptic Hapludalfs</i> ). The soils are represented by profiles MGP-26 and<br>MGP-4 respectively. | 1884 | 4.5  |

# Table 2. Continued

| SOILS | DEVELOPED FROM     | COLLUVIU  | JM DERIVED | D FROM META-ANORTHOSITE, M        | ETA-GABRROIC ANORTHOSITE AND META-ANORTHOSITIC GABB                      | RO (Cm)  |      |
|-------|--------------------|-----------|------------|-----------------------------------|--------------------------------------------------------------------------|----------|------|
| Cm1   | Strongly           | 1100-1700 | 30-50      | Few planted Eucalyptus.           | Complex of: Rock outcrops, and shallow, well drained, black sandy        | 2333     | 5.5  |
|       | dissected          |           |            | Cultivation of coffee,            | clays, and moderately deep, well drained, very dark greyish brown to     |          |      |
|       | piedmont           |           |            | cabbage, green peas,              | dark yellowish brown sandy clay loams, with thick very dark grey sandy   |          |      |
|       | slopes             |           |            | cocoyam, maize, bananas and       | clay loam topsoils, and deep, well drained, very dark grey, clay over    |          |      |
|       |                    |           |            | round potatoes                    | reddish yellow to very pale brown clay loams to loams saprolite, The     |          |      |
|       |                    |           |            |                                   | soils classify as Haplic Phaeozems (Typic Hapludolls), Hapli-Humic       |          |      |
|       |                    |           |            |                                   | Umbrisols (Typic Udorthents) Humi-Endoleptic Regosols (Typic             |          |      |
|       |                    |           |            |                                   | Udorthents). These soils are represented by soil profiles MGP-1, MGP-5   |          |      |
|       |                    |           |            |                                   | and MGP-19 respectively.                                                 |          |      |
| SOILS | DEVELOPED FROM     | COLLUVIU  | JM DERIVED | FROM BANDED PYROXENE GR           | ANULITES, IN PLACES META-ANORTHOSITE, META-GABRROIC AN                   | VORTHOSI | TE   |
| AND M | ETA-ANORTHOSIT     | IC GABBRO | O(Cgm)     |                                   |                                                                          |          |      |
| Cgm1  | Strongly dissected | 1500-1700 | 40-50      | Hyperrhenia spp and few           | Complex of: Rock outcrops, and shallow, somewhat excessively drained,    | 2332     | 5.5  |
|       | piedmont slopes    |           |            | planted Acacia mearsii and        | very dark grey to very dark greyish brown sandy loams, and very deep,    |          |      |
|       |                    |           |            | Eucalyptus.Cultivation of         | well drained, dark brown and very dark greyish brown sandy loams, wth    |          |      |
|       |                    |           |            | cabbage, coffee, green peas,      | very thick dark yellowish brown sandy loam topsoils. The soils classify  |          |      |
|       |                    |           |            | beans, cauliflower, chinese,      | as Hapli-Orthidystric Cambisols (Typic Dystrudepts), Hapli-Orthieutric   |          |      |
|       |                    |           |            | cowpeas, cocoyam, maize,          | Cambisols (Dystric Eutrudepts). These soils are represented by soil      |          |      |
|       |                    |           |            | round potatoes and peaches.       | profiles MGP-17 and MGP-18 respectively.                                 |          |      |
| SOILS | DEVELOPED FROM     | COLLUVIU  | JM DERIVED | FROM BANDED PYROXENE GR           | ANULITES, IN PLACES KAOLINITIC CLAYS (Cgk)                               |          |      |
| Cgk1  | Strongly           | 1600-1800 | 40-60      | Hyperrhenia spp few planted       | Complex of: Rock outcrops, and very deep, well drained, pale yellow      | 1334     | 3.2  |
|       | dissected          |           |            | Eucalyptus and Acacia             | sandy loams to sandy clay loams, and very deep, well drained, brown      |          |      |
|       | piedmont slopes    |           |            | mearsii. Cultivation of           | clays to clay loams, with very thick black clay loam topsoils. The soils |          |      |
|       |                    |           |            | cabbage, coffee maize, green      | classify as Hapli-Hypereutric Regosols (Typic Udorthents), Hapli-        |          |      |
|       |                    |           |            | peas, beans, tomatoes,            | Pachic Phaeozems (Fluventic Hapludolls). These soils are represented     |          |      |
|       |                    |           |            | cauliflower, chinese cocoyam      | by profiles MGP-8 and MGP-15 respectively.                               |          |      |
|       |                    |           |            | and peaches.                      |                                                                          |          |      |
| SOILS | DEVELOPED FROM     | ALLUVIO-  | COLLUVIUM  | 1 OF DIVERSE GEOLOGICAL FOR       | RMATIONS (V)                                                             |          |      |
| V1    | V-shaped valley    | 1000-     | 40-50      | Hyperrhenia spp and elephant      | Complex of: Rock outcrops, and very deep, well drained, dark olive       | 6526     | 15.6 |
|       | sides and          | 1550      |            | grasses and few planted Acacia    | brown sandy clay loams, and very deep, imperfectly drained, strong       |          |      |
|       | incisions          |           |            | mearsii and Eucalyptus. Ridge     | brown to pale yellow clay to sandy clay loams, with very thick dark      |          |      |
|       |                    |           |            | cultivation of maize, green peas, | brown sandy clay loam topsoils. The soils classify as Hypereutri-Mollic  |          |      |
|       |                    |           |            | cabbage, beans, potatoes, bananas | Fluvisols (Fluventic Hapludolls), Hapli-Gleyic Phaeozems (Aquic          |          |      |
|       |                    |           |            | and cauliflower.                  | Argiudolls). These soils are represented by soil profiles MGP-11 and     |          |      |
|       |                    |           |            |                                   | MGP-14 respectively.                                                     |          |      |

The soil pH is very strongly acid to strongly acid (pH 4.3-5.1). Nitrogen levels are high in the topsoils (0.54-0.7%). The available phosphorus contents are very low (0.78-1.4 mg/kg). Organic carbon contents are very high (6.2-10.9%). These soils have very low levels of exchangeable bases. The overall capacity of the soil to retain nutrients is high (31.5-38.4 cmol(+)/kg).

### Mapping unit G12

Complex of deep, well drained, dark yellowish brown sandy loams, with very thin dark brown sandy clay loam topsoils, and deep to deep, well drained, dark yellowish brown to yellowish brown loams, with thin dark brown loam topsoils derived from banded pyroxene granulites. In places rock outcrops occur.

The unit occupies very steep strongly dissected plateau slopes. The dominant slopes range between 40-60 % at mean elevation of about 2100 m a.s.l. This unit is characterised by natural forest reserve. In some scattered places cabbage, round potatoes, and coffee mixed with bananas and fruit trees are grown.

The textures of the topsoils (5 to 45 cm thick) are sandy loams to loams. The soils are friable with weak to strong subangular blocky structure. The subsoils to a depth of 120 cm are friable, sandy loams to loams with weak to moderate structure. In some places rock outcrops limit the surface conditions. The soils classify as **Hapli-Humic Umbrisols** (*Humic Dystrudepts*) and **Hapli-Orthidystric Cambisols** (*Typic Dystrudepts*). Profiles **MGP-7** and **MGP-16** are representative.

The soils are well to somewhat excessively drained and the rooting depth is limited at a depth ranging from 10 to 130 cm. The available water capacities of the soils range from very low (35 mm/50 cm soil depth) to low (81 mm/m soil depth) indicating that these soils do not store enough water readily available for plant roots. The soils of this mapping unit have bulk densities ranging between 1.1-1.2 g/cc in the topsoils and 1.5-1.7 g/cc in the subsoils.

The soil pH is very strongly acid (pH 4.5-4.8) in the topsoils to strongly acid (pH 5.3) in the subsoils. Total nitrogen levels are medium to high in topsoils (0.23-0.76%) and decreases with soil depth. Organic carbon contents are very high (6.1-11.3%) and decrease with soil depth. The available phosphorus is medium to high (7.5-54 mg/kg). The soils have very low to low levels of exchangeable bases. The overall capacity of the soil to retain nutrients is high as indicated by their high CEC values (34-40 cmol(+)/kg).

### Mapping unit G21

Complex of shallow, somewhat excessively drained, dark brown to brown sandy clay loams, and moderately deep, well drained, brown sandy loams, with very thick dark brown sandy clay loam topsoils developed from banded pyroxene granulites. In places rock outcrops occur.

| Profile no. | Profile no. Depth (cm) |      | ptn (cm) Particle size distribution |      |        | Colour           | Dramage class | stractrure | Bulk<br>density<br>(g/cc) | Available water<br>capacity<br>mm/m |
|-------------|------------------------|------|-------------------------------------|------|--------|------------------|---------------|------------|---------------------------|-------------------------------------|
|             |                        | Sand | Silt                                | Clay | _      |                  |               |            |                           |                                     |
| MGP-1       | 0-20                   | 63   | 15                                  | 22   | SCL    | vdg (10YR3/1)    | well          | moderate   | 1.3                       |                                     |
|             | 20-45                  | 59   | 16                                  | 25   | SCL    | vdgb (10YR3/2)   |               | moderate   | 1.5                       |                                     |
|             | 45-75                  | 63   | 14                                  | 23   | SCL    | dyb (10YR3/4)    |               | moderate   | 1.7                       | 92 mm/75 cm                         |
| MGP-2       | 0-18                   | 16   | 28                                  | 56   | С      | db (7.5YR4/4)    | well          | weak       | 1.1                       |                                     |
|             | 18-46                  | 12   | 34                                  | 54   | С      | sb (7.5YR5/6)    |               | moderate   | 1.1                       |                                     |
|             | 46-85                  | 15   | 37                                  | 48   | С      | sb (7.5YR5/6     |               | strong     | 1.1                       | 104                                 |
|             | 85-130                 | 19   | 40                                  | 41   | SiC    | sb (7.5YR5/8)    |               | moderate   | 1.2                       |                                     |
| MGP-3       | 0-18/25                | 16   | 30                                  | 54   | С      | bl (7.5YR2.5/1)  | well          | weak       | 1.1                       |                                     |
|             | 18/25-85               | 7    | 33                                  | 60   | С      | sb (7.5YR5/6)    |               | moderate   | 1.2                       |                                     |
|             | 85-193                 | 25   | 37                                  | 38   | CL     | ry (7.5YR6/8)    |               | moderate   | 1.3                       | 101                                 |
| MGP-4       | 0-15/18                | 6    | 32                                  | 62   | С      | dgb (10YR4/2)    | well          | weak       | 1.1                       |                                     |
|             | 15/18-57/63            | 3    | 31                                  | 66   | С      | sb (7.5YR4/6)    |               | moderate   | 1.2                       |                                     |
|             | 57/63-130/140          | 22   | 46                                  | 32   | CL     | yb (10YR5/4)     |               | weak       | 1.3                       | 77                                  |
|             | 130/140-235            | 73   | 15                                  | 12   | SL     | sb (7.5YR5/6)    |               | massive    | 1.3                       |                                     |
| MGP-5       | 0-25/30                | 22   | 26                                  | 52   | С      | vdg (5YR3/1)     | well          | moderate   | 1.1                       |                                     |
|             | 25/30-95/110           | 25   | 43                                  | 32   | CL     | ry (7.5YR6/6)    |               | massive    | 1.2                       |                                     |
|             | 95/110-160             | 42   | 40                                  | 18   | L      | vpy (10YR8/3)    |               | massive    | 1.2                       | 103                                 |
| MGP-6       | 0-24/30                | 60   | 20                                  | 20   | SCL    | bl(5YR2.5/1)     | somewhat      | moderate   | 1.1                       | 20 mm/30 cm                         |
|             | 24/30-100              | 73   | 17                                  | 10   | SL     |                  | excessive     |            |                           |                                     |
| MGP-7       | 40/50-95               | 64   | 20                                  | 16   | SL     | vdb (10YR2/2)    | well          | strong     | 1.1                       |                                     |
|             | 95-150                 | 80   | 8                                   | 12   | SL     | dyb (10YR3/4)    |               | moderate   | 1.5                       | 35 mm/ 50 cm                        |
| MGP-8       | 0-45                   | 56   | 24                                  | 20   | SL-SCL | py (2.5Y7/4)     | somewhat      | moderate   | 1.1                       |                                     |
|             | 45-185                 | 74   | 14                                  | 12   | SL     |                  | excessive     | massive    | 1.7                       | 132                                 |
| MGP-9       | 0-25/30                | 48   | 17                                  | 35   | SCL    | bl (7.5YR2.5/1)  | well          | strong     | 1.3                       |                                     |
|             | 25/30-80/110           | 67   | 13                                  | 20   | SCL    | db (7.5YR3/2)    |               | massive    | 1.8                       |                                     |
|             | 80/110-180             | 81   | 5                                   | 14   | SL     |                  |               | massive    | 1.9                       | 143                                 |
| MGP-10      | 0-14/24                | 69   | 5                                   | 26   | SCL    | vdb (7.5YR2.5/2) | well          | moderate   | 1.3                       |                                     |
|             | 14/24-30/35            | 66   | 8                                   | 26   | SCL    | db (7.5YR3/2)    |               | moderate   | 1.5                       |                                     |
|             | 30/35-44/64            | 75   | 9                                   | 16   | SL     | b (7.5YR4/3)     |               | weak       | 1.5                       |                                     |
|             | 44/64-140              | 87   | 3                                   | 10   | SL     | lb (7.5YR6/4)    |               | massive    | 1.9                       | 152                                 |
| MGP-11      | 0-45                   | 74   | 6                                   | 20   | SCL    | dob (2.5Y3/3     | well          | moderate   | 1.1                       |                                     |
|             | 45-125                 | 63   | 15                                  | 22   | SCL    | vdgb (10YR3/2)   |               | massive    | 1.6                       |                                     |
|             | 125-155                | 81   | 5                                   | 14   | SL     | vdgb (10YR3/2)   |               | massive    | 1.6                       | 167                                 |
|             | 155-190                | 67   | 17                                  | 16   | SL     | dyb (10YR3/6)    |               | massive    |                           |                                     |
| MGP-12      | 0-15/20                | 43   | 19                                  | 38   | CL     | bl (7.5YR2.5/1)  | well          | moderate   | 1.1                       |                                     |
|             | 15/20-30/50            | 51   | 15                                  | 34   | SCL    | dg (7.5YR5/1)    |               | weak       | 1.5                       |                                     |
|             | 30/50-150              | 67   | 15                                  | 18   | SL     | lg (7.5YR7/1)    |               | massive    | 1.8                       | 112                                 |

Table 3. Selected physical and morphological properties of the studied soils

# Kimaro et al.

# Table 3. Continued

| Profile No | Depth (cm)    | Sand | Silt | Clay | Textural | Colour          | Drainage class        | Structure         | Bulk    | Available water |
|------------|---------------|------|------|------|----------|-----------------|-----------------------|-------------------|---------|-----------------|
|            |               |      |      | -    | class    |                 |                       |                   | density | capacity mm/m   |
|            |               |      |      |      |          |                 |                       |                   | g/cc    |                 |
| MGP-13     | 0-10/16       | 59   | 15   | 26   | SCL      | vdg (7.5YR3/1)  | well                  | weak              | 1.3     |                 |
|            | 10/16-66/80   | 67   | 13   | 20   | SCL      | dgb (10YR4/2)   |                       | massive           | 1.7     |                 |
|            | 66/80-180     | 75   | 11   | 14   | SL       | w (7.5YR8/1)    |                       | massive           | 1.8     | 91              |
| MGP-14     | 0-20/30       | 49   | 19   | 32   | SCL      | db (7.5YR3/2)   | well                  | strong            | 1.4     |                 |
|            | 20/30-65/75   | 33   | 23   | 44   | С        | sb (7.5YR5/8)   |                       | moderate          | 1.4     |                 |
|            | 65/75-200     | 61   | 15   | 24   | SCL      | py (5Y7/3)      |                       | weak              | 1.6     | 97              |
| MGP-15     | 0-40/50       | 42   | 22   | 36   | CL       | bl (7.5YR2.5/1) | well                  | strong            | 1.0     |                 |
|            | 40/50-130/150 | 24   | 20   | 56   | С        | db (7.5YR3/4)   |                       | moderate          | 1.8     | 136             |
|            | 130/150-200   | 43   | 19   | 38   | CL       | b (7.5YR4/4)    |                       | moderate          | 1.3     |                 |
| MGP-16     | 0-5           |      |      |      |          | dgb (10YR4/2)   | well                  | weak              | 1.2     |                 |
|            | 5-45          | 46   | 39.2 | 14.8 | L        | dyb (10YR3/4)   |                       | moderate          | 1.2     |                 |
|            | 45-70         | 40   | 42   | 18   | L        | dyb (10YR4/6)   |                       | moderate          | 1.5     |                 |
|            | 70-120        | 37   | 47   | 16   | L        | yb (10YR5/6)    |                       | weak              | 1.7     | 81              |
| MGP-17     | 0-40          | 70   | 22   | 8    | SL       | dyb (10YR4/4)   | well                  | weak              | 1.2     |                 |
|            | 40-65         | 71   | 17   | 12   | SL       | db (7.5YR3/2)   |                       | moderate          | 1.3     |                 |
|            | 65-115        | 74   | 17   | 9    | SL       | db (7.5YR3/4)   |                       | moderate          | 1.3     | 130             |
|            | 115-185       | 77   | 16   | 7    | SL-LS    | vdgb (10YR3/2)  |                       | weak              | 1.5     |                 |
|            | 185-200       | 86   | 7    | 7    | LS       | vdg (10YR3/1)   |                       | weak              | 1.4     |                 |
| MGP-18     | 0-12          | 60   | 23   | 17   | SL       | vdg (10YR3/1)   | well                  | weak              | 1.3     |                 |
|            | 12-26         | 59   | 25   | 16   | SL       | vdgb (10YR3/2)  |                       | moderate          | 1.4     | 28 mm/ 26 cm    |
| MGP-19     | 0-15          | 64   | 12   | 24   | SCL      | bl (10YR2/1)    | well                  | strong            | 1.3     |                 |
|            | 15-50/60      | 60   | 14   | 26   | SCL      | bl (10YR2/1)    |                       | moderate          | 1.6     | 69 mm/ 60 cm    |
| MGP-20     | 0-35/40       | 55   | 20   | 25   | SCL      | bl (5YR2.5/1)   | well                  | moderate          | 1.1     |                 |
|            | 35/40-70      | 60   | 22   | 18   | SL       | db (7.5YR3/4)   |                       | weak              |         | 49 mm/ 70 cm    |
| MGP-21     | 0-12/18       | 62   | 19   | 19   | SCL      | db (7.5YR3/4)   | somewhat<br>excessive | weak              | 1.3     | 12 mm/ 18 cm    |
| MGP-22     | 0-20/28       | 45   | 18   | 37   | SCL      | db (7.5YR4/2)   | somewhat<br>excessive | strong            | 1.3     | 18.3 mm/ 28 cm  |
| MGP-23     | 0-20/26       | 69   | 6    | 25   | SCL      | db (7.5YR3/2)   | somewhat<br>excessive | moderate          | 1.3     | 13.6 mm/ 26 cm  |
| MGP-24     | 0-20/25       | 44   | 18   | 38   | CL       | bl (7.5YR2.5/1) | somewhat<br>excessive | moderately strong | 1.1     | 16.4 mm/ 25 cm  |
| MGP-25     | 0-26/30       | 23   | 27   | 50   | С        | vdg (5YR3/1)    | well                  | moderate          | 1.1     | 108.2           |
|            | 26/30-85/100  | 26   | 44   | 30   | CL       | yb (10YR5/4)    |                       | massive           | 1.2     |                 |
|            | 85/100-120    | 43   | 41   | 16   | L        | vpb (10YR8/3)   |                       | massive           | 1.2     |                 |
| MGP-26     | 0-40/50       | 42   | 21   | 37   | CL       | bl (7.5YR2.5/1) | well                  | very strong       | 1.0     | 127.3           |
|            | 40/50-135/150 | 26   | 21   | 53   | Ċ        | sb (7.5YR5/8)   |                       | moderate          | 1.3     |                 |
|            | 135/150-190   | 42   | 19   | 39   | CL       | b (7.5YR4/4)    |                       | moderate          | 1.3     |                 |



Figure 3. Particle size distribution of soils from different parent materials of the studied soils



Figure 4. Soil moisture release curves of the soils of southwestern Uluguru Mountains developed from different parent materials

This unit occupies strongly dissected ridge summits with slopes ranging between 2 to 5 % at mean elevation of about 1250 m a.s.l. The dominant vegetation are *Eucalyptus spp.*, and grasses mainly *Hyperrhenia* and *Themeda spp*,. The unit is used for cultivation of maize, beans, pigeon peas with scattered fruit trees and bananas.

The topsoils (35 cm thick) have sandy clay loam textures. The soils are friable with moderate subangular blocky structure. The subsoils to a depth of 64 cm are friable, sandy loams and weakly structured. The soils classify as **Dystri-Lithic Leptosols** (*Lithic Ustorthents*) and **Epidystri-Ferralic Cambisols** (*Humic Dystrudepts*). Profiles **MGP-10** and **MGP-23** are representative.

The soils are well to somewhat excessively drained. The available water capacity is high (152 mm/m soil depth) indicating that these soils store enough water readily available for plant roots. The soils of this mapping unit have bulk densities of 1.3 g/cc in the topsoils and increases with soil depth to 1.5 g/cc in the subsoils.

The soil pH is slightly acid (pH 6.1) and increases with soil depth to neutral (pH 6.6). Nitrogen levels are low in topsoils (0.11-0.12%). Organic carbon content is medium (1.9%) in the topsoils. Both nitrogen and organic carbon levels tend to decrease with soil

depth. The available phosphorus contents are very low (<7 mg/kg). These soils have medium levels of exchangeable bases. The overall capacity of the soil to retain nutrients is medium.

## Mapping unit G22

Complex of shallow, somewhat excessively drained, dark brown and dark reddish brown sandy loams to sandy clays, and moderately deep to deep, well drained, very dark greyish brown to brown and dark brown sandy clay loams to sandy clays, with thick black sandy clay loam topsoils developed from banded pyroxene granulites. In places rock outcrops occur.

The unit occupies strongly dissected ridge slopes with slopes ranging between 35 to 55 % at mean elevation of about 1000 m. a.s.l. The area is characterised by few scattered *Eucalyptus* trees and grasses mainly *Hyperrhenia* and *Themeda spp*. The lands are used for cultivation of maize, beans, pigeon peas fruit trees cowpeas and few scattered bananas.

The topsoils (10-30 cm thick) are sandy clay loams and sandy loams to sandy clays. They are friable with strong subangular blocky structure. The subsoils to a depth of 110 cm are friable, structureless and massive with sandy clay loam textures. In some places rock outcrops limit the surface conditions. The soils classify as **Eutri-Lithic Leptosols** (*Lithic Ustorthents*) and **Hapli-Hypereutric Regosols** (*Typic Udorthents*). Profiles **MGP-9** and **MGP-22** are representative.

The soils are well to somewhat excessively drained and the rooting depth is limited to depth ranging from 40 to 180 cm or deeper. The available water capacity of the deep soils in this mapping unit is high (143 mm/m soil depth). The bulk densities are 1.3 g/cc in the topsoils and increases with soil depth to 1.9 g/cc in the subsoils.

Soil reaction of the soils of this mapping unit is slightly acid to neutral (pH 6.5-6.6). These pH values are optimal for most crops. Nitrogen levels are low (0.12-13%) in topsoils. Organic carbon contents in these soils are medium (1.69-1.8%) in the topsoils and tend to decrease with soil depth. The available phosphorus levels are very low (<7mg/kg soil). The soils have very high levels of exchangeable bases. The soils have medium (16.5-17.8 cmol(+)/kg) levels of CEC.

Complex of shallow, somewhat excessively drained, dark grey to light grey, sandy clay loams, and very deep, well drained, light grey sandy clay loams, with thick black to dark grey clay loam to sandy clay loam topsoils developed from meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro. In places rock outcrops occur.

This unit comprises the strongly dissected ridge summits with slopes ranging between 2-10 % at mean elevation of about 1500 m. a.s.l. The unit is characterised by grasses mainly *Hyperrhenia spp*, ferns and few scattered *Eucalyptus* trees. This land mapping unit is used for cultivation of maize, round potatoes, beans, pigeon peas, cowpeas and fruit trees.

The topsoils (10-20 cm thick) are clay loams to sandy clay loams. They are friable with moderately strong subangular blocky structure. The subsoils to a depth of 50 cm are friable, sandy clay loams and weakly structured. The soils classify as **Eutri-Lithic Leptosols** (*Lithic Udorthents*) and **Orthieutri-Ferralic Cambisols** (*Dystric Eutrudepts*). Profiles **MGP-12** and **MGP-24** are representative.

The soils are well to somewhat excessively drained. The available water capacity of the soils in this mapping unit is medium (112 mm/m soil depth). The bulk densities of these soils are 1.1 g/cc in the topsoils and tend to increase with soil depth to 1.8 g/cc in the subsoils.

The soil pH of these soils ranges from strongly acid (pH 5.5) in the topsoils to slightly acid (pH 6.4) in the subsoils. Nitrogen levels are low (0.17-0.19 %) in topsoils. Organic carbon contents in these soils are high (3.15-3.25 %) in topsoils while in the subsoils the levels are low (1.15 %). The available phosphorus levels are very low (6.1-6.4 mg/kg) in the topsoils. The soils have high levels of exchangeable bases. The overall capacity of the soil to retain nutrients is medium (CEC of 17.2 cmol(+)/kg).

# Mapping unit M12

Complex of deep, well drained, very dark grey clays over very pale brown clay loams saprolite, and very deep, well drained, dark greyish brown sandy clay loam over white sandy loams saprolite developed from meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro. In places rock outcrops occur.

This unit occupies strongly dissected ridge slopes with slopes ranging between 30-60 % at mean elevation of about 1450 m. a.s.l. The unit is characterised by grasses mainly *Hyperrhenia spp*, ferns and few scattered *Eucalyptus* and *Brachystegia spp*. This unit is used for cultivation of coffee, maize, beans, pigeon peas, and cowpeas, round potatoes, cabbages, bananas and fruit trees.

The topsoils (10-25 cm thick) are sandy clay loams, friable with weak to moderate subangular blocky structure. The subsoils to a depth of 110 cm are friable, sandy clay

loams, structureless and massive. In places surface rock outcrops, boulders and stones are common. The soils classify as **Hapli-Anthric Umbrisols** (*Typic Udorthents*) and **Hapli-Orthieutric Regosols** (*Typic Udorthents*). Profiles **MGP-13** and **MGP-25** are representative.

The soils are well drained. The available water capacity of the soils in this mapping unit is medium (91-108 mm/m soil depth). The bulk densities of these soils are 1.1-1.3 g/cc in the topsoils and tend to increase with soil depth to 1.7 g/cc in the subsoils.

The soil pH is medium acid to slightly acid (pH 5.6-6.2) in the topsoils. The subsoils are neutral in reaction (pH 6.7-7.2). Nitrogen levels are low in topsoils (0.15-0.16 %). Organic carbon contents are medium to high (2.5-3.2 %) in the topsoils. Both nitrogen and organic carbon levels tend to decrease with soil depth. The available phosphorus is low throughout (<7 mg/kg). The soils have medium to high levels of exchangeable bases. The overall capacity of the soil to retain nutrients is medium as indicated by their medium levels of CEC (12.6-16.8 cmol(+)/kg).

#### Mapping unit K11

Complex of very deep, well drained, strong brown clays to silty clays, with thick dark brown clay topsoils, and very deep, well drained, strong brown and reddish yellow clays, with thick black clay topsoils developed from kaolinitic clays. In places rock outcrops occur.

The unit comprises the strongly dissected ridge summits with slopes ranging between 5 and 15 % at mean elevation of about 1600 m a.s.l. The dominant vegetation is *Eucalyptus* trees, *Brachystegia spp*, *Albizia spp* and *Acacia mearsii*. This unit is used for cultivation of bananas, coffee, maize, beans, green peas and cowpeas, round potatoes, cabbages, and fruit trees.

The textures of the topsoils (20 cm thick) are mainly friable clays, with weak to moderate subangular blocky structure. The subsoils to a depth of 85 cm have clay textures with moderate to strong subangular blocky structure. The soils classify as **Chromi-Ferralic Cambisols** (*Typic Dystrudepts*) and **Chromi-Hyperdystric Acrisols** (*Typic Hapludults*). Profiles **MGP-2** and **MGP-3** are representatives.

The soils are well drained and the rooting depth is limited to a depth of 190 cm or deeper. The available water capacity of the soils in this mapping unit is medium (101-104 mm/m soil depth). The bulk densities of these soils are 1.1 g/cc in the topsoils while the subsoils have bulk density of 1.2-1.3 g/cc.

The soil pH ranges between strongly to slightly acid (pH 5.5-6.2) in the topsoils while subsoils are medium acid in reaction (pH 5.8-6.1). Nitrogen levels are medium in topsoils (0.28-0.3%) while those of organic carbon are very high (5.17-6.73%) in the topsoils. The available phosphorus contents are very low throughout (<7 mg/kg of soil). These soils have medium to high levels of exchangeable bases. The overall capacity of the soil to retain nutrients is medium (24.4-25 cmol(+)/kg).

Complex of very deep, well drained, brown to strong brown clays, with very thick black clay to clay loam topsoils, and very deep, well drained, strong brown to yellowish brown clay loams, with thick dark greyish brown clay topsoils, developed from kaolinitic clays. In places rock outcrops are common.

This unit occupies strongly dissected ridge slopes with slopes ranging between 40-60 % at mean elevation of about 1500 m a.s.l. *Eucalyptus* trees, *Brachystegia spp* and *Acacia mearsii* are the dominant vegetation types in the unit. Cultivation of coffee, bananas, yarms, maize, beans, cowpeas, round potatoes, cabbages, green peas and fruit trees is major land sue type.

The textures of the topsoils (15 cm thick) are clays with friable consistence and weak to strong sabangular blocky structure. The subsoils to a depth of 140 cm are friable, clays to clay loams and are weakly to moderately structured. In places surface rock outcrops occur. The soils classify as **Epidystri-Cutanic Luvisols** (*Inceptic Hapludalfs*) and **Hapli-Chromic Phaeozems** (*Typic Argiudolls*). Profiles **MGP-4** and **MGP-26** are representative.

The soils are well drained and the rooting depth is limited to a depth of 200 cm or deeper. The available water capacities of these soils range from low to medium (77-127.3 mm/m soil depth). The bulk densities of these soils are 1.0-1.1 g/cc in the topsoils while the subsoils have bulk density of 1.3 g/cc.

The soil pH in this unit is medium acid (pH 5.6-6.1) in the topsoils while subsoils are slightly acid to neutral (pH 6.4-6.8). Nitrogen levels are low to medium (0.19-0.25%) in topsoils while organic carbon levels in the topsoils are very high (5.5-6.3%). The available phosphorus levels are very low ((<7 mg/kg of soil). The soils have low levels of exchangeable bases. The overall capacity of the soil to retain nutrients is medium to high as indicated by their medium levels of CEC (22.1-28.6 cmol(+)/kg).

### Mapping unit Cm1

Complex of shallow, somewhat excessively drained, black, sandy clays, and moderately deep, well drained, black and very dark greyish brown to dark yellowish brown sandy clays and sandy clay loams, with thick and very thick very dark grey and dark yellowish brown sandy loam topsoils, and deep, well drained, very dark grey clays over reddish yellow to very pale brown clay loams to loams saprolite developed from colluvium derived from meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro. In outcrops are common.

The unit comprises the strongly dissected piedmont slopes with the slopes ranging between 30 and 50 % at mean elevation of about 1400 m. a.s.l. The unit is characterised by *Eucalyptus* trees, *Brachystegia spp* and *Acacia mearsii*. This unit is used for cultivation of coffee, bananas, yarms, maize, beans, green peas, cocoyam, peas, cowpeas, round potatoes, cabbages, and fruit trees.

The textures of the topsoils (15 to 50 cm thick) are clays to sandy clay loams with moderate to strong subangular blocky structure. The subsoils to a depth of 75 cm have sandy clay loams to clay loams textures, friable consistence and moderate subangular blocky structure. The deeper subsoils to a depth below 75 cm are massive and structuress. In places surface rock outcrops, boulders, gravels and stones are common. The soils classify as **Haplic-Phaeozems** (*Typic Hapludolls*), **Hapli-Humic Umbrisols** (*Typic Udorthents*) and **Humi-Endoleptic Regosols** (*Typic Udorthents*). Profiles **MGP-1**, **MGP-5** and **MGP-19** are representative.

The soils are well drained and the rooting depth is limited to a depth of 60 cm or deeper. The available water capacities of these soils range from low to medium (69 mm/60 cm soil depth to103 mm/m soil depth). The bulk densities of these soils range between 1.1-1.3 g/cc in the topsoils while those of subsoils are between 1.5-1.6 g/cc.

The soil pH in this mapping unit is medium acid to slightly acid (pH 5.6 6.2) in the topsoils. Nitrogen levels range from low to high (0.18-0.51%) in topsoils while those of organic carbon in topsoils are very high (5.06 to 6.18%). The levels of both nitrogen and organic carbon tend to decrease with soil depth. The topsoils available phosphorus contents in this mapping unit are very low (<7 mg/kg of soil) but in some places the levels are high (52.7 mg/kg of soil). These soils have high levels of exchangeable bases. The soils in this unit have medium levels of CEC (12.4-17.2 cmol(+)/kg) suggesting that they have medium capacity to retain nutrients.

# Mapping unit Cgm1

Complex of shallow, somewhat excessively drained, very dark greyish brown sandy loams, with thick very dark grey sandy loam topsoils, and very deep, well drained, dark brown and very dark greyish brown sandy loams, with very thick dark yellowish brown sandy loam topsoils developed from colluvium derived from banded pyroxene granulites, in places meta-anorthosite, meta-gabbroic anorthosite and metaanorthositic gabbro. Rock outcrops are common.

This mapping unit occupies the strongly dissected piedmont slopes with the slopes ranging between 40-50 % at mean elevation of about 1600 m a.s.l. The dominant vegetation in the unit are grasses mainly *Hyperrhenia spp.* and scattered *Eucalyptus* trees, *Brachystegia spp.* and *Acacia mearsii*. It is used for cultivation of coffee, bananas, maize, beans, cowpeas, green peas, round potatoes, cabbages, cauliflower, chinese and fruit trees.

The topsoils textures (10 to 40 cm thick) are sandy loams with friable, weak to moderate subangular blocky structures. The subsoils to a depth of 115 cm have sandy loam textures, friable consistence and moderate subangular blocky structure. In places surface rock outcrops, boulders, gravels and stones occur. The soil classifies as **Hapli-Orthidystric Cambisols** (*Typic Dystrudepts*) and **Hapli-Orthidystric Cambisols** (*Dystric Eutrudepts*). Profiles **MGP-17** and **MGP-18** are representative.
The soils are well to somewhat excessively drained and the rooting depth is limited at depths of 26 to 200 cm or deeper. The available water capacities of these soils range from very low to medium (28 mm/26 cm soil depth to130 mm/m soil depth). The bulk densities range between 1.2-1.3 g/cc in the topsoils while in subsoils increases with depth to 1.5 g/cc.

The soil pH is very strongly acid to strongly acid (pH 4.4-5.4) in topsoils. Nitrogen levels in the topsoils are high (0.62-5.4%) while those of organic carbon are medium to very high (1.53-4.33%) and decrease with soil depth. The available phosphorus contents are medium to high (11.7-105.4 mg/kg). The soils have very low to medium levels of exchangeable bases. The soils of this mapping unit have very high levels of CEC (39.8-49.7 cmol(+)/kg) indicating that these soils have very high capacity to retain nutrients.

## Mapping unit Cgk1

Complex of very deep, well drained, pale yellow sandy loams to sandy clay loams, and very deep, well drained, brown clays to clay loams, with very thick black clay loam topsoils developed from colluvium derived from banded pyroxene granulites, in places kaolinitic clays. Rock outcrops are common.

This unit comprises the strongly dissected piedmont slopes with the slopes ranging between 40-60 % at mean elevation of about 1700 m a.s.l. Ggrasses mainly *Hyperrhenia spp.* and *Eucalyptus* trees, *Brachystegia spp* and *Acacia mearsii* are the common vegetation type in this unit. The major land used types in the unit are mainly cultivation of coffee, bananas, yarms, maize, beans, green peas, cowpeas, round potatoes, cabbages, cauliflower, chinese, cocoyams, tomatoes and fruit trees.

The topsoils textures (45 cm thick) are clay loams to sandy loams, friable and moderate to strongly structured. The subsoils to a depth of 200 cm have clay to sandy loam textures and are moderately structured. In places surface rock outcrops, boulders, gravels and stones are common. The soil classify as **Hapli-Hypereutric Regosols** (*Typic Udorthents*) and **Hapli-Pachic Phaeozems** (*Fluventic Hapludolls*). Profiles **MGP-8** and **MGP-15** are representative.

The soils are well to somewhat excessively drained and the rooting depth is limited to a depth of 200 cm or deeper. The available water capacities of these soils are medium (132-136 mm/m soil depth). The bulk densities range between 1.0-1.1 g/cc in the topsoils and increases with soil depth to 1.7-1.87 g/cc in subsoils.

The soil pH is medium acid to slightly acid (pH 5.6-6.5) in the topsoils and increases to neutral (pH 6.7-6.8) in subsoils. Nitrogen levels are very low to medium in topsoils (0.003-0.46%). Organic carbon contents range from very low to very high (0.14-7.84%). Both nitrogen and organic carbon show a general tendency to decrease with soil depth. The available phosphorus contents are very low (<7 mg/kg soil). These soils have high levels of exchangeable bases and low to high levels of CEC (8-30.4 cmol(+)/kg).

Complex of very deep, well drained, dark olive brown sandy clay loams, and very deep, imperfectly drained, strong brown to pale yellow clays to sandy clay loams, with very thick dark brown sandy clay loam topsoils developed from alluvio-colluvium of diverse geological formations. In places rock outcrops and boulders occur.

This unit comprises the V-shaped valley sides and incisions. The dominant slopes range between 40-50 % situated at a mean elevation of about 1250 m a.s.l. The area is characterised by grasses mainly *Hyperrhenia spp* and elephant grass. Scattered trees mainly *Eucalyptus*, *Brachystegia spp* and *Acacia mearsii* are common. It is used for cultivation of maize, cowpeas, beans, green peas, round potatoes, cabbages, cauliflower, bananas and fruit trees.

The textures of the topsoils (21 to 40 cm) are sandy clay loams with friable consistence and moderate to strong structure. The subsoils to a depth of 75 cm are friable and the textures are clays to sandy loams with moderate subangular blocky structure. In places surface rock outcrops and boulders occur. The soil classify as **Hypereutri-Mollic Fluvisols** (*Fluventic Hapludolls*) and **Hapli-Gleyic Phaeozems** (*Arquic Argiudolls*). Profiles **MGP-11** and **MGP-14** are representative.

The soils are well to imperfectly drained and the rooting depth is limited to a depth of 190 cm or deeper. The available water capacities of these soils range from low to high (97-167 mm/m soil depth). The bulk densities range between 1.1-1.4 g/cc in the topsoils and increases with soil depth to 1.6 g/cc in subsoils.

The soil pH is slightly acid to neutral (pH 6.1-6.9). Nitrogen levels are very low to medium in topsoils (0.07-0.22 %) while those of organic carbon range from low to high (0.69-2.97%). The available phosphorus levels are high (23.1-24.2 mg/kg of soil). The soils have high levels of exchangeable bases. The CEC levels of these soils range between low to medium (8.2-16.4 cmol(+)/kg).

| Profile no. | Effective soil | Horizon   | PH              |            | OC<br>% | Tot. N<br>(%) | C/N         | Avail. P<br>(Bray1) | CEC<br>cmol(+)/       | % BS         | Exch.            | Exch. bases cmol(+)/kg soil Exc<br>cmo |                | Exch. Aci<br>cmol(+)/k | dity<br>g soil |       |
|-------------|----------------|-----------|-----------------|------------|---------|---------------|-------------|---------------------|-----------------------|--------------|------------------|----------------------------------------|----------------|------------------------|----------------|-------|
|             | depth (cm)     |           |                 | <b>VCI</b> | _       |               |             | (mg P/kg)           | kg soil               |              | Co <sup>2+</sup> | M~ <sup>2+</sup>                       | $\mathbf{V}^+$ | No <sup>+</sup>        | TT+            | A 13+ |
| MCD 1       | 75             | 4.0       | <u><u> </u></u> | 4.2        | 5.06    | 0.51          | 0.0         | 4.4                 | 17.2                  | 60.7         | <u>7.07</u>      | 2.10                                   | 0.15           | 1 <b>Na</b>            | <u>n</u>       |       |
| MOP-1       | 15             | Ap        | 5.0             | 4.2        | 2.00    | 0.31          | 9.9         | 4.4                 | 17.2                  | 67.2         | 11.7             | 5.10                                   | 0.15           | 0.10                   | 0.11           | 0.1   |
|             |                |           | 6.2             | 4.2<br>5.4 | 2.09    | 0.20          | 10.4        | 2.5                 | 19.9                  | 07.5         | 0.8              | 1.40                                   | 0.00           | 0.16                   | -              | -     |
| MCD 2       | 120            |           | 6.7             | 5.4        | 672     | 0.08          | 22.0        | 1.0                 | 12.0                  | 90.0<br>50.6 | 9.0              | 1.44                                   | 0.04           | 0.10                   | -              | -     |
| MOP-2       | 150            | AP        | 6.2             | 3.2        | 0.75    | 0.28          | 25.9        | 0.11                | 23                    | 50.0         | 10.0             | 2.44                                   | 0.08           | 0.14                   | -              | -     |
|             |                | AD<br>Dw  | 0.4<br>5 9      | 4.9        | 0.81    | 0.10          | 0.2         | 0.11                | 14.1                  | 52.1<br>16.6 | 4./1             | 2.30                                   | 0.05           | 0.12                   | -              | -     |
|             |                | DW<br>DC  | 5.0             | 4.4        | 0.30    | 0.04          | 15.0        | 0.11                | 13.2                  | 40.0         | 2.11             | 2.15                                   | 0.01           | 0.14                   | -              | -     |
| MCD 2       | 102            | BC        | 0.1<br>5 5      | 4.2        | 0.18    | 0.01          | 21.2        | 0.07                | 12.8                  | 41.5         | 3.11             | 1.8/                                   | 0.05           | 0.27                   | -              | - 0.7 |
| MGP-3       | 195            | AP<br>Dt  | 5.5<br>5.4      | 4.5        | 5.17    | 0.5           | 13.         | 2.18                | 24.4                  | 17.5         | 2.01             | 0.69                                   | 0.11           | 0.17                   | 0.3            | 0.7   |
|             |                |           | 5.4             | 4.0        | 0.85    | 0.00          | 12.9        | 0.62                | 10.4                  | 14.4         | 0.00             | 0.30                                   | 0.04           | 0.07                   | 0.2            | 1.1   |
| MCD 4       | 225            |           | 5.0<br>5.6      | 4.0        | 0.50    | 0.01          | 28.0        | 0.88                | 0.0<br>22.1           | 13.9         | 0.05             | 1.00                                   | 0.04           | 0.19                   | 0.1            | 1.0   |
| MOP-4       | 255            | AP<br>Dt  | 5.0             | 4.4        | 5.50    | 0.19          | 20.9        | 1.38                | 22.1                  | 20.9         | 4.5              | 1.99                                   | 0.00           | 0.05                   | -              | -     |
|             |                |           | 6.4             | 3.0<br>4.9 | 0.45    | 0.037         | 7.9         | 1.40                | 21.2                  | 29.1<br>69.7 | 4.05             | 2.17                                   | 0.04           | 0.03                   | -              | -     |
|             |                | CD        | 0.0             | 4.0        | 0.52    | 0.015         | 20.0        | 0.0                 | 9.2                   | 00.7         | 3.67             | 2.55                                   | 0.04           | 0.07                   | -              | -     |
| MCD 5       | 160            |           | 0.0<br>5.5      | 4.4        | 6.19    | 0.011         | 2.0         | 2.08                | 12.0                  | 27.2<br>55.1 | 1.04             | 1.52                                   | 0.00           | 0.03                   | -              | -     |
| MOF-3       | 100            | All<br>C1 | 5.5             | 4.5        | 0.16    | 0.10          | 12.6        | J.90<br>0.67        | 12.4                  | 25.0         | 4.02             | 0.70                                   | 0.38           | 0.14                   | 0.08           | 0.08  |
|             |                |           | 5.0             | 4.0        | 0.20    | 0.019         | 15.0        | 1.82                | 10.0                  | 50.7         | 2.39             | 0.79                                   | 0.04           | 0.17                   | 0.15           | 0.55  |
| MCD 6       | 20             | C2        | 5.1             | 4.0        | 10.20   | 0.0014        | 20.1        | 1.62                | 9.2                   | 1.6          | 0.15             | 0.70                                   | 0.00           | 0.22                   | 0.1            | 1.75  |
| MOF-0       | 30             | CP        | 5.1             | 4.1        | 0.25    | 0.04          | 20.1        | 0.78                | 50.4                  | 1.0          | 0.15             | 0.22                                   | 0.13           | 0.10                   | 0.15           | 0.03  |
| MGP 7       | 100            | O O       | 5.0             | 4.5        | 0.25    | 0.01          | 23          | 0.2                 | 5.9                   | 1.5          | 0.02             | 0.05                                   | 0.01           | 0.05                   | 0.02           | 0.05  |
| WOI -7      | 100            | 0<br>4h   | 19              | 2 9        | 11.2    | 0.76          | 14.9        | 751                 | 40.0                  | 4.4          | 0.78             | 0.657                                  | 0.22           | 0.00                   | - 0.75         | -     |
|             |                | All<br>Bw | 4.0             | 5.0<br>4.5 | 11.5    | 0.70          | 14.0        | 7.54                | 40.0                  | 4.4          | 0.78             | 0.037                                  | 0.22           | 0.09                   | 0.75           | 4.1   |
| MGP-8       | 185            | Ab        | 5.5             | 33         | 0.14    | 0.03          | 47.1        | 536                 | 8.0                   | 2.0<br>00 2  | 0.08             | 0.092                                  | 0.013          | 0.02                   | 0.08           | 1.25  |
| WGI -0      | 105            | C         | 67              | 3.5        | 0.14    | 0.003         | 42.4        | 5.30                | 3.4                   | 356.4        | 10.7             | 0.00                                   | 0.15           | 0.14                   | 0.55           | 1.25  |
| MGP-9       | 180            | An        | 6.6             | 3.2<br>1 7 | 1.8     | 0.13          | 42.4        | 3.8                 | 17.8                  | 86.5         | 9.2              | 5.1                                    | 1.02           | 0.20                   | -              | -     |
| WOI - 7     | 100            | C1        | 6.0             | 4.6        | 0.2     | 0.15          | 8.8         | 1.8                 | 13.2                  | 08.0         | 9.2<br>8.4       | 4.5                                    | 1.02           | 0.15                   |                |       |
|             |                |           | 7.4             | 4.3        | 0.12    | 0.02          | 42.4        | 0.8                 | 9.1<br>8.1            | 132.6        | 7.1              | 4.0                                    | 0.06           | 0.04                   | -              | -     |
| MGP 10      | 140            | C2<br>An  | 6.1             | 4.5        | 1.0     | 0.003         | 16.3        | 1.8                 | 0.4                   | 152.0        | 3.5              | 4.0                                    | 0.00           | 0.05                   | -              | -     |
| MOI -10     | 140            | AB        | 6.0             | 4.2        | 1.2     | 0.12          | 15.2        | 1.6                 | 86                    | 40.7         | 2.5              | 0.7                                    | 0.0            | 0.07                   |                |       |
|             |                | Bw        | 63              | 13         | 0.8     | 0.00          | 21.8        | 1.0                 | 0.0<br>4 4            | 40.1         | 13               | 0.7                                    | 0.3            | 0.03                   |                |       |
|             |                | Dw<br>C   | 6.6             | 4.5        | 0.8     | 0.04          | 21.0        | 4.5                 | 4.4                   | 50.0         | 1.5              | 0.3                                    | 0.2            | 0.03                   | -              | -     |
| MGP 11      | 100            | ۲.<br>An  | 6.0             | 4.J<br>5.4 | 0.5     | 0.01          | 97          | 40.1<br>23.1        | 3.2<br>8.2            | 30.9<br>86.4 | 5.0              | 0.2                                    | 0.4            | 0.12                   | -              | -     |
| 10101-11    | 170            | 2C        | 6.5             | 5.4<br>4.7 | 1 27    | 0.07          | 2.7<br>16.2 | 23.1<br>9.5         | 0.2<br>7 4            | 98.2         | 5.0              | 1.1                                    | 0.03           | 0.12                   | -              | -     |
|             |                | 2C<br>3C  | 6.0             | 4.7        | 0.67    | 0.03          | 20.5        | 9.5<br>8 7          | /. <del></del><br>//2 | 81.1         | 2.5              | 0.8                                    | 0.22           | 0.15                   | -              | -     |
|             |                | 4C        | 74              | 5.0        | 0.59    | 0.03          | 20.3        | 6.1                 | 6.8                   | 177.9        | 57               | 6.0                                    | 0.07           | 0.05                   | -              | -     |

Table 4. Soil chemical properties of the studied soils in the study area

Table 4. Continued

| Profile | Effective   | Horizon | pН               | PH  | OC%  | N%    | C/N  | Avail. P | CEC    | BS%   | Ca   | Mg   | K    | Na   | Н    | Al   |
|---------|-------------|---------|------------------|-----|------|-------|------|----------|--------|-------|------|------|------|------|------|------|
| no      | soils depth |         | H <sub>2</sub> O | KCl |      |       |      | (Bray 1) | cmol   |       |      | -    |      |      |      |      |
|         | _           |         |                  |     |      |       |      | mg/kg    | (+)/kg |       |      |      |      |      |      |      |
| MGP-12  | 150         | Ар      | 5.5              | 4.0 | 3.25 | 0.19  | 17.0 | 6.4      | 17.2   | 62.1  | 8.2  | 1.98 | 0.32 | 0.15 | 0.2  | 1.1  |
|         |             | Bw      | 6.4              | 4.3 | 1.15 | 0.07  | 16.1 | 2.5      | 10     | 84.1  | 7.2  | 0.82 | 0.07 | 0.32 | -    | -    |
|         |             | C1      | 7.6              | 4.6 | 0.40 | 0.01  | 33.3 | 1.5      | 5.2    | 136.5 | 6.3  | 0.51 | 0.02 | 0.23 | -    | -    |
| MGP-13  | 180         | Ар      | 6.2              | 4.4 | 2.5  | 0.15  | 17.5 | 5.7      | 12.6   | 79.6  | 7.8  | 1.6  | 0.5  | 0.09 | -    | -    |
|         |             | CÎ      | 6.7              | 4.2 | 0.7  | 0.04  | 19.6 | 0.07     | 9.5    | 106.5 | 8.5  | 1.2  | 0.4  | 0.09 | -    | -    |
|         |             | C2      | 7.2              | 4.0 | 0.3  | 0.01  | 37.7 | 2.3      | 3.4    | 321.9 | 9.5  | 1.3  | 0.06 | 0.13 | -    | -    |
| MGP-14  | 190         | Ap      | 6.1              | 4.7 | 2.97 | 0.22  | 13.6 | 24.2     | 16.4   | 65.7  | 7.1  | 2.3  | 1.2  | 0.2  | -    | -    |
|         |             | Bt      | 6.4              | 4.9 | 0.79 | 0.04  | 18.3 | 4.6      | 10.6   | 66.5  | 4.8  | 1.8  | 0.3  | 0.3  | -    | -    |
|         |             | С       | 6.9              | 4.6 | 0.52 | 0.02  | 23.0 | 27.7     | 4.3    | 188.0 | 5.2  | 2.5  | 0.2  | 0.2  | -    | -    |
| MGP-15  | 200         | Ap      | 6.5              | 5.3 | 7.84 | 0.46  | 16.9 | 5.0      | 30.4   | 94.1  | 24.1 | 4.1  | 0.34 | 0.1  | -    | -    |
|         |             | Bt      | 6.5              | 4.9 | 1.43 | 0.13  | 10.9 | 0.6      | 8.8    | 127.4 | 8.1  | 2.9  | 0.06 | 0.09 | -    | -    |
|         |             | BC      | 6.8              | 4.7 | 0.27 | 0.03  | 9.4  | 19.4     | 10.4   | 121.1 | 9.0  | 3.5  | 0.04 | 0.15 | -    | -    |
| MGP-16  | 120         | Ah      | 4.5              | 3.7 | 6.1  | 0.23  | 26.5 | 54.0     | 34.2   | 21.7  | 3.2  | 4.1  | 0.09 | 0.02 | 0.8  | 1.2  |
|         |             | AB      | 4.7              | 3.8 | 2.89 | 0.11  | 26.4 | 56.0     | 29.9   | 21.0  | 2.69 | 3.51 | 0.07 | 0.03 | 0.5  | 1.4  |
|         |             | Bw      | 5.9              | 3.8 | 1.89 | 0.06  | 31.7 | 57.0     | 22.0   | 12.2  | 1.51 | 1.04 | 0.06 | 0.08 | 0.2  | 1.1  |
|         |             | BC      | 5.0              | 3.6 | 0.3  | 0.01  | 30.0 | 78.9     | 11.6   | 8.7   | 0.42 | 0.42 | 0.15 | 0.03 | 0.06 | 0.9  |
| MGP-17  | 200         | Ap      | 4.4              | 3.6 | 4.33 | 0.62  | 7.0  | 11.7     | 49.7   | 0.86  | 0.33 | 0.00 | 0.05 | 0.05 | 0.3  | 1.2  |
|         |             | Bh      | 5.0              | 3.7 | 1.2  | 0.2   | 6.0  | 61.9     | 49.2   | 13.1  | 5.10 | 1.22 | 0.05 | 0.08 | 0.2  | 1.2  |
|         |             | Bir     | 5.1              | 4.1 | 0.4  | 0.03  | 13.3 | 26.2     | 39.3   | 6.5   | 2.28 | 0.00 | 0.07 | 0.22 | 0.1  | 1.1  |
|         |             | BC      | 5.2              | 4.0 | 0.09 | 0.007 | 12.9 | 40.8     | 48.0   | 0.95  | 0.33 | 0.00 | 0.02 | 0.11 | 0.07 | 0.7  |
|         |             | 2Ab     | 5.3              | 4.3 | 0.09 | 0.04  | 22.5 | 74.6     | 44.6   | 0.67  | 0.15 | 0.00 | 0.05 | 0.10 | 0.05 | 0.5  |
| MGP-18  | 26          | Ар      | 5.4              | 5.1 | 1.53 | 5.4   | 5.1  | 105.4    | 39.8   | 54.7  | 17.3 | 3.31 | 0.98 | 0.18 | 0.3  | 0.9  |
|         |             | Bw      | 5.8              | 5.2 | 4.56 | 5.8   | 5.2  | 102.8    | 37.2   | 56.9  | 16.9 | 3.14 | 1.00 | 0.14 | 0.15 | 0.5  |
| MGP-19  | 60          | Ah      | 6.2              | 5.1 | 2.4  | 0.18  | 13.7 | 52.7     | 14.4   | 86.7  | 8.1  | 3.8  | 0.45 | 0.1  | -    | -    |
|         |             | AB      | 6.2              | 4.9 | 1.98 | 0.13  | 14.7 | 26.0     | 12.4   | 82.6  | 6.7  | 3.13 | 0.27 | 0.14 | -    | -    |
| MGP-20  | 70          | Ah      | 4.3              | 3.9 | 9.1  | 0.7   | 20.1 | 1.4      | 32.5   | 4.4   | 0.25 | 0.22 | 0.39 | 0.56 | 0.17 | 1.94 |
|         |             | Bw      | 4.6              | 4.1 | 1.2  | 0.06  | 24.0 | 0.3      | 8.5    | 9.5   | 0.12 | 0.09 | 0.13 | 0.47 | 0.11 | 1.6  |
| MGP-21  | 12/18       | Ah      | 5.0              | 4.2 | 6.2  | 0.28  | 22.1 | 0.76     | 31.5   | 1.59  | 0.12 | 0.22 | 0.11 | 0.05 | 0.17 | 1.77 |
| MGP-22  | 20/28       | Ap      | 6.5              | 4.6 | 1.69 | 0.12  | 14.1 | 3.4      | 16.5   | 94    | 9.0  | 4.7  | 1.3  | 0.15 | -    | -    |
| MGP-23  | 20/26       | Ah      | 6.1              | 4.4 | 1.8  | 0.11  | 16.4 | 1.5      | 11.4   | 39    | 3.0  | 1.1  | 0.3  | 0.05 | -    | -    |
| MGP-24  | 20/25       | Ap      | 5.4              | 4.1 | 3.15 | 0.17  | 18.5 | 6.1      | 17.1   | 60.4  | 8.6  | 1.2  | 0.42 | 0.11 | 0.25 | 1.12 |
| MGP-25  | 120         | Ap      | 5.6              | 4.6 | 3.2  | 0.16  | 20   | 3.8      | 16.8   | 38.8  | 4.1  | 1.8  | 0.5  | 0.11 | 0.07 | 0.07 |
|         |             | C1      | 5.6              | 4.2 | 0.21 | 0.02  | 10.5 | 0.91     | 9.4    | 39.4  | 2.4  | 1.1  | 0.05 | 0.15 | 0.14 | 0.54 |
|         |             | C2      | 6.1              | 4.3 | 0.15 | 0.01  | 15.0 | 1.2      | 8.7    | 51.3  | 3.1  | 1.1  | 0.06 | 0.2  | 0.09 | 0.14 |
| MGP-26  | 190         | Ap      | 6.1              | 4.3 | 6.3  | 0.25  | 25.2 | 3.3      | 28.6   | 52.5  | 9.5  | 5.2  | 0.21 | 0.1  | -    | -    |
|         |             | Bt      | 6.4              | 4.6 | 0.66 | 0.08  | 8.3  | 1.6      | 12.5   | 57.8  | 5.1  | 2.0  | 0.05 | 0.08 | -    | -    |
|         |             | BC      | 6.8              | 4.8 | 0.31 | 0.03  | 10.3 | 35.2     | 11.1   | 63.4  | 5.0  | 1.9  | 0.03 | 0.11 | -    | -    |



Figure 5. Variation of cation exchange capacity with organic matter and clay content of soils developed from different geological formations in the study area.





### **3.3. Soil classification**

Soil morphological and other diagnostic features used in soil classification are presented in tables 5 and 6. Table 7 presents the soil names according to the FAO World Reference Base (FAO, 1998) and USDA Soil Taxonomy (Soil Survey Staff, 1998) systems. According to FAO-WRB soil classification system, the main soils of the southwestern Uluguru Mountains are Umbrisols covering (25.3%), Cambisols (18.4%), Regosols (18.3%), Phaeozems (13.9%), Leptosols (11.9%), Fluvisols (7.8%), Luvisols (2.3%) and Acrisols (1.7%) of the total area (41964 ha). The summit areas dominated by banded pyroxene granulites are occupied mainly with Leptosols (9.5%), Umbrisols (6.8%) and Cambisols (2.9%) while Umbrisols (10.3%), Regosols (9.5%) and Leptosols (1.3%) occupy mainly the slopes. The mountain ridge summits dominated by meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro are mainly occupied with Cambisols (3.2%), Leptosols (1.1%) and Umbrisols (6.1%) while Regosols (6.1%) occur mainly on the slopes. The soils of the piedmont slopes derived mainly from colluvium of are Cambisols (5.5%), Phaeozems (3.9%), Regosols (2.7%) and Umbrisols (2.1%). The main soils on the summits dominated by kaolinitic clays are Acrisols (1.7%) and Cambisols (1.2%) while Luvisols (2.3%) and Phaeozems (2.3%) occur mainly on the slopes. The soils on the valley sides, valley floors and incisions are mainly Phaeozems (7.8%) and Fluvisols (7.8%).

The results show that some important qualifiers which were identified for separating the reference soil groups Phaeozems, Regosols and Cambisols into lower level units are missing in the FAO World Reference Base priority listing (FAO, 1998). Such qualifiers include: **Ferralic** and **Humic** for soil group Phaeozems, **Ferralic** for soil group Regosols and **Humic** for soil group Cambisols.

| Profile | Diagnostic horizons               | Other diagnostic features  |
|---------|-----------------------------------|----------------------------|
| MGP-1   | Mollic horizon and Cambic horizon | -                          |
| MGP-2   | Ochric horizon and Cambic horizon | Ferralic, Dystric, Chromic |
| MGP-3   | Ochric horizon and Argic horizon  | Chromic, Hyperdystric      |
| MGP-4   | Ochric horizon and Argic horizon  | Cutanic                    |
| MGP-5   | Umbric horizon                    | Humic                      |
| MGP-6   | Umbric horizon                    | Humic                      |
| MGP-7   | Umbric horizon and Cambic horizon | Humic                      |
| MGP-8   | Ochric horizon                    | Hypereutric                |
| MGP-9   | Ochric horizon                    | Hypereutric                |
| MGP-10  | Ochric horizon and Cambic horizon | Ferralic, Epidystric       |
| MGP-11  | Mollic horizon                    | Hypereutric                |
| MGP-12  | Ochric horizon and Cambic horizon | Ferralic, Orthieutric      |
| MGP-13  | Ochric horizon                    | Orthieutric                |
| MGP-14  | Mollic horizon and                | Gleyic                     |
|         | Argic horizon                     |                            |
| MGP-15  | Mollic horizon and                | Pachic                     |
|         | Argic horizon                     |                            |
| MGP-16  | Ochric horizon and Cambic horizon | Orthidystric               |
| MGP-17  | Ochric horizon and Cambic horizon | Orthidystric               |
| MGP-18  | Ochric horizon and Cambic horizon | Orthieutric                |
| MGP-19  | Ochric horizon                    | Humic, Hypereutric         |
| Mgp-20  | Umbric horizon and Cambic horizon | Humic                      |
| MGP-21  | Ochric horizon                    | Dystric                    |
| MGP-22  | Ochric horizon                    | Eutric                     |
| MGP-23  | Ochric horizon                    | Dystric                    |
| MGP-24  | Ochric horizon                    | Eutric                     |
| MGP-25  | Umbric horizon                    | Anthric                    |
| MGP-26  | Mollic horizon and Argic horizon  |                            |

Table 5. Morphological and diagnostic features of the studied soils (FAO-WRB system)

Profile

| phological and diagnos | tic features of the st | tudied soils (USDA syste  |
|------------------------|------------------------|---------------------------|
| Diagnostic surface     | Diagnostic             | Other diagnostic features |
| horizons               | subsurface horizons    |                           |
| Mollic epipedon        | Cambic horizon         | Udic SMR, Isothermic ST   |
| Ochric epipedon        | Cambic horizon         | Udic SMR, Isothermic ST   |
|                        |                        | Resistant minerals        |
| 011 1                  | TZ 1' 1 '              |                           |

Table 6. Morphological and SDA system)

|        | horizons        | subsurface horizons |                            |
|--------|-----------------|---------------------|----------------------------|
| MGP-1  | Mollic epipedon | Cambic horizon      | Udic SMR, Isothermic STR   |
| MGP-2  | Ochric epipedon | Cambic horizon      | Udic SMR, Isothermic STR,  |
|        |                 |                     | Resistant minerals         |
| MGP-3  | Ochric epipedon | Kandic horizon      | Udic SMR, Isothermic STR,  |
|        |                 |                     | Resistant minerals         |
| MGP-4  | Ochric epipedon | Argillic horizon    | Udic SMR, Isothermic STR,  |
|        |                 |                     | Resistant minerals         |
| MGP-5  | Umbric epipedon |                     | Udic SMR, Isothermic STR,  |
|        |                 |                     | Resistant minerals         |
| MGP-6  | Umbric epipedon |                     | Udic SMR, Isomesic STR     |
| MGP-7  | Umbric epipedon | Cambic horizon      | Udic SMR, Isomesic STR,    |
|        |                 |                     | Resistant minerals         |
| MGP-8  | Ochric epipedon |                     | Udic SMR, Isothermic STR,  |
|        |                 |                     | Resistant minerals         |
| MGP-9  | Ochric epipedon |                     | Ustic SMR, Isothermic STR  |
| MGP-10 | Ochric epipedon | Cambic horizon      | Ustic SMR, Isothermic STR  |
| MGP-11 | Mollic epipedon |                     | Udic SMR, Isothermic STR,  |
|        |                 |                     | Lithologic discontinuities |
| MGP-12 | Ochric epipedon | Cambic horizon      | Ustic SMR, Isothermic STR  |
| MGP-13 | Ochric epipedon |                     | Udic SMR, Isothermic STR   |
| MGP-14 | Mollic epipedon | Argillic horizon    | Udic SMR, Isothermic STR   |
| MGP-15 | Mollic epipedon | Kandic horizon      | Udic SMR, Isothermic STR   |
| MGP-16 | Ochric epipedon | Argillic horizon    | Udic SMR, Isothermic STR   |
|        |                 | and Cambic          |                            |
|        |                 | horizon             |                            |
| MGP-17 | Ochric epipedon | Argillic horizon    | Udic SMR, Isothermic STR   |
|        |                 | and Cambic          |                            |
|        |                 | horizon             |                            |
| MGP-18 | Ochric epipedon | Cambic horizon      | Udic SMR, Isothermic STR   |
| MGP-19 | Ochric epipedon |                     | Udic SMR, Isothermic STR   |
| Mgp-20 | Umbric epipedon | Cambic horizon      | Udic SMR, Isomesic STR     |
| MGP-21 | Ochric epipedon |                     | Udic SMR, Isomesic STR,    |
|        |                 |                     | Lithic contact             |
| MGP-22 | Ochric epipedon |                     | Ustic SMR, Isothermic STR, |
|        |                 |                     | Lithic contact             |
| MGP-23 | Ochric epipedon |                     | Ustic SMR, Isothermic STR, |
|        |                 |                     | Lithic contact             |
| MGP-24 | Ochric epipedon |                     | Udic SMR, Isothermic STR,  |
|        |                 |                     | Lithic contact             |
| MGP-25 | Umbric epipedon |                     | Udic SMR, Isothermic STR   |
| MGP-26 | Mollic epipedon | Argillic horizon    | Udic SMR, Isothermic STR   |

| Profile | FAO World Refe    | erence Base classificati | on system                                 | USDA Soil Tax | onomy classificat | ion system  |                      |
|---------|-------------------|--------------------------|-------------------------------------------|---------------|-------------------|-------------|----------------------|
|         | Level 1           | Level 2                  | Level 3                                   | Order         | Suborder          | Greatgroup  | Subgroup             |
| MGP-1   | Phaeozems<br>(PH) | Haplic Phaeozems         | -                                         | Mollisols     | Udolls            | Hapludolls  | Typic Hapludolls     |
| MGP-2   | Cambisols<br>(CM) | Ferralic Cambisols       | Chromi-Ferralic Cambisols<br>(Dystric)    | Inceptisols   | Udepts            | Dystrudepts | Typic Dystrudepts    |
| MGP-3   | Acrisols (AC)     | Chromic Acrisols         | Chromi-Hyperdystric Acrisols<br>(Haplic)  | Ultisols      | Udults            | Hapludults  | Typic Hapludults     |
| MGP-4   | Luvisols (LV)     | Cutanic Luvisols         | Epidystri-Cutanic Luvisols (Haplic)       | Alfisols      | Udalfs            | Hapludalfs  | Inceptic Hapludalfs  |
| MGP-5   | Umbrisols<br>(UM) | Humic Umbrisols          | Hapli-Humic Umbrisols                     | Entisols      | Orthents          | Udorthents  | Typic Udorthents     |
| MGP-6   | Umbrisols<br>(UM) | Humic Umbrisols          | Hapli-Humic Umbrisols                     | Entisols      | Orthents          | Udorthents  | Typic Udorthents     |
| MGP-7   | Umbrisols<br>(UM) | Humic Umbrisols          | Hapli-Humic Umbrisols                     | Inceptisols   | Udepts            | Dystrudepts | Humic Dystrudepts    |
| MGP-8   | Regosols (RG)     | Hypereutric<br>Regosols  | Hapli-Hypereutric Regosols                | Entisols      | Orthents          | Udorthents  | Typic Udorthents     |
| MGP-9   | Regosols (RG)     | Hypereutric<br>Regosols  | Hapli-Hypereutric Regosols                | Entisols      | Orthents          | Udorthents  | Typic Udorthents     |
| MGP-10  | Cambisols<br>(CM) | Ferralic Cambisols       | Epidystri-Ferralic Cambisols<br>(Haplic)  | Inceptisols   | Udepts            | Dystrudepts | Humic Dystrudepts    |
| MGP-11  | Fluvisols (FL)    | Mollic Fluvisols         | Hypereutri-Mollic Fluvisols<br>(Haplic)   | Mollisols     | Udolls            | Hapludolls  | Fluventic Hapludolls |
| MGP-12  | Cambisols<br>(CM) | Orthieutric<br>Cambisols | Orthieutri-Ferralic Cambisols<br>(Haplic) | Inceptisols   | Udepts            | Eutrudepts  | Dystric Eutrudepts   |

## Table 7. Classification of the soils of southwestern Uluguru Mountains

## 38

## Table 7. continued

| Profile | FA                | O World Reference B       | ase classification system                 | USDA Soil Ta | xonomy classific | ation system |                      |
|---------|-------------------|---------------------------|-------------------------------------------|--------------|------------------|--------------|----------------------|
|         | Level 1           | Level 2                   | Level 3                                   | Order        | Suborder         | Greatgroup   | Subgroup             |
| MGP-13  | Regosols (RG)     | Orthieutric<br>Regosols   | Hapli-Orthieutric Regosols                | Entisols     | Orthents         | Udorthents   | Typic Udorthents     |
| MGP-14  | Phaeozems<br>(PH) | Gleyic Phaeozems          | Hapli-Gleyic Phaeozems                    | Mollisols    | Udolls           | Argiudolls   | Aquic Argiudolls     |
| MGP-15  | Phaeozems<br>(PH) | Pachic Phaeozems          | Hapli-Pachic Phaeozems                    | Mollisols    | Udolls           | Hapludolls   | Fluventic Hapludolls |
| MGP-16  | Cambisols<br>(CM) | Orthidystric<br>Cambisols | Hapli-Orthidystric Cambisols              | Inceptisols  | Udepts           | Dystrudepts  | Typic Dystrudepts    |
| MGP-17  | Cambisols<br>(CM) | Orthidystric<br>Cambisols | Hapli-Orthidystric Cambisols              | Inceptisols  | Udepts           | Dystrudepts  | Typic Dystrudepts    |
| MGP-18  | Cambisols<br>(CM) | Orthieutric<br>Cambisols  | Hapli-Orthieutric Cambisols               | Inceptisols  | Udepts           | Eutrudepts   | Dystric Eutrudepts   |
| MGP-19  | Regosols (RG)     | Endoleptic<br>Regosols    | Humi-Endoleptic Regosols<br>(Hypereutric) | Entisols     | Orthents         | Udorthents   | Typic Udorthents     |
| MGP-20  | Umbrisols<br>(UM) | Humic Umbrisols           | Hyperferrali-Humic Umbrisols<br>(Haplic)  | Inceptisols  | Udepts           | Dystrudepts  | Humic Dystrudepts    |
| MGP-21  | Leptosols (LP)    | Lithic Leptosols          | Dystri-Lithic Leptosols (Haplic)          | Entisols     | Orthents         | Udorthents   | Lithic Udorthents    |
| MGP-22  | Leptosols (LP)    | Lithic Leptosols          | Eutri-Lithic Leptosols (Haplic)           | Entisols     | Orthents         | Ustorthents  | Lithic Ustorthents   |
| MGP-23  | Leptosols (LP)    | Lithic Leptosols          | Dystri-Lithic Leptosols (Haplic)          | Entisols     | Orthents         | Ustorthents  | Lithic Ustorthents   |
| MGP-24  | Leptosols (LP)    | Lithic Leptosols          | Eutri-Lithic Leptosols (Haplic)           | Entisols     | Orthents         | Udorthents   | Lithic Udorthents    |
| MGP-25  | Umbrisols<br>(UM) | Anthric Umbrisols         | Hapli-Anthric Umbrisols                   | Entisols     | Orthents         | Udorthents   | Typic Udorthents     |
| MGP-26  | Phaeozems<br>(PH) | Chromic<br>Phaeozems      | Hapli-chromic Phaeozems                   | Mollisols    | Udolls           | Argiudolls   | Typic Argiudolls     |

### 3.4. Land evaluation

### **3.4.1 Description of land utilisation types (LUTs)**

Three major land utilisation types (LUTs) were identified from the results of land use and socio-economic survey carried out in the southwestern Uluguru Mountains. These land utilisation types are (a) smallholder improved low input rainfed cabbage, (b) smallholder improved low input rainfed round potato and (c) smallholder low input rainfed arabica coffee. The selected LUTs were evaluated on the basis of management levels social preferences and type of crops grown in the area. A brief description of the selected LUTs is presented in Table 8. Tables 9, 10 and 11 present the summary of the agro-economic survey results for the three selected LUTs.

## Smallholder improved low input rainfed cabbage

This LUT is practised by farmers on permanent cultivation basis with an average farm size of 0.4 ha using family and hired labour. The common farm management practice is the ridge cultivation with / without grass strips and bench terrace cultivation system as an effort to control soil erosion. Most of the farmers apply manure and fertilisers in their farms, the most common fertiliser being urea. Pesticides such as Thionex are used to protect the crop from damage by crop pests. The crop is grown singly and alternately with other crops like round potato, beans, green peas and maize in a year. Hybrid varieties mainly Glory and Romenco are used. The crop is planted in December/November and harvested in March/ April. The yield ranges from 3,500 to 10,500 kg/ha. Generally, the level of capital investment is low.

## Smallholder improved low input rainfed round potato

This LUT is practised by farmers on permanent cultivation basis with an average farm size of 0.6 ha using family and hired labour. The common farm management practice is the ridge and bench terrace cultivation system as an effort to control soil erosion. Most of the farmers apply manure and fertilisers in their farms. The most common fertilisers being used are Urea and DAP (di-ammonium phosphate). Fungicides such as blue copper and dithane are also used. The crop is grown singly or intercropped with beans and green peas and alternately grown with other crops like, cabbage, cauliflower, beans, green peas and maize in a year. Local varieties such as Sasamoa, Kikondo and Red potato are mostly grown. The crop is planted in September/October and harvested in January/February. The yield ranges from 1250 - 13,750 kg/ha. The level of capital investment is generally low.

### Smallholder low input rainfed arabica coffee

This LUT is practised by farmers on permanent cultivation basis with an average farm size of 0.4 ha using family and hired labour. Most of coffee trees are old and farmers have abandoned their farms without serious care due to prevailing low market prices. Most farmers do not apply manure and fertilisers in their farms. Fungicides such as blue copper and red copper are used on a small scale. The crop is grown with some bananas, yams and fruit trees. The yield ranges from 200 to 1,300 kg/ha.

| Land utilisation type                                 | Produce                         | Management                                                                                                        | Labour intensity<br>(mandays/ha) | Level of<br>technical<br>knowledge        | Farm size<br>(ha) | Land<br>tenure | Yield range<br>(kg/ha) |
|-------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------|-------------------|----------------|------------------------|
| Small holder<br>improved low-input<br>rainfed cabbage | Cabbage,<br>hybrid<br>variaties | Ridge and bench terrace<br>cultivation, single and<br>alternately cropping, human                                 | high<br>118-201                  | Low; credit,<br>extension,<br>storage and | 0.2-0.6           | Family<br>farm | 3500-7000              |
|                                                       | (Romenco,<br>Glory)             | labour (family & hired),<br>manure, fertilizer and<br>fungicide application                                       |                                  | marketing<br>required                     |                   |                |                        |
| Smallholder<br>improved low-input                     | Potatoes;<br>Local varieties    | Ridge and bench terrace cultivation, single and                                                                   | high                             | Low; credit, extension,                   | 0.1-1.2           | Family<br>farm | 1250-12500             |
| rainfed potato                                        |                                 | alternately /intercropping,<br>human labour (family &<br>hired), manure, fertilizers and<br>pesticide application | 91-429                           | storage market<br>required                |                   |                |                        |
| Small holder low-                                     | Coffee                          | Flat cultivation, mixed                                                                                           | high                             | Low; credit,                              | 0.1-0.6           | Family         | 200-1000               |
| input raifed coffee                                   | Local varieties                 | cropping, human labour<br>(family & hired) and fungicide<br>application                                           | 91-139                           | extension,<br>market required             |                   | tarm           |                        |

## Table 8. Description of land utilisation types in southwestern Uluguru Mountains

| Economic component                                                       | Unit       | Smallholder improved cabbage | low-input rainfed                                   |
|--------------------------------------------------------------------------|------------|------------------------------|-----------------------------------------------------|
|                                                                          |            | Range                        | Calculation based<br>on optimum<br>attainable yield |
| Yield                                                                    | kg/ha      | 3,500 - 7000                 |                                                     |
| Optimum attainable yield                                                 | kg/ha      |                              | 10,500                                              |
| Farm gate price of product                                               | TSh/kg     | 50 - 90                      | 70                                                  |
| Returns                                                                  | TSh/ha     | 245,000 - 490,000            | 735,000                                             |
| Annual cost                                                              |            |                              |                                                     |
| $\Rightarrow$ Labour inputs                                              |            |                              |                                                     |
| <ul> <li>land preparation and soil<br/>conservation practices</li> </ul> | mandays/ha | 25 - 38                      | 32                                                  |
| ♦ seedling husbandry                                                     |            | 20 - 30                      | 25                                                  |
| manure and fertiliser     application                                    |            | 5 – 13                       | 9                                                   |
| ◊ replanting                                                             |            | 5 - 10                       | 8                                                   |
| <ul> <li>weeding and pruning</li> </ul>                                  |            | 18 - 25                      | 22                                                  |
| ◊ pesticides application                                                 |            | 3 – 15                       | 9                                                   |
| ♦ harvesting                                                             |            | 5 – 13                       | 9                                                   |
| ♦ post-harvesting                                                        |            | 13 - 102                     | 58                                                  |
| ♦ Total labour                                                           |            | 118 - 201                    | 172                                                 |
| <ul> <li>Sub-total labour cost at<br/>Tsh 600 per manday</li> </ul>      | TSh/ha     | 70,800 - 120,600             | 103,200                                             |
| $\Rightarrow$ Material input cost<br>$\diamond$ seed (hybrid variety)    | TSh/ha     | 6.750 - 25.000               | 15.870                                              |
| ♦ manure and fertiliser                                                  |            | 7,900 - 18,100               | 13.000                                              |
| Ø pesticides                                                             |            | 4,500 - 13,500               | 9,000                                               |
| <ul> <li>Sub-total material input<br/>cost</li> </ul>                    |            | 27,500 - 51,900              | 37,870                                              |
| Total cost                                                               |            | 98.300 - 172.500             | 141.070                                             |
| Gross margin (net benefit)                                               |            | 146,700 - 317,500            | , • . •                                             |
| Optimum gross margin                                                     |            | - , , - • •                  | 593,930                                             |

## Table 9. Agro-economic results for smallholder improved low inputrainfed cabbage in southwestern Uluguru Mountains

| Economic component                               | Unit       | Smallholder improved | l low-input rainfed round                           |
|--------------------------------------------------|------------|----------------------|-----------------------------------------------------|
|                                                  |            | Range                | Calculation based or<br>optimum attainable<br>yield |
| Yield                                            | kg/ha      | 1250 - 12500         | •                                                   |
| Optimum attainable yield                         | kg/ha      |                      | 13,750                                              |
| Farm gate price of product                       | TSh/kg     | 70 - 130             | 100                                                 |
| Returns                                          | TSh/ha     | 125000 - 1250000     | 1,375,000                                           |
| Annual cost                                      |            |                      |                                                     |
| $\Rightarrow$ Labour inputs                      | mandays/ha |                      |                                                     |
| land preparation and soil conservation practices |            | 23 - 45              | 34                                                  |
| manure and fertiliser application                |            | 3 - 10               | 6                                                   |
| ♦ planting                                       |            | 10 - 38              | 24                                                  |
| ♦ weeding                                        |            | 15 - 20              | 17                                                  |
| • pesticides application                         |            | 3 - 8                | 6                                                   |
| ♦ harvesting                                     |            | 10 - 20              | 15                                                  |
| ♦ post-harvesting                                |            | 6 - 313              | 160                                                 |
| ♦ Total labour                                   |            | 91 - 429             | 262                                                 |
| Sub-total labour cost at Tsh                     |            | 54,600 - 257,400     | 15,7200                                             |
| 600 per manday                                   | TSh/ha     |                      |                                                     |
| $\Rightarrow$ Material input cost                |            |                      |                                                     |
| ♦ seed (local variety)                           | TSh/ha     | 8,300 - 60,000       | 34,150                                              |
| manure and fertiliser                            |            | 3,750 - 71,250       | 37,500                                              |
| ◊ pesticides                                     |            | 0 - 52,500           | 26,250                                              |
| Sub-total material input cost                    |            | 20,800 - 160,000     | 97,900                                              |
| Total cost                                       |            | 75,400 - 417,400     | 255,100                                             |
| Gross margin (net benefit)                       |            | 49,600 - 832,600     |                                                     |
| Optimum gross margin                             |            |                      | 1,119,900                                           |

## Table 10. Agro-economic results for smallholder improved low input rainfedround potato in southwestern Uluguru Mountains

| Economic component                            | Unit       | Smallholder low-inp | ut rainfed coffee                             |
|-----------------------------------------------|------------|---------------------|-----------------------------------------------|
|                                               |            | Range               | Calculation based on optimum attainable yield |
| Yield                                         | kg/ha      | 200 - 1000          |                                               |
| Optimum attainable yield                      | kg/ha      |                     | 1,300                                         |
| Farm gate price of product                    | TSh/ha     | 450                 | 450                                           |
| Returns                                       | TSh/ha     | 90,000 - 450,000    | 585,000                                       |
| Annual cost                                   |            |                     |                                               |
| $\Rightarrow$ labour inputs                   | mandays/ha |                     |                                               |
| ◊ weeding and pruning                         |            | 23 - 33             | 28                                            |
| ◊ pesticides application                      |            | 8 - 33              | 21                                            |
| ◊ harvesting                                  |            | 35 - 40             | 38                                            |
| ◊ post-harvesting                             |            | 13 - 41             | 27                                            |
| ♦ Total labour                                |            | 91 - 139            | 114                                           |
| ♦ Sub-total labour cost at Tsh 600 per manday | TSh/ha     | 54,600 - 83,400     | 68,400                                        |
| $\Rightarrow$ Material input cost             | TSh/ha     |                     |                                               |
| ♦ Pesticides                                  |            | 7,500 - 25,000      | 16,250                                        |
| ♦ Sub-total material input cost               |            | 7,500 - 25,000      | 16,250                                        |
| Total cost                                    |            | 61,980 - 98,500     | 84,650                                        |
| Gross margin (net benefit)                    |            | 28,020 - 351,500    |                                               |
| Optimum gross margin                          |            |                     | 500,350                                       |

## Table 11. Agro-economic results for smallholder low input rainfed coffee in the southwestern Uluguru Mountains

## **3.4.2 Land suitability classification**

In this study both biophysical as well as socio-economic resources were evaluated for the lands of southwestern Uluguru Mountains and the results are presented below.

## Physical suitability classification

The physical suitability classification for smallholder improved low input rainfed cabbage, smallholder improved low input rainfed round potato and smallholder low input rainfed arabica coffee in the study area is presented in Table 12. Predicted yield levels are presented in Table 13.

About 74% of the study area is classified as physically having moderate potential for smallholder improved low input rainfed cabbage whereas about 24% of the total area is classified as physically having poor potential for the production of cabbages. The most limiting factors are nutrient retention, nutrient availability and temperature regime. Some parts of land mapping unit (LMU) G11 with shallow soils and covering only 2% of the unit are rated as having very poor potential for cabbage production. Rooting condition is the most limiting factor. According to ALES programme zero yield is predicted when land is classified as physically having very poor potential (Rossiter and Van Wambeke, 1994; Rossiter, 1995, 1996). In the study area most LMUs have moderate potential for production of cabbage with yields predictions ranging between 4,200 to 8,400 kg/ha. Some few areas have poor potential with zero yield predictions. According to Sys et al. (1993), the average commercial farmer's yield for rainfed cabbage ranges from 10 to 20 ton/ha. The smallholder yields in the study area are only about 40% of the commercial production. This clearly demonstrates that under high levels of inputs and improved management it is possible to obtain higher yields in the study area.

About 80% of the total area is physically classified as having moderate potential for the production of smallholder improved low input rainfed round potato. Some parts of LMUs G11, G12, Cgm1, Cgk1 and K12 forming about 20% of the study area are classified as having poor potential for the production of round potato (Tables 12 and 13). The most limiting factors are erosion hazards, nutrient availability, nutrient retention and conditions of tuber expansion and harvesting. The potato yields are high (about 11,000 kg/ha) in most mapping units except mapping unit G11 (Table 13) which has relatively lower yields (about 5,500 kg/ha). According to Sys *et al.* (1993) good commercial yield for rainfed round potato ranges between 25 to 35 ton/ha. For smallholder low input production the study area can be rated as being potential for the production of round potato.

As far as smallholder low input rainfed arabica coffee is concerned, 71% of the total study area has moderate potential for the production of coffee, while 7% has poor potential for the production of this LUT. However, LMU G11 and some parts of LMUs G21, G22, M11 and Cgm1 altogether covering about 22% of the study area are classified as having very poor potential for the production of arabica coffee. Rooting conditions and nutrient retention are the most limiting factors. ALES predicted yields for arabica coffee range from 572 to 1040 kg/ha for all LMUs except

LMUs G11 and Cgm1 which have zero and 260 kg/ha respectively (Table 13). According to Sys *et al.* (1993) good smallholder yield for rainfed arabica coffee ranges from 0.5 to 1.2 ton/ha (500 to 1200 kg/ha). Therefore, the results show that the study area has favourable conditions for the production of arabica coffee.

## Economic suitability classification

The economic suitability classification is carried out using the predicted yields arrived at in the physical evaluation. The results of the economic evaluation are thus the predicted gross margins for each mapping unit (Table 14). The economic suitability classification results are presented in Table 15.

The economic suitability classification for smallholder improved low input rainfed cabbage indicates that, about 74% of the total area is moderately suitable and 24% is marginally suitable (S3) for this LUT with gross margins ranging from 116,475 to 449,000 Tsh/ha/yr (Tables 14 and 15). Some parts of LMU G11 covering about 2% are rated as not suitable for the production of cabbage due to very poor physical limitations of the lands.

Most LMUs (covering about 82% of the study area) are moderately suitable for smallholder improved low input rainfed round potato. However, LMU G11 and some areas of LMUs G12, Cgk1 and K12, which together occupy about 18% of the study area, are marginally suitable (Table 15). The predicted gross margins (Table 14) show that, round potato has higher gross margins in all LMUs ranging from 275,000 to 825,000 TSh/ha/yr.

The economic suitability results for small holder low input rainfed arabica coffee reveals that, about 71% of the total study area is moderately suitable while about 7% is marginally suitable for this LUT. The LMUs having shallow soils (G11, G21, G22, M11) and LMU Cgm1 together forming 22% of the study area are not suitable for the production of arabica coffee due to poor physical limitations. The gross margins for arabica coffee ranges from 69,050 to 372,000 Tsh/ha/yr

From the results of physical and economic suitability classification most of the lands in the southwestern Uluguru Mountains have moderate potential and are economically moderately suitable for the production of cabbage, round potato and arabica coffee. It is also apparent from this study that production of round potato is economically more profitable in the area when compared to the production of cabbage and coffee. Basing on the current farmers' observed and predicted yields possibilities for obtaining higher yields under high input and improved management levels are high. This forms a strong base in favour of high investment in the area given the potential marketing possibilities in the expanding Morogoro municipality and Dar es Salaam city.

|             | southwestern Uluguru Mount        | tains           |                    |                          |       |
|-------------|-----------------------------------|-----------------|--------------------|--------------------------|-------|
| LMUs        | SOIL TYPE                         | CABBAGE         | POTATO             | ARABICA                  | AREA  |
|             |                                   |                 | DATING             | COFFEE                   | (lla) |
| G11         | Dystri Lithia Lantosols 20%       | 1 <b>r</b>      | ATING<br>3ng/nr/th | 1r                       | 4126  |
| 011         | Hyperformali Humic Umbrisols 15%  | 41<br>3nr/t     | 3na/m/tu<br>3na/nr | 41<br>4nr                | 4120  |
|             | Hapli Humia Umbricola 60%         | Jill/t<br>2nr/t | 311a/111<br>2nr    | 4111<br>4pr/r            |       |
|             | Hapii-Humic Omorisois 60%         | 5111/1          | 5111               | 4111/1                   |       |
| GI2         | Hapli-Humic Umbrisols 65%         | 2e/m/na/nr/t    | 2m/na/nr/t         | 2m/na/nr/r/t             | 6438  |
| 012         | Hapli-Orthidystric Cambisols 35%  | 2e/m/t          | 3na                | 2m/na/m/1/t<br>2m/na/r/t | 0150  |
|             | Theph Orthogsure Cumbisons 5576   | 20/11/1         | Silu               | 2111/11d/17 t            |       |
| G21         | Dystri-Lithic Leptosols 30%       | 2na/r/t         | 2m/na/t/tb         | 4r                       | 1605  |
| 021         | Epidystri-Ferralic Cambisols 70%  | 2na/t           | 2na/t              | 2m/na/r                  | 1000  |
|             |                                   |                 |                    |                          |       |
| G22         | Eutri-Lithic Leptosols 45%        | 2e/na/r/t       | 2e/m/na/t/tb       | 4r                       | 7204  |
|             | Hapli-Hypereutric Regosols 55%    | 2na/t           | 2na/t              | 2m/na                    |       |
|             |                                   |                 |                    |                          |       |
| M11         | Eutri-Lithic Leptosols 25%        | 3na             | 2m/na/t/tb         | 4r                       | 1819  |
|             | Orthieutri-Ferralic Cambisols 75% | 3na             | 2m/na/t            | 2m/na                    |       |
|             |                                   |                 |                    |                          |       |
| M12         | Hapli-Anthric Umbrisols 50%       | 2e/m/na//t      | 2e/m/na/nr/t       | 2e/m/na/nr/r             | 5151  |
|             | Hapli-Orthieutric Regosols 50%    | 2e/m/na/nr/t    | 2e/m/na/nr/t       | 2m/na/nr                 |       |
|             |                                   |                 |                    |                          |       |
| Cm1         | Humi-Endoleptic Regosols 32%      | 2e/m/na/r/t     | 2e/t/tb            | 3r                       | 2333  |
|             | Haplic Phaeozems 30%              | 2e/m/na/nr/t    | 2e/na/nr/t         | 2m/na/nr/r               |       |
|             | Hapli-Humic Umbrisols 38%         | 3na             | 2e/na/t            | 2e/m/na                  |       |
|             |                                   |                 |                    |                          |       |
| Cgm1        | Hapli-Orthidystric Cambisols 50%  | 2e/m/na/nr/t    | 3na/nr             | 3na/nr                   | 2332  |
|             | Hapli-Orthieutric Cambisols 50%   | 2e/m/na/r/t     | 2m/na/t/tb         | 4r                       |       |
|             |                                   |                 |                    |                          |       |
| Cgk1        | Hapli-Hypereutric Regosols 30%    | 3na             | 3na                | 3na                      | 1334  |
|             | Hapli-Pachic Phaeozems 70%        | 2e/na//t        | 2e/m/na/nr/t       | 2e/m/na/nr               |       |
|             |                                   |                 |                    |                          |       |
| K11         | Chromi-Ferralic Cambisols 40%     | 2m/na/nr/t      | 2m/na/nr/t         | 2m/na/nr                 | 1212  |
|             | Chromi-Hyperdystric Acrisols 60%  | 3nr             | 2m/na/nr/t         | 3na                      |       |
| 7710        |                                   |                 |                    |                          | 1001  |
| <b>K</b> 12 | Hapli-Chromic Phaeozems 50%       | 2e/m/na/t       | 2e/m/na/t          | 2e/m/na                  | 1884  |
|             | Epidystri-Cutanic Luvisols 50%    | 2e/m/na//t      | 3e                 | 2e/m/na/nr               |       |
| <b>X</b> 71 |                                   | 2               | <b>2</b> . ( / / . | <b>2</b>                 | (50)  |
| V I         | Hypereutri-Mollic Fluvisols 50%   | 3na             | 2e/m/na/t          | 2m/na/t                  | 6526  |
|             | Hapii-Gleyic Phaeozems 50%        | 2e/m/t          | 2e/m/t             | 2m/na                    |       |

## Table 12. Physical suitability classification for smallholder improved low input rainfed cabbage, potato and arabica coffee in southwestern Uluguru Mountains

m = moisture availability, na=nutrient availability, nr = nutrient retention capacity,

e = erosion hazard, t = temperature regime and tb = tuber expansion and harvesting.

| I Me       |                                  | CABBAGE                  | nwcstern | ROUNDPO                              |         | ARABIC                   | ٨                |
|------------|----------------------------------|--------------------------|----------|--------------------------------------|---------|--------------------------|------------------|
| LIVIS      | SOILTIFE                         | CADDAUE                  |          | KOUND FC                             | JIAIO   | COFFEE                   | 7                |
| G11        | Dystri-Lithic Leptosols          | INDIVIDUA<br>L SOIL<br>0 | OVERALL  | kg/ha<br>INDIVIDUA<br>L SOIL<br>5500 | OVERALL | INDIVID<br>UAL SOIL<br>0 | OVERAL<br>L<br>O |
| 011        | Hyperferrali-Humic<br>Umbrisols  | 4200                     | 3150     | 5500                                 | 5500    | 0                        | 0                |
|            | Hapli-Humic Umbrisols            | 4200                     |          | 5500                                 |         | 0                        |                  |
| G12        | Hapli-Humic Umbrisols            | 8400                     |          | 11000                                |         | 1040                     | 1040             |
|            | Hapli-Orthidystric<br>Cambisols  | 8400                     | 8400     | 5500                                 | 9075    | 1040                     |                  |
| G21        | Dystri-Lithic Leptosols          | 8400                     |          | 11000                                | 11000   | 0                        | 728              |
|            | Epidystri-Ferralic<br>Cambisols  | 8400                     | 8400     | 11000                                |         | 1040                     |                  |
| G22        | Eutri-Lithic Leptosols           | 8400                     |          | 11000                                | 11000   | 0                        | 572              |
|            | Hapli-Hypereutric<br>Regosols    | 8400                     | 8400     | 11000                                |         | 1040                     |                  |
| M11        | Eutri-Lithic Leptosols           | 4200                     |          | 11000                                | 11000   | 0                        | 780              |
|            | Orthieutri-Ferralic<br>Cambisols | 4200                     | 4200     | 11000                                |         | 1040                     |                  |
| M12        | Hapli-Anthric Umbrisols          | 8400                     |          | 11000                                | 11000   | 1040                     | 1040             |
|            | Hapli-Orthieutric<br>Regosols    | 8400                     | 8400     | 11000                                |         | 1040                     |                  |
| Cm1        | Humi-Endoleptic<br>Regosols      | 8400                     |          | 11000                                | 11000   | 520                      | 873.6            |
|            | Haplic Phaeozems                 | 8400                     | 6804     | 11000                                |         | 1040                     |                  |
|            | Hapli-Humic Umbrisols            | 4200                     |          | 11000                                |         | 1040                     |                  |
| Cgm1       | Hapli-Orthidystric<br>Cambisols  | 8400                     |          | 5500                                 | 8250    | 520                      | 260              |
|            | Hapli-Orthieutric<br>Cambisols   | 8400                     | 8400     | 11000                                |         | 0                        |                  |
| Cgk1       | Hapli-Hypereutric<br>Regosols    | 4200                     |          | 5500                                 | 9350    | 520                      | 884              |
|            | Hapli-Pachic Phaeozems           | 8400                     | 7140     | 11000                                |         | 1040                     |                  |
| K11        | Chromi-Ferralic<br>Cambisols     | 8400                     | 5880     | 11000                                | 11000   | 1040                     | 728              |
|            | Chromi-Hyperdystric<br>Acrisols  | 4200                     |          | 11000                                |         | 520                      |                  |
| K12        | Hapli-Chromic<br>Phaeozems       | 8400                     |          | 11000                                | 8250    | 1040                     | 1040             |
|            | Epidystri-Cutanic<br>Luvisols    | 8400                     | 8400     | 5500                                 |         | 1040                     |                  |
| <b>V</b> 1 | Hypereutri-Mollic<br>Fluvisols   | 4200                     |          | 11000                                | 11000   | 1040                     | 1040             |
|            | Hapli-Gleyic Phaeozems           | 8400                     | 6300     | 11000                                |         | 1040                     |                  |

## Table 13. Predicted yields [kg/ha] for low input rainfed cabbage, potato and arabica coffee in the southwestern Uluguru Mountains

| LMUs        | SOIL TYPE               | CABBAG  | Е        | ROUND     | POTATO   | ARABICA COF | FFEE    |
|-------------|-------------------------|---------|----------|-----------|----------|-------------|---------|
|             |                         |         |          |           |          |             |         |
|             |                         | INDIVI- | OVER-    | INDIVI    | OVER-    | INDIVIDUAL  | OVERALL |
|             |                         | DUAL    | ALL      | -DUAL     | ALL      |             |         |
| G11         | Dystri-Lithic Leptosols | 0       |          | 275,000   |          | 0           |         |
|             | Hyperferrali-Humic      | 155,300 |          | 275,000   |          | 0           |         |
|             | Umbrisols               |         |          |           |          |             |         |
|             | Hapli-Humic Umbrisols   | 155,300 | 116,475  | 275,000   | 275,000  | 0           | 0       |
| GI2         | Hapli-Humic Umbrisols   | 449,300 |          | 825,000   |          | 372,100     |         |
|             | Hapli-Orthidystric      | 449,300 | 449,300  | 275,000   | 632,500  | 372,100     | 372,100 |
|             | Cambisols               |         |          |           |          |             |         |
| G21         | Dystri-Lithic Leptosols | 449,300 |          |           |          | 0           |         |
|             | Epidystri-Ferralic      | 449,300 | 449,300  | 825,000   | 825,000  | 372,100     | 260,470 |
|             | Cambisols               |         |          |           |          |             |         |
| G22         | Eutri-Lithic Leptosols  | 449,300 |          | 825,000   |          | 0           |         |
|             | Hapli-Hypereutric       | 449,300 | 449,300  | 825,000   | 825,000  | 372,100     | 204,655 |
|             | Regosols                |         |          |           |          |             |         |
| M11         | Eutri-Lithic Leptosols  | 155,300 |          | 825,000   |          | 0           |         |
|             | Orthieutri-Ferralic     | 155,300 | 155,300  | 825,000   | 825,000  | 372,100     | 279,075 |
|             | Cambisols               |         |          |           |          |             |         |
| M12         | Hapli-Anthric Umbrisols | 449,300 |          | 825,000   |          | 372,100     |         |
|             | Hapli-Orthieutric       | 449,300 | 449,300  | 825,000   | 825,000  | 372,100     | 372,100 |
|             | Regosols                |         |          |           |          |             |         |
| Cm1         | Humi-Endoleptic         | 449,300 |          | 825,000   |          | 138,100     |         |
|             | Regosols                |         |          |           |          |             |         |
|             | Haplic Phaeozems        | 449,300 |          | 825,000   |          | 372,100     |         |
|             | Hapli-Humic Umbrisols   | 155,300 | 337,580  | 825,000   | 825,000  | 372,100     | 297,220 |
| Cgm1        | Hapli-Orthidystric      | 449,300 |          | 275,000   |          | 138,100     |         |
|             | Cambisols               |         |          |           |          | _           |         |
|             | Hapli-Orthieutric       | 449,300 | 449,300  | 825,000   | 550,000  | 0           | 69,050  |
|             | Cambisols               |         |          |           |          |             |         |
| Cgk1        | Hapli-Hypereutric       | 155,300 |          | 275,000   |          | 138,100     |         |
|             | Regosols                | 110 200 | 0 <1 100 | 0.0.5.000 | < <0.000 | 070 100     | 201.000 |
| ****        | Hapli-Pachic Phaeozems  | 449,300 | 361,100  | 825,000   | 660,000  | 372,100     | 301,900 |
| KII         | Chromi-Ferralic         | 449,300 |          | 825,000   |          | 372,100     |         |
|             | Cambisols               | 155 200 | 272 000  | 0.05 000  | 0.05 000 | 120 100     | 221 700 |
|             | Chromi-Hyperdystric     | 155,300 | 272,900  | 825,000   | 825,000  | 138,100     | 231,700 |
| <b>W10</b>  | Acrisols                | 110 200 |          | 995 000   |          | 272 100     |         |
| <b>K</b> 12 | Hapli-Chromic Phaeozems | 449,300 | 110 200  | 825,000   | 550 000  | 372,100     | 272 100 |
|             | Epidystri-Cutanic       | 449,300 | 449,300  | 275,000   | 550,000  | 572,100     | 572,100 |
| <b>V</b> /1 | LUVISOIS                | 155 200 |          | 075 000   |          | 272 100     |         |
| V I         | Fluvia ola              | 155,500 |          | 825,000   |          | 572,100     |         |
|             | FIUVISOIS               | 440.200 | 202 200  | 925 000   | 925 000  | 272 100     | 272 100 |
|             | Hapii-Gleyic Phaeozems  | 449,300 | 302,300  | 823,000   | 825,000  | 372,100     | 372,100 |

## Table 14. Predicted gross margins [TSh/ha/yr] for low input rainfed cabage, potato and arabica coffee in southwestern Uluguru Mountains

|             |                               | CABBAGE    | ROUND POTATO | ARABICA    |
|-------------|-------------------------------|------------|--------------|------------|
| I MUs       | SOIL TYPE                     |            | RATING       | COFFEE     |
| G11         | Dystri-Lithic Leptosols       | n2         | S3           | n2         |
| 011         | Hyperferrali-Humic Umbrisols  | S3         | S3           | n2         |
|             | Hapli-Humic Umbrisols         | S3         | S3           | n2         |
|             | -                             |            |              |            |
| GI2         | Hapli-Humic Umbrisols         | S2         | S2           | S2         |
|             | Hapli-Orthidystric Cambisols  | S2         | S3           | S2         |
| G21         | Dystri-Lithic Leptosols       | <b>S</b> 2 | S2           | n2         |
|             | Epidystri-Ferralic Cambisols  | S2         | S2           | \$2        |
|             |                               |            |              |            |
| G22         | Eutri-Lithic Leptosols        | S2         | S2           | n2         |
|             | Hapli-Hypereutric Regosols    | <b>S</b> 2 | <b>S</b> 2   | <b>S</b> 2 |
| M11         | Eutri-Lithic Leptosols        | <b>S</b> 3 | S2           | n2         |
|             | Orthieutri-Ferralic Cambisols | <b>S</b> 3 | S2           | S2         |
| 2410        | ** ** * * * * * * *           |            |              |            |
| M12         | Hapli-Anthric Umbrisols       | S2         | S2           | S2         |
|             | Hapli-Orthieutric Regosols    | <b>S</b> 2 | <b>S</b> 2   | 82         |
| Cm1         | Humi-Endoleptic Regosols      | S2         | S2           | <b>S</b> 3 |
|             | Haplic Phaeozems              | S2         | S2           | S2         |
|             | Hapli-Humic Umbrisols         | <b>S</b> 3 | S2           | S2         |
| Com1        | Hanli-Orthidystric Cambisols  | \$2        | \$2          | \$3        |
| Cgiiii      | Hapli-Orthieutric Cambisols   | 52<br>S2   | S2<br>S2     | n2         |
|             | Huph Orthourie Cambisols      | 52         | 52           | 112        |
| Cgk1        | Hapli-Hypereutric Regosols    | S3         | <b>S</b> 3   | S3         |
|             | Hapli-Pachic Phaeozems        | S2         | S2           | S2         |
| <b>V</b> 11 | Chromi Forralio Combisols     | \$2        | \$2          | 52         |
| KII         | Chromi Hyperdystric Acrisols  | 52<br>53   | 52<br>52     | S2<br>S3   |
|             | emonii-Hyperdysuic Aensois    | 55         | 52           | 55         |
| K12         | Hapli-Chromic Phaeozems       | S2         | S2           | S2         |
|             | Epidystri-Cutanic Luvisols    | S2         | S3           | S2         |
| V1          | Hypereutri-Mollic Fluvisols   | \$3        | \$2          | \$2        |
|             | Hapli-Glevic Phaeozems        | \$2<br>\$2 | S2<br>S2     | S2         |
|             | impir Glegie i nueozenis      | ~ 1        | ~-           | ~-         |

# Table 15. Economic suitability classification for low input rainfed<br/>cabbage, round potato and arabica coffee in southwestern<br/>Uluguru Mountains

## 4.0 CONCLUSIONS AND RECOMMENDATIONS

## 4.1. Conclusions

The southwestern Uluguru area is mountainous characterised by strongly dissected plateau, mountain ridges and valley sides and incisions. Metamorphic rocks with banded pyroxene granulites, meta-anorthosite, meta-gabbroic anorthosite and metaanorthositic gabbro are the main rocks forming the main complex of the parent materials for the soils in the area.

Twelve land mapping units characterised by various soil complexes were identified in the southwestern Uluguru Mountains area. Parent materials and landforms largely control the characteristics and distribution of these soils. The soils developed from kaolinitic clays are complexes of deep to very deep, well drained clays. The soils developed from meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro are complexes of shallow to moderately deep, well drained clays to sandy clay loams overlying very deep saprolite. The soils developed from banded pyroxene granulites are complexes of very shallow to deep, somewhat excessively drained to well drained sandy clay loams to sandy loams overlying saprolite or rock. The soils developed from colluvium of diverse geological formations are complexes of shallow to very deep, somewhat excessively drained to well drained clays, clay loams and sandy clay loams. The soils on valleys are complexes of moderately deep to very deep, well drained to imperfectly drained clays and sandy clay loams. Poor physical soil conditions coupled with steep topography make the area susceptible to soil erosion. Generally the soils in the area have low soil fertility status.

The dominant soil groups classified according to FAO World Reference Base are Umbrisols, Phaeozems, Regosols, Cambisols, Leptosols, Luvisols, Fluvisols and Acrisols. Some important qualifiers, which were identified for separating reference soil groups including Phaeozems, Regosols and Cambisols into lower level units, are missing in the FAO World Reference Base priority listing. Such qualifiers include: **Ferralic** and **Humic** for soil group Phaeozems, **Ferralic** for soil group Regosols and **Humic** for soil group Cambisols.

Three major land utilisation types (LUTs) namely smallholder improved low input rainfed cabbage, round potato and smallholder low input rainfed arabica coffee were identified and evaluated in the study area. Land suitability classification indicates that, none of the land mapping units is highly suitable for all the studied land utilisation types.

Most of the land in study area (about 70%) is both physically and economically moderately suitable for all three studied land utilisation types. The remaining 30% are either marginally or not suitable for the production of the LUTs. The most limiting factors for the production of the three studied LUTs are rooting condition, poor soil fertility and soil erosion hazards.

The study demonstrated that ALES is a useful tool that provides automated procedures for land resources evaluation and hence an important tool in the formulation of land use plans.

## 4.2. Recommendations

Due to poor soil fertility in the area, it is apparent that most of the soils are likely to respond to mineral and organic fertilisers. Therefore, it is strongly recommended that research to determine rates and types of mineral and organic fertilisers should be carried out. The economics and social implications of both types of fertilisers should be investigated.

Appropriate agro-forestry farming systems such as alley cropping are recommended to supplement the existing ridge and bench terrace cultivation practices in the area in order to protect the lands from further erosion as well as to improve soil fertility.

Further improvement is needed in the FAO World Reference Base soil classification system to better suit the local conditions in Morogoro Rural District and other similar areas in Tanzania.

Cultivation of round potatoes is highly recommended as the best LUT in the southwestern Uluguru Mountains area followed by cabbage due to their high economic returns under the prevailing socio-economic conditions. Although arabica coffee can be produced in many places of the study area, the present economic returns for arabica coffee are not attractive. To improve the production of coffee in the area it is recommended that, the local co-operatives, improved marketing and storage services should be strengthened. Credit facilities and /or subsidies on agricultural inputs especially fertilisers is highly recommended.

Further research on land evaluation for mixed/intercropping smallholder farming is highly recommended. It is suggested that multidisplinary approaches towards automated land evaluation should be emphasised. Furthermore, research should be carried out to estimate optimum yields and input levels and how these change with fast changing land use types in the context of smallholder production.

Strong extension services are strongly recommended in order to train farmers on the use and application of fertilisers and pesticides.

Improvement on transport facilities including the use of cable vehicles in southwestern Uluguru Mountains is strongly recommended to ease the burden of carrying agricultural produce from one point to another using human labour. Feasibility of introducing such kind of innovation should be studied.

## **5.0 REFERENCES**

- Baize, D. (1993) Soil Science Analyses. A guide to current use. John Wiley & Sons Ltd. West Sussex. pp 192.
- Blake, G.R. and Hartge, K.H. (1986) Bulk density. In: *Methods of Soil Analysis*. Part 1. Physical and Mineralogical Methods. (*Edited by Klute, A.*) 2<sup>nd</sup> edition Agronomy No. 9. American Society of Agronomy, Inc. Madison. Wisconsin, USA. pp 363-375.
- Bray, R.H. and Kurtz, L.T. (1945) Determination of Total Organic and Available Forms of Phosphorus in Soils. *Soil Science* 59, 39 - 45.
- Bremner, J.M. and Mulvaney, C.S. (1982) Total Nitrogen. In: Methods of Soil Analysis. Part 2. (Edited by Page, A.L; Miller, R.H. and Keeney, D.R.) American Society of Agronomy. Monograph No. 9, Madison, Wisconsin. pp 595 - 624.
- Dent, D. and Young, A. (1981) *Soil Survey and Land Evaluation*. George Allen and Unwin, London, U. K. pp 278.
- FAO (1976) *A framework for land evaluation*. Soils Bulletin. 32, Food and Agriculture Organisation of the United Nations, Rome, Italy. pp 72.
- FAO (1984) *Land evaluation for forestry*. Forestry paper 48 Food and Agriculture Organisation of the United Nations, Rome, Italy.
- FAO (1990) Guideline for Soil Profile Description. 3<sup>rd</sup> edition. FAO, Rome. pp 66.
- FAO (1993) Agro-ecological assessment for national planning: the example of Kenya. Soil Resources, Management and Conservation Service, FAO Land and Water Development Division, FAO Soil Bulletin 67, Rome.
- FAO (1996) *Agro-ecological zoning: Guidelines*. Soil Resources, Management and conservation service, FAO Land and Water Development Division, FAO, Soil Bulletin 73, Rome, Italy.
- FAO (1998) World Reference Base for Soil Resources. World Soil Resources Reports No 84. FAO, ISRIC-AISS-IBG. pp 88.
- ILACO (1991) Agricultural compendium for rural development in the tropics and subtropics. Elsevier Science Publishers, Amsterdam. pp 740.
- Kilasara, M., Magoggo, J.P. and Msanya, B.M. (1993) Land resource management in Tanzania. Paper presented at the workshop on formulation of Faculty of Agriculture Research Programme up to the year 2000. Sokoine University of Agriculture, Morogoro, Tanzania.
- Kileo, E.P. (2000) Land Suitability Assessment of the Wami Plains in Morogoro, Tanzania with Respect to the Production of the Main Food Crops and Extensive Grazing. M.Sc. Thesis, Sokoine University of Agriculture, Morogoro, Tanzania.
- Kimaro, D.N. (1989) Potentials and Constraints of the Kilosa Area for Rainfed Agriculture with Emphasis on Maize. M.Sc thesis, ITC. Enschede, The Netherlands. pp 235.
- Kimaro, D.N. (1997) Land Resources Database for Land Use Planning at District Level in Tanzania. Paper presented at FAO workshop on land information system for land use planning in Tanzania using GIS 4-5 December.1997. Dar es salaam, Tanzania. pp 8.

- Kimaro, D.N. and Kips, Ph.A. (1991) Testing ALES in Tanzania: A case study in computerized physical and economic land suitability assessment for smallholder low-input maize. In: *Proceedings of the Second African Soil Science Society Conference on Soil and Water Management for Sustainable Productivity (Edited by Elgala, A. M; Parr, J. F; Hornick, S. B; Taha; T. A. and Simpson, M.E. 1993).* The Egyptian International Center for Agriculture, Cairo, Egypt, November 4-10, 1991. pp 325-335.
- Kimaro, D.N. and Msanya, B.M. (1999) Application of international computerized land evaluation systems to Tanzania conditions: A case study in Kilosa district. *Tanzanian Journal of Agricultural Science* (In press).
- Kisanga, D.R. (1992) Effect of Methods of Terracing on Some Physical and Chemical Properties of Soils of Mgeta, Morogoro, Tanzania. M.Sc. Thesis Sokoine University of Agriculture, Morogoro Tanzania. pp 144.
- London, J.R. (Ed.) (1991) Booker Tropical Soil Manual. A handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Longman Scientific & Technical Copublished in the USA with John Wiley and Sons, Inc. New York, pp. 474.
- Magoggo, J.P. (1991) SISTAN version 2: Soil Information System for Tanzania. User Manual and Reference Guide. National Soil Service, Tanga, Tanzania.
- McLean, E.O. (1982) Soil pH and lime requirement. In: *Methods of Soil Analysis, Part 2, (Edited by: Page, A.L; Miller, R.H. and Keeney, D.R).* American Society of Agronomy. Madison, Wisconsin, pp 199-224.
- Moberg, J.P., Msanya, B.M. and Kilasara, M. (1982) Pedological and edaphological properties of the soils of two soil associations in the Morogoro area, Tanzania. *Tropical Agriculture (Trinidad)*, Vol. 59, No. 2:139-148.
- Msanya, B.M. (1980) Study of the Soils of a Toposequence on Metasedimentary Rocks of the Morogoro Region, Tanzania, with Special Attention to Texture Determination and Soil Classification. M.Sc. thesis, The State University of Ghent, Belgium. pp 87.
- Msanya, B.M., Wickama, J.M., Kimaro, D.N; Magoggo, J.P. and Meliyo, J. L. (1996) Investigation of the environmental attributes for agricultural development in Kitanda village, Mbinga District, Tanzania. Technical Report No 5. Department of Soil Science, Faculty of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania and Ministry of Agriculture, National Soil Service, Agricultural Research Institute, Mlingano, Tanga, Tanzania.pp 38.
- Munsell Color Co. (1992) Munsell soil color charts. Baltimore, Maryland, USA.
- Murphy, J. and Riley, J.P. (1962) A Modified Single Solution Method for Determination of Phosphate in Natural Waters. Analytica Chemica Acta 27, 31 - 36.
- Mwango, S.B. (2000) Automated Land Evaluation for Alternative Uses in South Western Part of the Uluguru Mountains in Morogoro Rural District, Tanzania. MSc. Thesis, Sokoine University of Agriculture, Morogoro, Tanzania. pp. 182.

- National Soil Service (1986) Land Resources and Agricultural Development Potentials of Selected Areas in Tanzania. *Miscellaneous Paper Series No.M3* TARO - Agricultural research institute, Mlingano, Tanga, Tanzania.
- National Soil Service (1987) Laboratory Procedures for Routine Analysis, 2nd edition TARO Agricultural research institute, Mlingano, Tanga, Tanzania. pp. 59.
- National Soil Service (1990) *Laboratory Procedures for Routine Soil Analysis*, 3<sup>rd</sup> edition. Agricultural Research Institute, Mlingano Tanga, Tanzania. Miscellaneous Report M13.
- Nelson, D.W. and Sommers, L.E. (1982) Total carbon, organic carbon and organic matter. In: *Methods of Soil Analysis*. Part 2. Agronomy Monograph No. 9. 2nd edition (*Edited by Page, A.L; Miller, R.H. and Keeney, D.R.*) American Society of Agronomy. Madison. Wisconsin. pp. 539-579.
- Rossiter, D.G. (1995) Economic land evaluation: why and how. Soil Use and Management 11, 132 140.
- Rossiter, D.G. (1996) A theoretical framework for land evaluation. *Geoderma* 72, 165-190.
- Rossiter, D.G. and Van Wambeke, A.R. (1989) Automated Land Evaluation System: ALES version 2, User's Manual. Department of Agronomy, Cornell University, Ithaca, New York.
- Rossiter, D.G. and Van Wambeke, A.R. (1994) *Automated Land Evaluation System: ALES version 4.5, User's Manual.* Department of Soil, Crop and Atmospheric Science, Cornell University, Ithaca, New York.
- Sampson, D.N and Wright, A.E. (1964) *The Geology of the Uluguru Mountains*. Geology Survey of Tanzania Bulletin No. 37. pp. 69.
- Soil Survey Staff (1998) Keys to Soil Taxonomy. Soil conservation service, USDA. Washington D.C. pp 422.
- Sys, C., Van Ranst, E., Debaveye, J. and Beernaert, F. (1993) Land Evaluation. Part 3: Crop Requirements. Agricultural Publications No. 7. General Administration for Development Cooperation, Brussels, Belgium.
- Temple, P.H. (1972) Soil and Water Conservation Policies in the Uluguru Mountain, Tanzania. *Geografiska Annaler* 54 A (3-4), 110-123.
- Temple, P.H. and Rapp, A. (1972) Landslides in the Mgeta Area Western Uluguru Mountains, Tanzania. *Geografiska Annaler* 54 A (3-4), 157-193.
- United Republic of Tanzania (1992) National Soil and Water Conservation Programme (Draft report). Sectoral Planning Section, Ministry of Agriculture, Dar es Salaam, Tanzania.
- Van Donge, J.K. (1992) Agricultural Decline in Tanzania: the case of the Uluguru mountains. *African Affairs 91, 73 94*.
- Watanabe, F.S. and Olsen, S.R. (1965) Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO<sub>3</sub> Extracts from Soil. *Soil Science Society of America Proceedings 29, 677 678.*
- Wright, A.E. (1959) *Geological Survey of Tanganyika*. First edition. Geological Survey Department, Dodoma, Tanzania.

## 6.0 APPENDICES Appendix 1. Soil profile description and analytical data

 Profile number: MGP-1
 Mapping unit: Cm1
 Agro-ecol. zone:

 Region: Morogoro
 District: Morogoro rural

 Map sheet no. : 201/1
 Co-ordinates: 37° 36' 0.0" E/ 7° 1' 59.9" S

 Location: About 3 km from Bunduki mission to Langali

 Elevation
 : 1600 m asl. Parent material: colluvium derived from meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro.

 Landform: mountain; steeply dissected. Slope: 40 %; straight

 Surface characteristics :
 Erosion: severe. Deposition: none.

 Natural drainage class : well drained

Described by S.B. Mwango, B.M. Msanya, D.N. Kimaro and E.P. Kileo on 04/01/2000

Soils are moderately deep, well drained, very dark greyish brown to dark yellowish brown sandy clay loams, with thick very dark grey sandy clay loam topsoils.

Ap 0 - 20 cm: very dark greyish brown (10YR3/2) dry, very dark grey (10YR3/1) moist; sandy clay loam; soft dry, friable moist, slightly sticky and slightly plastic wet; moderate fine and medium subangular blocks; many fine pores; many fine and few medium roots; clear smooth boundary to

Bw 20 - 45 cm: dark brown (10YR3/3) dry, very dark greyish brown (10YR3/2) moist; sandy clay loam; slightly hard dry, friable moist, sticky and plastic wet; moderate fine and medium subangular blocks; many fine and few very fine pores; many very fine and few medium roots; gradual smooth boundary to

BC 45 - 75 cm: dark yellowish brown (10YR3/4) moist; sandy clay loam; slightly hard dry, friable moist, sticky and plastic wet; moderate fine and medium subangular blocks; common fine and few medium pores; very fine and medium roots; abrupt smooth boundary.

C 75 cm+: complex of meta-anorthosite, meta-gabbroic anorthosite and metaanorthositic gabbro saprolite.

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO,1998) :Haplic Phaeozems USDA Soil Taxonomy (Soil Survey Staff, 1998):Typic Hapludolls

#### ANALYTICAL DATA FOR PROFILE MGP-1

| Horizon                            | Ар   | Bw    | BC    |
|------------------------------------|------|-------|-------|
| Depth (cm)                         | 0-20 | 20-45 | 45-75 |
| Clay %                             | 22   | 25    | 24    |
| Silt %                             | 15   | 16    | 14    |
| Sand %                             | 63   | 59    | 62    |
| Texture class                      | SCL  | SCL   | SCL   |
| Bulk density g/cc                  | 1.3  | 1.5   | 1.7   |
| AWC mm/75cm                        | nd   | nd    | 92    |
| pH H <sub>2</sub> O 1:2.5          | 5.6  | 6.2   | 6.7   |
| pH KCl 1:2.5                       | 4.2  | 4.2   | 5.4   |
| EC 1:2.5 mS/cm                     | nd   | nd    | nd    |
| Organic C %                        | 5.06 | 2.69  | 0.94  |
| Total N %                          | 0.51 | 0.26  | 0.08  |
| C/N                                | 9.9  | 10.4  | 11.8  |
| Avail. P Bray-1 mg/kg              | 4.4  | 2.3   | 1.8   |
| Avail. P Olsen mg/kg               | nd   | nd    | nd    |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 17.6 | 20.0  | 12.6  |
| Exch. Ca cmol(+)/kg                | 7.1  | 11.7  | 9.8   |
| Exch. Mg cmol(+)/g                 | 3.1  | 1.46  | 1.44  |
| Exch. K cmol(+)/kg                 | 0.15 | 0.06  | 0.04  |
| Exch. Na cmol(+)/kg                | 0.09 | 0.18  | 0.16  |
| Exch. H cmol(+)/kg                 | 0.11 | nd    | nd    |
| Exch. Al cmol(+)/kg                | 0.1  | nd    | nd    |
| TEB cmol(+)/kg                     | 10.4 | 13.4  | 11.5  |
| Al saturation %                    | 1.0  | nd    | nd    |
| Exch. acidity cmol(+)/kg           | 0.2  | nd    | nd    |
| Base saturation %                  | 60.7 | 67.3  | 90.6  |
| CEC clay cmol(+)/kg                | 0.7  | 42.2  | 39    |
| Cu mg/kg                           | 0.8  | 0.6   | 0.2   |
| Fe mg/kg                           | 67.9 | 45.2  | 17.1  |
| Mn mg/kg                           | 27.2 | 11.6  | 18.3  |
| Zn mg/kg                           | 0.4  | 0.3   | 0.2   |
| B mg/kg                            | 0.07 | 0.05  | 0.04  |

 Profile number : MGP-2
 Mapping unit: K11
 Agro-ecol. zone:

 Region
 : Morogoro:
 District
 : Morogoro rural

 Map sheet no. : 201/1:
 Co-ordinates
 : 37° 34' 18.5" E/ 7° 5' 37.7" S

 Location
 : Vinyemba about 2km from Nyandira along the road to Kibuko

 Elevation
 : 1640 m asl. Parent material: kaolinitic clays.

 Landform: mountain; steeply dissected. Slope: 15 %; convex

 Surface characteristics :
 Erosion: . Deposition: none.

 Natural drainage class : well drained

Described by B.M. Msanya, S.B. Mwango, D.N. Kimaro and E.P. Kileo on 18/12/99

Soils are very deep, well drained, strong brown clays to silt clays, with thick dark brown clay topsoils.

Ap 0 - 18 cm: dark brown (7.5YR4/4) moist; clay; friable moist, sticky and plastic wet; weak fine and medium crumbs; many fine pores; few medium and many fine roots; abrupt smooth boundary to

AB 18 - 46 cm: strong brown (7.5YR5/6) moist; clay; firm moist, sticky and plastic wet; moderate fine and medium subangular blocks; many fine pores; many fine roots; gradual smooth boundary to

Bw 46 - 85 cm: strong brown (7.5YR5/6) moist; clay; firm moist, sticky and plastic wet; strong fine and medium subangular blocks; many fine and few medium pores; few small irregular fresh quartz fragments; few fine and coarse roots; clear smooth boundary to

BC 85 - 130 cm: strong brown (7.5YR5/8) moist; silt clay; friable moist, sticky and plastic wet; moderate fine and medium subangular blocks; many fine pores; very fine roots

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Chromi-Ferralic Cambisols (Dystric) USDA Soil Taxonomy (Soil Survey Staff, 1998): Typic Dystrudepts

#### ANALYTICAL DATA FOR PROFILE MGP-2

| Horizon                            | Ар   | AB    | Bw    | BC     |
|------------------------------------|------|-------|-------|--------|
| Depth (cm)                         | 0-18 | 18-46 | 46-85 | 85-130 |
| Clay %                             | 56   | 54    | 48    | 41     |
| Silt %                             | 28   | 34    | 37    | 40     |
| Sand %                             | 16   | 12    | 15    | 19     |
| Texture class                      | С    | С     | С     | SiC    |
| Bulk density g/cc                  | 1.1  | 1.1   | 1.1   | 1.2    |
| AWC mm/m                           | nd   | nd    | nd    | 104.1  |
| pH H <sub>2</sub> O 1:2.5          | 6.2  | 6.4   | 5.8   | 6.1    |
| pH KCl 1:2.5                       | 5.2  | 4.9   | 4.3   | 4.2    |
| EC 1:2.5 mS/cm                     | nd   | nd    | nd    | nd     |
| Organic C %                        | 6.73 | 0.81  | 0.50  | 0.18   |
| Total N %                          | 0.28 | 0.10  | 0.04  | 0.01   |
| C/N                                | 23.9 | 8.2   | 13.6  | 21.2   |
| Avail. P Bray-1 mg/kg              | 1.24 | 0.11  | 0.11  | 0.07   |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 25   | 14.0  | 13.2  | 12.8   |
| Exch. Ca cmol(+)/kg                | 10.0 | 4.7   | 3.9   | 3.1    |
| Exch. Mg cmol(+)/g                 | 2.4  | 2.6   | 2.1   | 1.9    |
| Exch. K cmol(+)/kg                 | 0.08 | 0.04  | 0.01  | 0.04   |
| Exch. Na cmol(+)/kg                | 0.14 | 0.12  | 0.14  | 0.27   |
| Exch. H cmol(+)/kg                 | nd   | nd    | 0.05  | nd     |
| Exch. Al cmol(+)/kg                | nd   | nd    | 0.05  | nd     |
| TEB cmol(+)/kg                     | 12.7 | 7.4   | 6.2   | 5.3    |
| Al saturation %                    | nd   | nd    | 0.8   | nd     |
| Exch. acidity cmol(+)/kg           | nd   | nd    | 0.1   | nd     |
| Base saturation %                  | 50.6 | 52.7  | 46.6  | 41.3   |
| CEC clay cmol(+)/kg                | 3.2  | 21.0  | 23.9  | 29.9   |
| Cu mg/kg                           | 0.7  | 0.2   | 0.4   | 0.4    |
| Fe mg/kg                           | 37.5 | 21.1  | 12.5  | 9.1    |
| Mn mg/kg                           | 52.7 | 20.7  | 4.1   | 0.7    |
| Zn mg/kg                           | 0.28 | 0.09  | 0.04  | 0.14   |
| B mg/kg                            | 0.10 | 0.04  | 0.02  | 0.03   |

Profile number : MGP-3 Mapping unit: K11 Agro-ecol. zone: Region : Morogoro District : Morogoro rural Map sheet no. : 201/1 Co-ordinates : 37° 33' 46.8" E/ 7° 5' 40.2" S Location : Milengwe about 1km west of Nyandira-Kibuko road Elevation : 1580 m asl. Parent material: kaolinitic clays. Landform: mountain; steeply dissected. Slope: 2 %; convex Surface characteristics : Erosion: . Deposition: none. Natural drainage class : well drained

Described by B.M. Msanya, S.B. Mwango, D.N. Kimaro and E.P. Kileo on 18/12/99

Soils are very deep, well drained, strong brown to reddish yellow clays to clay loams, with very thic black clay topsoils.

Ap 0 - 18/25 cm: black (7.5YR2.5/1) moist; clay; friable moist, slightly sticky and slightly plastic wet; weak medium subangular blocks; many fine pores; many fine roots; abrupt wavy boundary to

Bt 18/25 - 85 cm: strong brown (7.5YR5/6) moist; clay; friable moist, sticky and plastic wet; moderate fine and medium subangular blocks; continuous thin clay cutans; many fine pores; few medium angular fresh quartz fragments; many fine roots; gradual smooth boundary to

BC 85 - 193 cm: reddish yellow (7.5YR6/8) moist; clay loam; friable moist, sticky and plastic wet; moderate fine and medium angular blocks; patchy thin clay cutans; many fine pores; few medium angular fresh quartz fragments; very fine roots

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO,1998): Chromi-Hyperdystric Acrisols (Haplic) USDA Soil Taxonomy (Soil Survey Staff, 1998): Typic Hapludults

#### ANALYTICAL DATA FOR PROFILE MGP-3

| Horizon                            | Ар      | Bt       | BC     |
|------------------------------------|---------|----------|--------|
| Depth (cm)                         | 0-18/25 | 18/25-85 | 85-193 |
| Clay %                             | 54      | 60       | 38     |
| Silt %                             | 30      | 33       | 37     |
| Sand %                             | 16      | 7        | 25     |
| Texture class                      | С       | С        | CL     |
| Bulk density g/cc                  | 1.1     | 1.2      | 1.3    |
| AWC mm/m                           | nd      | nd       | 101.3  |
| pH H <sub>2</sub> O 1:2.5          | 5.5     | 5.4      | 5.8    |
| pH KCl 1:2.5                       | 4.3     | 4.0      | 4.0    |
| EC 1:2.5 mS/cm                     | nd      | nd       | nd     |
| Organic C %                        | 5.17    | 0.83     | 0.30   |
| Total N %                          | 0.37    | 0.06     | 0.01   |
| C/N                                | 13.9    | 12.9     | 35.4   |
| Avail. P Bray-1 mg/kg              | 2.2     | 0.6      | 0.9    |
| Avail. P Olsen mg/kg               | nd      | nd       | nd     |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 24.4    | 10.4     | 8      |
| Exch. Ca cmol(+)/kg                | 2.6     | 0.9      | 0.7    |
| Exch. Mg cmol(+)/g                 | 0.7     | 0.5      | 0.2    |
| Exch. K cmol(+)/kg                 | 0.11    | 0.04     | 0.04   |
| Exch. Na cmol(+)/kg                | 0.17    | 0.07     | 0.19   |
| Exch. H cmol(+)/kg                 | 0.3     | 0.2      | 0.1    |
| Exch. Al cmol(+)/kg                | 0.7     | 1.1      | 1      |
| TEB cmol(+)/kg                     | 3.6     | 1.5      | 1.1    |
| Al saturation %                    | 16.3    | 42.3     | 47.6   |
| Exch. acidity cmol(+)/kg           | 1.00    | 1.3      | 1.1    |
| Base saturation %                  | 17.5    | 14.4     | 13.9   |
| CEC clay cmol(+)/kg                | 12.2    | 12.6     | 18.4   |
| Cu mg/kg                           | 0.4     | 0.3      | 0.3    |
| Fe mg/kg                           | 30.7    | 36.8     | 6.5    |
| Mn mg/kg                           | 8.20    | 0.57     | 0.08   |
| Zn mg/kg                           | 0.28    | 0.05     | 0.06   |
| B mg/kg                            | 0.09    | 0.06     | 0.07   |

 Profile number : MGP-4
 Mapping unit: KI2

 Agro-ecol. zone:
 Region : Morogoro: District : Morogoro rural

 Map sheet no. : 201/1
 Co-ordinates : 37° 33' 41.8" E/ 7° 5' 38.8" S

 Location : about 3km from Nyandira to Kibuko and 1km west of the road
 Elevation : 1550 m asl. Parent material: kaolinitic clays.

 Landform: mountain; steeply dissected. Slope: 62 %; straight
 Surface characteristics : Erosion: . Deposition: none.

 Natural drainage class : well drained
 Surface

Described by D.N. Kimaro, S.B. Mwango, B.M. Msanya and E.P. Kileo on 18/12/99 Soils are very deep, well drained, strong brown to yellowish brown clay loams to clays with thick dark greyish brown clay topsoils

Ap 0 - 15/18 cm: dark greyish brown (10YR4/2) moist; clay; friable moist, sticky and plastic wet; weak coarse subangular blocks; many fine pores; few medium angular fresh quartz fragments; and few fine roots; abrupt wavy boundary to

Bt 15/18 - 57/63 cm: strong brown (7.5YR4/6) moist; clay; friable moist, very sticky and very plastic wet; moderate fine and medium subangular blocks; continuous thin clay cutans; few medium and many fine pores; few medium angular fresh quartz fragments; very fine roots; gradual wavy boundary to

CB 57/63 - 130/140 cm: yellowish brown (10YR5/4) moist; clay loam; friable moist, sticky and plastic wet; weak medium and coarse subangular blocks; many very fine pores; few medium angular fresh quartz fragments; medium and very fine roots; diffuse wavy boundary to

C 130/140 - 235 cm: strong brown (7.5YR5/6) moist; sand loam; many very fine pores; very fine roots saprolite containing meta-anorthosite, meta-gobbroic anorthosite and meta-anorthositic gabbro.

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Epidystri-Cutanic Luvisols (Haplic) USDA Soil Taxonomy (Soil Survey Staff, 1998): Inceptic Hapludalfs

#### ANALYTICAL DATA FOR PROFILE MGP-4

| Horizon                            | Ар      | Bt          | СВ            | С            |
|------------------------------------|---------|-------------|---------------|--------------|
| Depth (cm)                         | 0-15/18 | 15/18-57/63 | 57/63-130/140 | 130/140-235+ |
| Clay %                             | 62      | 66          | 32            | 12           |
| Silt %                             | 32      | 31          | 46            | 15           |
| Sand %                             | 6       | 3           | 22            | 73           |
| Texture class                      | С       | С           | CL            | SL           |
| Bulk density g/cc                  | 1.1     | 1.2         | 1.3           | 1.3          |
| AWC mm/m                           | nd      | nd          | 77.2          | nd           |
| pH H <sub>2</sub> O 1:2.5          | 5.6     | 6.4         | 6.8           | 6.6          |
| pH KCl 1:2.5                       | 4.4     | 5.0         | 4.8           | 4.4          |
| Organic C %                        | 5.50    | 0.46        | 0.32          | 0.04         |
| Total N %                          | 0.19    | 0.06        | 0.02          | 0.02         |
| C/N                                | 28.9    | 7.9         | 20.6          | 2.6          |
| Avail. P Bray-1 mg/kg              | 1.6     | 1.5         | 6.8           | 131.6        |
| Avail. P Olsen mg/kg               | nd      | nd          | nd            | nd           |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 22.12   | 21.2        | 9.2           | 12.0         |
| Exch. Ca cmol(+)/kg                | 4.3     | 4.1         | 3.9           | 1.6          |
| Exch. Mg cmol(+)/g                 | 2.0     | 2.2         | 2.4           | 1.5          |
| Exch. K cmol(+)/kg                 | 0.06    | 0.04        | 0.04          | 0.06         |
| Exch. Na cmol(+)/kg                | 0.05    | 0.05        | 0.07          | 0.05         |
| Exch. H cmol(+)/kg                 | nd      | nd          | nd            | nd           |
| Exch. Al cmol(+)/kg                | nd      | nd          | nd            | nd           |
| TEB cmol(+)/kg                     | 6.4     | 6.3         | 6.3           | 3.3          |
| Al saturation %                    | nd      | nd          | nd            | nd           |
| Exch. acidity cmol(+)/kg           | nd      | nd          | nd            | nd           |
| Base saturation %                  | 28.9    | 29.7        | 68.7          | 27.2         |
| CEC clay cmol(+)/kg                | 5.1     | 29.7        | 25.3          | 98.9         |
| Cu mg/kg                           | 0.4     | 0.4         | 0.6           | 0.1          |
| Fe mg/kg                           | 46.2    | 16.9        | 22.5          | 31.1         |
| Mn mg/kg                           | 140.1   | 22.7        | 2.8           | 0.3          |
| Zn mg/kg                           | 0.52    | 0.08        | 0.04          | 0.01         |
| B mg/kg                            | 0.05    | 0.03        | 0.01          | 0.02         |

Profile number : MGP-5 Mapping unit: Cm1 Agro-ecol. zone: Region : Morogoro District : Morogoro rural Map sheet no. : 201/1 Co-ordinates : 37° 34' 51.6" E/ 7° 4' 9.8" S Location : Kidongo chekundu about 2km from Nyandira to Langali Elevation : 1580 m asl. Parent material: meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro. Landform: mountain; steeply dissected. Slope: 58 %; straight Surface characteristics : Stones: 10 % Erosion: . Deposition: none. Natural drainage class : well drained

Described by B.M. Msanya, E.P. Kileo, D.N. Kimaro and S.B. Mwango on 20/12/99

Soils are shallow, well drained, very dark grey clays over reddish yellow to very pale brown clay loam to loam saprolite of meta-anorthositic and meta-gabbroic rocks.

Ah 0 - 25/30 cm: very dark grey (5YR3/1) moist; bouldery clay; friable moist, slightly sticky and slightly plastic wet; moderate coarse and medium subangular blocks; many fine and few medium pores; few small spherical fresh quartz fragments; many fine and very fine roots; clear wavy boundary to

C1 25/30 - 95/110 cm: reddish yellow (7.5YR6/6) moist; clay loam; friable moist, slightly sticky and slightly plastic wet; structureless massive; many very fine and fine pores; very few small spherical fresh quartz fragments; few fine and very fine roots; clear wavy boundary to

C2 95/110 - 160 cm: very pale brown (10YR8/3) moist; loam; friable moist, nonsticky and non-plastic wet; structureless massive; many very fine pores; few fine and very fine roots.

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Hapli-Humic Umbrisols USDA Soil Taxonomy (Soil Survey Staff, 1998): Typic Udorthents

ANALYTICAL DATA FOR PROFILE MGP-5

| Horizon                            | Ah      | C1           | C2          |
|------------------------------------|---------|--------------|-------------|
| Depth (cm)                         | 0-25/30 | 25/30-95/110 | 95/110-160+ |
| Clay %                             | 52      | 32           | 18          |
| Silt %                             | 26      | 43           | 40          |
| Sand %                             | 22      | 25           | 42          |
| Texture class                      | С       | CL           | L           |
| Bulk density g/cc                  | 1.1     | 1.2          | 1.2         |
| AWC mm/m                           | nd      | nd           | 103.3       |
| pH H <sub>2</sub> O 1:2.5          | 5.5     | 5.6          | 6.0         |
| pH KCl 1:2.5                       | 4.5     | 4.0          | 4.0         |
| Organic C %                        | 6.18    | 0.26         | 0.20        |
| Total N %                          | 0.2     | 0.02         | 0.01        |
| C/N                                | 33.7    | 13.6         | 40.4        |
| Avail. P Bray-1 mg/kg              | 4.0     | 0.7          | 1.8         |
| Avail. P Olsen mg/kg               | nd      | nd           | nd          |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 23.1    | 10.0         | 9.2         |
| Exch. Ca cmol(+)/kg                | 4.6     | 2.6          | 3.6         |
| Exch. Mg cmol(+)/g                 | 1.7     | 0.8          | 0.8         |
| Exch. K cmol(+)/kg                 | 0.4     | 0.04         | 0.06        |
| Exch. Na cmol(+)/kg                | 0.14    | 0.17         | 0.23        |
| Exch. H cmol(+)/kg                 | 0.08    | 0.15         | 0.10        |
| Exch. Al cmol(+)/kg                | 0.08    | 0.55         | 0.15        |
| TEB cmol(+)/kg                     | 6.8     | 3.6          | 4.7         |
| Al saturation %                    | 1.2     | 13.3         | 3.1         |
| Exch. acidity cmol(+)/kg           | 0.15    | 0.70         | 0.25        |
| Base saturation %                  | 29.4    | 35.9         | 50.7        |
| CEC clay cmol(+)/kg                | 3.6     | 28.5         | 47.3        |
| Cu mg/kg                           | 0.65    | 0.46         | 0.14        |
| Fe mg/kg                           | 28.0    | 5.8          | 3.8         |
| Mn mg/kg                           | 36.6    | 1.2          | 0.7         |
| Zn mg/kg                           | 0.09    | 0.05         | 0.004       |
| B mg/kg                            | 0.05    | 0.04         | 0.01        |

Profile number : MGP-6 Mapping unit: G11 Agro-ecol. zone: Region : Morogoro District : Morogoro rural Map sheet no. : 201/1 Co-ordinates : 37° 37' 3.4" E/ 7° 6' 31.7" S Location : Lukwangule plateau Elevation : 2620 m asl. Parent material: banded pyroxene granulites. Landform: plateau; rolling. Slope: 35 %; straight Surface characteristics : Stones: 2 % Erosion: severe. Deposition: none. Natural drainage class: somewhat excessively drained.

Described by B.M. Msanya, E.P. Kileo, D.N. Kimaro and S.B. Mwango on 19/12/99

Soils are shallow, well drained, black sandy clay loams over slightly weathering rock.

Ah 0 - 24/30 cm: black (5YR2.5/1) moist; slightly stony sandy clay loam; friable moist, non-sticky and non-plastic wet; moderate coarse subangular blocks and medium angular blocks; many fine and very fine pores; few medium spherical weathered feldspar fragments; many fine and few coarse roots; clear wavy boundary to

CR 24/30 - 100 cm+: banded pyroxene granulites saprolite, slightly weathered, with original rock structures.

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Hapli-Humic Umbrisols USDA Soil Taxonomy (Soil Survey Staff, 1998): Typic Udorthents

#### ANALYTICAL DATA FOR PROFILE MGP-6

| Horizon                            | Ah      | CR         |
|------------------------------------|---------|------------|
| Depth (cm)                         | 0-24/30 | 24/30-100+ |
| Clay %                             | 20      | 10         |
| Silt %                             | 20      | 17         |
| Sand %                             | 60      | 73         |
| Texture class                      | SCL     | SL         |
| Bulk density g/cc                  | 1.1     | nd         |
| AWC mm/30cm                        | 19.8    | nd         |
| pH H <sub>2</sub> O 1:2.5          | 5.1     | 5.6        |
| pH KCl 1:2.5                       | 4.1     | 4.3        |
| Organic C %                        | 10.9    | 0.25       |
| Total N %                          | 0.54    | 0.01       |
| C/N                                | 20.1    | 25         |
| Avail. P Bray-1 mg/kg              | 0.8     | 0.2        |
| Avail. P Olsen mg/kg               | nd      | nd         |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 38.4    | 5.9        |
| Exch. Ca cmol(+)/kg                | 0.15    | 0.02       |
| Exch. Mg cmol(+)/g                 | 0.23    | 0.03       |
| Exch. K cmol(+)/kg                 | 0.13    | 0.01       |
| Exch. Na cmol(+)/kg                | 0.09    | 0.03       |
| Exch. H cmol(+)/kg                 | 0.15    | 0.02       |
| Exch. Al cmol(+)/kg                | 1.75    | 0.03       |
| TEB cmol(+)/kg                     | 0.6     | 0.09       |
| Al saturation %                    | 74.5    | 25         |
| Exch. acidity cmol(+)/kg           | 1.9     | 0.04       |
| Base saturation %                  | 1.6     | 1.5        |
| CEC clay cmol(+)/kg                | 4.1     | 50.4       |
| Cu mg/kg                           | 1.6     | 0.12       |
| Fe mg/kg                           | 33.9    | 23.6       |
| Mn mg/kg                           | 0.28    | 0.09       |
| Zn mg/kg                           | 0.23    | 0.04       |
| B mg/kg                            | 0.11    | 0.03       |

Profile number : MGP-7 Mapping unit: G12 Agro-ecol. zone: Region : Morogoro District : Morogoro rural Map sheet no. : 201/1 Co-ordinates : 37° 36' 20.2" E/ 7° 6' 3.2" S Location : Urindi (Forest reserve) Elevation : 2200 m asl. Parent material: banded pyroxene granulites. Landform: plateau; hilly. Slope: 59 %; straight Surface characteristics : Outcrops: 5 % Erosion: severe. Deposition: none. Natural drainage class : well drained

Described by B.M. Msanya, E.P. Kileo, D.N. Kimaro and S.B. Mwango on 19/12/99

Soils are deep, well drained, dark yellowish brown sand loams, with very thick very dark brown sandy loam topsoils.

O 0 - 40/50 cm:; many fine and medium roots; clear wavy boundary to

Ah 40/50 - 95 cm: very dark brown (10YR2/2) moist; sandy loam; friable moist, non-sticky and non-plastic wet; strong fine and very fine subangular blocks; many very fine and fine pores; few medium irregular fresh quartz fragments; many fine and few medium roots; clear smooth boundary to

Bw 95 - 150 cm: dark yellowish brown (10YR3/4) moist; sandy loam; friable moist, non-sticky and non-plastic wet; moderate fine and medium subangular blocks; many very fine pores; frequent medium irregular fresh quartz fragments; few coarse and very fine roots; clear smooth boundary to

CR 150 cm +: banded pyroxene granulites saprolite, slightly weathered, with original rock structures.

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Hapli-Humic Umbrisols USDA Soil Taxonomy (Soil Survey Staff, 1998): Humic Dystrudepts

#### ANALYTICAL DATA FOR PROFILE MGP-7

| Horizon                            | 0       | Ah       | Bw      |
|------------------------------------|---------|----------|---------|
| Depth (cm)                         | 0-40/50 | 40/50-95 | 95-150+ |
| Clay %                             | nd      | 16       | 12      |
| Silt %                             | nd      | 20       | 8       |
| Sand %                             | nd      | 64       | 80      |
| Texture class                      | nd      | SL       | SL      |
| Bulk density g/cc                  | nd      | 1.1      | 1.5     |
| AWC mm/45cm                        | nd      | nd       | 34.8    |
| pH H <sub>2</sub> O 1:2.5          | nd      | 4.8      | 5.3     |
| pH KCl 1:2.5                       | nd      | 3.8      | 4.5     |
| EC 1:2.5 mS/cm                     | nd      | nd       | nd      |
| Organic C %                        | nd      | 11.3     | 1.4     |
| Total N %                          | nd      | 0.76     | 0.03    |
| C/N                                | nd      | 14.8     | 47.1    |
| Avail. P Bray-1 mg/kg              | nd      | 7.5      | 7.8     |
| Avail. P Olsen mg/kg               | nd      | nd       | nd      |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | nd      | 40.0     | 8.0     |
| Exch. Ca cmol(+)/kg                | nd      | 0.78     | 0.08    |
| Exch. Mg cmol(+)/g                 | nd      | 0.66     | 0.09    |
| Exch. K cmol(+)/kg                 | nd      | 0.22     | 0.01    |
| Exch. Na cmol(+)/kg                | nd      | 0.10     | 0.02    |
| Exch. H cmol(+)/kg                 | nd      | 0.75     | 0.08    |
| Exch. Al cmol(+)/kg                | nd      | 4.10     | 0.38    |
| TEB cmol(+)/kg                     | nd      | 1.75     | 0.21    |
| Al saturation %                    | nd      | 70.1     | 64.4    |
| Exch. acidity cmol(+)/kg           | nd      | 4.85     | 0.45    |
| Base saturation %                  | nd      | 4.38     | 2.60    |
| CEC clay cmol(+)/kg                | nd      | 6.8      | 26.8    |
| Cu mg/kg                           | nd      | 0.67     | 0.21    |
| Fe mg/kg                           | nd      | 214.9    | 30.5    |
| Mn mg/kg                           | nd      | 0.15     | 0.19    |
| Zn mg/kg                           | nd      | 0.09     | 0.03    |
| B mg/kg                            | nd      | 0.17     | 0.03    |

 Profile number : MGP-8
 Mapping unit: Cgk1

 Agro-ecol. zone:
 Region : Morogoro

 District : Morogoro rural
 Map sheet no. : 201/1

 Co-ordinates : 37° 35' 27.6" E/ 7° 5' 36.2" S
 Location : Mkongoro (about 2.5 km from Nyandira along the road to Tchenzema)

 Elevation : 1680 m asl. Parent material: colluvium derived from banded pyroxene granulites, in places kaolinitic clays
 Landform: mountain; steeply dissected. Slope: 47 %; straight

 Surface characteristics : Stones: 2 % Erosion: . Deposition: none.
 Natural drainage class : somewhat excessively drained.

Described by B.M. Msanya, E.P. Kileo, S.B. Mwango and D.N. Kimaro on 20/12/99

Soils are moderately deep, well drained, pale yellow sandy loams to sandy clay loams over sandy loam saprolite.

Ah 0 - 45 cm: pale yellow (2.5Y7/4) moist; bouldery sandy loam to sandy clay loam; friable moist, slightly sticky and slightly plastic wet; moderate medium and coarse subangular blocks; many fine and few medium pores; few small spherical fresh quartz fragments; many fine and few coarse roots; clear smooth boundary to

C 45 - 185 cm: sandy loam; friable moist, non-sticky and non-plastic wet; structureless massive; many very fine pores; fine and very fine roots saprolite containing meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro.

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Hapli-Hypereutric Regosols USDA Soil Taxonomy (Soil Survey staff, 1998): Typic Udorthents

#### ANALYTICAL DATA FOR PROFILE MGP-8

| Horizon                            | Ah     | С       |
|------------------------------------|--------|---------|
| Depth (cm)                         | 0-45   | 45-185+ |
| Clay %                             | 20     | 12      |
| Silt %                             | 24     | 14      |
| Sand %                             | 56     | 74      |
| Texture class                      | SL-SCL | SL      |
| Bulk density g/cc                  | 1.1    | 1.7     |
| AWC mm/m                           | nd     | 131.7   |
| pH H <sub>2</sub> O 1:2.5          | 5.6    | 6.7     |
| pH KCl 1:2.5                       | 3.3    | 3.2     |
| EC 1:2.5 mS/cm                     | nd     | nd      |
| Organic C %                        | 0.14   | 0.06    |
| Total N %                          | 0.003  | 0.001   |
| C/N                                | 49.5   | 42.4    |
| Avail. P Bray-1 mg/kg              | 5.4    | 5.4     |
| Avail. P Olsen mg/kg               | nd     | nd      |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 8      | 3.4     |
| Exch. Ca cmol(+)/kg                | 7.8    | 10.7    |
| Exch. Mg cmol(+)/g                 | 0.9    | 0.5     |
| Exch. K cmol(+)/kg                 | 0.13   | 0.06    |
| Exch. Na cmol(+)/kg                | 0.14   | 0.20    |
| Exch. H cmol(+)/kg                 | 0.35   | nd      |
| Exch. Al cmol(+)/kg                | 1.25   | nd      |
| TEB cmol(+)/kg                     | 8.9    | 11.4    |
| Al saturation %                    | 12.3   | nd      |
| Exch. acidity cmol(+)/kg           | 1.6    | nd      |
| Base saturation %                  | 99.2   | 356.4   |
| CEC clay cmol(+)/kg                | 37.6   | 26.6    |
| Cu mg/kg                           | 0.7    | 0.19    |
| Fe mg/kg                           | 15.2   | 11.0    |
| Mn mg/kg                           | 1.0    | 4.7     |
| Zn mg/kg                           | 0.24   | 0.07    |
| B mg/kg                            | 0.03   | 0.04    |

 Profile number : MGP-9
 Mapping unit: G22

 Agro-ecol. zone:
 Region

 Region
 : Morogoro

 District
 : Morogoro rural

 Map sheet no.
 : 201/1

 Co-ordinates
 : 37° 34' 1.6" E/ 7° 1' 41.9" S

 Location
 : At the junction to Tandari along Morogoro-Mgeta road

 Elevation
 : 1056 m asl. Parent material: banded pyroxene granulites.

 Landform: mountain; hilly. Slope: 15 %; straight

 Surface characteristics : Stones: 5 % Erosion: . Deposition: none.

 Natural drainage class : well drained

Described by S.B. Mwango, E.P. Kileo, B.M. Msanya and D.N. Kimaro on 01/03/00

Soils are shallow, well drained, black sandy clay loams over dark brown saprolite.

Ap 0 - 25/30 cm: very dark brown (7.5YR2.5/2) dry, black (7.5YR2.5/1) moist; slightly stony sandy clay loam; slightly hard dry, friable moist, sticky and plastic wet; strong fine and medium subangular blocks; many fine and few medium pores; few small irregular fresh feldspar fragments; many fine and medium roots; clear wavy boundary to

C1 25/30 - 80/110 cm: dark brown (7.5YR3/3) dry, dark brown (7.5YR3/2) moist; sandy clay loam; hard dry, friable moist, sticky and plastic wet; structureless massive; many fine and medium pores; frequent medium irregular weathered feldspar fragments; very fine and few fine roots; gradual wavy boundary to

C2 80/110 - 180 cm: sandy loam; slightly hard dry, friable moist, non-sticky and nonplastic wet; structureless massive; many fine pores; very fine roots

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Hapli-Hypereutric Regosols USDA Soil Taxonomy (Soil Survey Staff, 1998): Typic Udorthents

#### ANALYTICAL DATA FOR PROFILE MGP -9

| Horizon                            | Ар      | C1           | C2          |
|------------------------------------|---------|--------------|-------------|
| Depth (cm)                         | 0-25/30 | 25/30-80/110 | 80/110-180+ |
| Clay %                             | 35      | 20           | 14          |
| Silt %                             | 17      | 13           | 5           |
| Sand %                             | 48      | 67           | 81          |
| Texture class                      | SCL     | SCL          | SL          |
| Bulk density g/cc                  | 1.3     | 1.8          | 1.9         |
| AWC mm/m                           | nd      | nd           | 143.4       |
| pH H <sub>2</sub> O 1:2.5          | 6.6     | 7.0          | 7.4         |
| pH KCl 1:2.5                       | 4.7     | 4.6          | 4.3         |
| EC 1:2.5 mS/cm                     | nd      | 0.02         | 0.02        |
| Organic C %                        | 1.78    | 0.20         | 0.12        |
| Total N %                          | 0.13    | 0.022        | 0.003       |
| C/N                                | 14.0    | 8.8          | 42.4        |
| Avail. P Bray-1 mg/kg              | 3.8     | 1.9          | 0.8         |
| Avail. P Olsen mg/kg               | nd      | 2.3          | 1.3         |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 17.8    | 13.2         | 8.4         |
| Exch. Ca cmol(+)/kg                | 9.2     | 8.4          | 7.1         |
| Exch. Mg cmol(+)/g                 | 5.1     | 4.5          | 4.0         |
| Exch. K cmol(+)/kg                 | 1.02    | 0.13         | 0.06        |
| Exch. Na cmol(+)/kg                | 0.13    | 0.04         | 0.05        |
| Exch. H cmol(+)/kg                 | nd      | nd           | nd          |
| Exch. Al cmol(+)/kg                | nd      | nd           | nd          |
| TEB cmol(+)/kg                     | 15.4    | 13.1         | 11.1        |
| Exch. acidity cmol(+)/kg           | nd      | nd           | nd          |
| Base saturation %                  | 86.5    | 98.9         | 132.6       |
| CEC clay cmol(+)/kg                | 33.3    | 62.6         | 57.0        |
| Cu mg/kg                           | 1.13    | 0.59         | 0.41        |
| Fe mg/kg                           | 44.1    | 23.1         | 9.8         |
| Mn mg/kg                           | 10.2    | 10.4         | 7.9         |
| Zn mg/kg                           | 0.22    | 0.09         | 0.07        |
| B mg/kg                            | 0.06    | 0.02         | 0.02        |
Profile number : MGP-10 Mapping unit: G21 Agro-ecol. zone: Region : Morogoro District : Morogoro rural Map sheet no. : 201/1 Co-ordinates : 37° 34' 26.0" E/ 7° 1' 27.5" S Location : Kidiwa along the road to Tandari Elevation : 1284 m asl. Parent material: banded pyroxene granulites. Landform: mountain; steeply dissected. Slope: 4 %; straight Surface characteristics : Erosion: . Deposition: none. Natural drainage class : well drained

Described by S.B. Mwango, E.P. Kileo, B.M. Msanya and D.N. Kimaro on 01/03/00

Soils are moderately deep, well drained, dark brown to brown sandy loams, with very thick very dark brown sandy clay loam topsoils.

Ap 0 - 14/24 cm: very dark brown (7.5YR2.5/2) moist; sandy clay loam; friable moist, non-sticky and non-plastic wet; moderate medium and fine subangular blocks; many fine and medium pores; many fine and common medium roots; clear wavy boundary to

AB 14/24 - 30/35 cm: dark brown (7.5YR3/2) moist; sandy clay loam; soft dry, friable moist, non-sticky and non-plastic wet; moderate fine and very fine subangular blocks; many fine and few medium pores; many fine and medium roots; clear wavy boundary to

Bw 30/35 - 44/64 cm: brown (7.5YR4/3) moist; sandy loam; loose dry, very friable moist, non-sticky and non-plastic wet; weak very fine subangular blocks; many fine and medium pores; many fine and medium roots; clear wavy boundary to

C 44/64 - 140 cm: light brown (7.5YR6/4) moist; loam sand; loose dry, very friable moist, non-sticky and non-plastic wet; structureless single grain; many very fine pores; common fine and medium roots

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Epidystri-Ferralic Cambisols (Haplic) USDA Soil Taxonomy (Soil Survey Staff, 1998): Humic Dystrudepts

ANALYTICAL DATA FOR PROFILE MGP -10

| Horizon                   | Ар      | AB     | Bw     | С      |
|---------------------------|---------|--------|--------|--------|
| Depth (cm)                | 0-14/24 | 14/24- | 30/35- | 44/64- |
|                           |         | 30/35  | 44/64  | 140+   |
| Clay %                    | 26      | 26     | 16     | 10     |
| Silt %                    | 5       | 8      | 9      | 3      |
| Sand %                    | 69      | 66     | 75     | 87     |
| Texture class             | SCL     | SCL    | SL     | LS     |
| Bulk density g/cc         | 1.3     | 1.5    | 1.5    | 1.9    |
| AWC mm/m                  | nd      | nd     | nd     | 152.3  |
| pH H <sub>2</sub> O 1:2.5 | 6.1     | 6.0    | 6.3    | 6.6    |
| pH KCl 1:2.5              | 4.4     | 4.2    | 4.3    | 4.5    |
| EC 1:2.5 mS/cm            | nd      | nd     | nd     | nd     |
| Organic C %               | 1.90    | 1.19   | 0.79   | 0.27   |
| Total N %                 | 0.12    | 0.08   | 0.04   | 0.01   |
| C/N                       | 16.3    | 15.2   | 21.8   | 32.5   |
| Avail. P Bray-1 mg/kg     | 1.8     | 1.6    | 4.5    | 40.1   |
| Avail. P Olsen mg/kg      | nd      | nd     | nd     | nd     |
| CEC NH4OAc cmol(+)/kg     | 11.6    | 8.6    | 4.4    | 3.2    |
| Exch. Ca cmol(+)/kg       | 3.5     | 2.5    | 1.3    | 1.0    |
| Exch. Mg cmol(+)/g        | 1.2     | 0.7    | 0.3    | 0.2    |
| Exch. K cmol(+)/kg        | 0.6     | 0.3    | 0.2    | 0.4    |
| Exch. Na cmol(+)/kg       | 0.07    | 0.03   | 0.03   | 0.12   |
| Exch. H cmol(+)/kg        | nd      | nd     | nd     | nd     |
| Exch. Al cmol(+)/kg       | nd      | nd     | nd     | nd     |
| TEB cmol(+)/kg            | 5.4     | 3.5    | 1.9    | 1.6    |
| Exch. acidity cmol(+)/kg  | nd      | nd     | nd     | nd     |
| Base saturation %         | 46.7    | 40.1   | 42.7   | 50.9   |
| CEC clay cmol(+)/kg       | 19.1    | 17.1   | 10.2   | 22.7   |
| Cu mg/kg                  | 0.9     | 0.55   | 0.22   | 0.12   |
| Fe mg/kg                  | 65.6    | 31.4   | 9.0    | 3.4    |
| Mn mg/kg                  | 6.35    | 1.17   | 1.28   | 0.08   |
| Zn mg/kg                  | 0.11    | 0.06   | 0.02   | 0.03   |
| B mg/kg                   | 0.09    | 0.05   | 0.04   | 0.02   |

Profile number : MGP-11

Mapping unit: V1 Agro-ecol. zone:

 Region
 : Morogoro

 District
 : Morogoro rural

 Map sheet no. : 201/1
 Co-ordinates

 Co-ordinates
 : 37° 34' 4.4" E/ 7° 2' 22.2" S

 Location
 : Lower river terrace of Mgeta river near Mgeta secondary school

 Elevation
 : 1086 m asl. Parent material: unconsolidated mixed material. Landform: mountain; steeply dissected. Slope: 44 %; concave

 Surface characteristics : Outcrops: 10 % Erosion: . Deposition: none.

 Natural drainage class : well drained

Described by D.N. Kimaro, E.P. Kileo, B.M. Msanya and S.B. Mwango on 01/03/00

Soils are moderately deep, well drained, dark olive brown sandy clay loams.

Ap 0 - 45 cm: light olive brown (2.5Y5/4) dry, dark olive brown (2.5Y3/3) moist; sandy clay loam; soft dry, friable moist, non-sticky and non-plastic wet; moderate fine and medium subangular blocks; many fine and medium pores; few medium spherical fresh quartz fragments; many fine and common medium roots; clear smooth boundary to

2C 45 - 125 cm: dark brown (10YR3/3) dry, very dark greyish brown (10YR3/2) moist; sandy clay loam; soft dry, friable moist, non-sticky and non-plastic wet; structureless massive; many fine and few medium pores; few small spherical slightly weathered gneiss fragments; many fine and coarse roots; gradual broken boundary to

3C 125 - 155 cm: very dark greyish brown (10YR3/2) dry, very dark greyish brown (10YR3/2) moist; sandy loam; very friable moist, non-sticky and non-plastic wet; structureless massive; many fine pores; common fine and coarse roots; gradual irregular boundary to

4C 155 - 190 cm: dark yellowish brown (10YR3/6) moist; sandy loam; very friable moist, non-sticky and non-plastic wet; structureless massive; many fine and few medium pores; common medium and few coarse roots

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Hypereutri-Mollic Fluvisols (Haplic) USDA Soil Taxonomy (Soil Survey Staff, 1998): Fluventic Hapludolls

| Horizon                            | Ар   | 2C     | 3C      | 4C       |
|------------------------------------|------|--------|---------|----------|
| Depth (cm)                         | 0-45 | 45-125 | 125-155 | 155-190+ |
| Clay %                             | 20   | 22     | 14      | 16       |
| Silt %                             | 6    | 15     | 5       | 17       |
| Sand %                             | 74   | 63     | 81      | 67       |
| Texture class                      | SCL  | SCL    | SL      | SL       |
| Bulk density g/cc                  | 1.1  | 1.6    | 1.6     | nd       |
| AWC mm/m                           | nd   | 166.8  | nd      | nd       |
| pH H <sub>2</sub> O 1:2.5          | 6.9  | 6.5    | 6.4     | 7.4      |
| pH KCl 1:2.5                       | 5.4  | 4.7    | 4.4     | 5.0      |
| EC 1:2.5 mS/cm                     | nd   | nd     | nd      | 0.03     |
| Organic C %                        | 0.69 | 1.27   | 0.67    | 0.59     |
| Total N %                          | 0.07 | 0.08   | 0.03    | 0.03     |
| C/N                                | 9.7  | 16.2   | 20.5    | 22.9     |
| Avail. P Bray-1 mg/kg              | 23.1 | 9.5    | 8.7     | 6.1      |
| Avail. P Olsen mg/kg               | nd   | nd     | nd      | 6.9      |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 8.2  | 7.4    | 4.2     | 6.8      |
| Exch. Ca cmol(+)/kg                | 5.0  | 5.4    | 2.5     | 5.7      |
| Exch. Mg cmol(+)/g                 | 1.1  | 1.5    | 0.8     | 6.0      |
| Exch. K cmol(+)/kg                 | 0.83 | 0.22   | 0.07    | 0.02     |
| Exch. Na cmol(+)/kg                | 0.12 | 0.15   | 0.09    | 0.35     |
| Exch. H cmol(+)/kg                 | nd   | nd     | nd      | nd       |
| Exch. Al cmol(+)/kg                | nd   | nd     | nd      | nd       |
| TEB cmol(+)/kg                     | 7.1  | 7.3    | 3.4     | 12.1     |
| Al saturation %                    | nd   | nd     | nd      | nd       |
| Exch. acidity cmol(+)/kg           | nd   | nd     | nd      | nd       |
| Base saturation %                  | 86.4 | 98.2   | 81.1    | 177.9    |
| CEC clay cmol(+)/kg                | 29.1 | 13.5   | 13.5    | 29.8     |
| Cu mg/kg                           | 0.4  | 0.8    | 0.8     | 0.8      |
| Fe mg/kg                           | 20.8 | 54.8   | 38.1    | 29.0     |
| Mn mg/kg                           | 9.8  | 21.6   | 4.4     | 10.0     |
| Zn mg/kg                           | 0.39 | 0.43   | 0.11    | 0.21     |
| B mg/kg                            | 0.09 | 0.02   | 0.04    | 0.02     |

66

 Profile number : MGP-12
 Mapping unit: M11
 Agro-ecol. zone:

 Region
 : Morogoro

 District
 : Morogoro rural

 Map sheet no.
 : 201/1

 Co-ordinates
 : 37° 33' 9.4" E/ 7° 4' 52.3" S

 Location
 : Lusungi village

 Elevation
 : 1420 m asl. Parent material: meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro.

 Landform: mountain; steeply dissected. Slope: 5 %; concave

 Surface characteristics : Erosion: . Deposition: none.

 Natural drainage class : well drained

Described by D.N. Kimaro, E.P. Kileo, B.M. Msanya and S.B. Mwango on 02/03/00

Soils are moderately deep, well drained, dark grey sandy clay loams, with thick black clay loam topsoils.

Ap 0 - 15/20 cm: dark grey (7.5YR4/1) dry, black (7.5YR2.5/1) moist; clay loam; hard dry, friable moist, slightly sticky and slightly plastic wet; moderately strong fine and medium subangular blocks; few fine and medium pores; few medium irregular fresh quartz fragments; many fine and common medium roots; clear wavy boundary to

Bw 15/20 - 30/50 cm: grey (7.5YR6/1) dry, dark grey (7.5YR5/1) moist; sandy clay loam; slightly hard dry, friable moist, slightly sticky and slightly plastic wet; weak medium and coarse subangular blocks; few fine and medium pores; few medium irregular weathered gneiss fragments; common fine and few medium roots; clear wavy boundary to

C 30/50 - 150 cm: (7.5YR8/1) dry, light grey (7.5YR7/1) moist; sandy loam; soft dry, very friable moist, non-sticky and non-plastic wet; structureless massive; many fine and medium pores; and common fine roots

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Orthieutri-Ferralic Cambisols (Haplic) USDA Soil Taxonomy (Soil Survey Staff, 1998): Dystric Eutrudepts

#### ANALYTICAL DATA FOR PROFILE MGP-12

| Horizon                            | Ар      | Bw          | С         |
|------------------------------------|---------|-------------|-----------|
| Depth (cm)                         | 0-15/20 | 15/20-30/50 | 30/50-150 |
| Clay %                             | 38      | 34          | 18        |
| Silt %                             | 19      | 15          | 15        |
| Sand %                             | 43      | 51          | 67        |
| Texture class                      | CL      | SCL         | SL        |
| Bulk density g/cc                  | 1.1     | 1.5         | 1.8       |
| AWC mm/m                           | nd      | nd          | 112.1     |
| pH H <sub>2</sub> O 1:2.5          | 5.5     | 6.4         | 7.6       |
| pH KCl 1:2.5                       | 4.0     | 4.3         | 4.6       |
| EC 1:2.5 mS/cm                     | nd      | nd          | 0.02      |
| Organic C %                        | 3.25    | 1.15        | 0.40      |
| Total N %                          | 0.19    | 0.07        | 0.01      |
| C/N                                | 17.0    | 16.1        | 33.3      |
| Avail. P Bray-1 mg/kg              | 6.4     | 2.5         | 1.5       |
| Avail. P Olsen mg/kg               | nd      | nd          | 1.6       |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 17.2    | 10          | 5.2       |
| Exch. Ca cmol(+)/kg                | 8.2     | 7.2         | 6.3       |
| Exch. Mg cmol(+)/g                 | 1.98    | 0.82        | 0.51      |
| Exch. K cmol(+)/kg                 | 0.32    | 0.07        | 0.02      |
| Exch. Na cmol(+)/kg                | 0.15    | 0.32        | 0.23      |
| Exch. H cmol(+)/kg                 | 0.2     | nd          | nd        |
| Exch. Al cmol(+)/kg                | 1.1     | nd          | nd        |
| TEB cmol(+)/kg                     | 10.7    | 8.4         | 7.1       |
| Al saturation %                    | 9.3     | nd          | nd        |
| Exch. acidity cmol(+)/kg           | 1.3     | nd          | nd        |
| Base saturation %                  | 62.1    | 84.1        | 136.5     |
| CEC clay cmol(+)/kg                | 15.6    | 17.6        | 21.2      |
| Cu mg/kg                           | 0.6     | 0.12        | 0.11      |
| Fe mg/kg                           | 54.2    | 8.24        | 2.12      |
| Mn mg/kg                           | 1.2     | 0.34        | 1.22      |
| Zn mg/kg                           | 0.10    | 0.04        | 0.03      |
| B mg/kg                            | 0.06    | 0.04        | 0.01      |

Profile number : MGP-13 Mapping unit: M12 Agro-ecol. zone: Region : Morogoro District : Morogoro rural Map sheet no. : 201/1 Co-ordinates : 37° 33' 12.6" E/ 7° 4' 51.6" S Location : Lusungi village along the road to Bumu Elevation : 1370 m asl. Parent material: meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro. Landform: mountain; hilly. Slope: 50 %; straight Surface characteristics : Erosion: . Deposition: none. Natural drainage class : well drained

Described by E.P. Kileo, B.M. Msanya, S.B. Mwango and D.N. Kimaro on 02/03/00

Soils are very shallow, well drained, very dark grey sandy clay loams over dark greyish brown to white sandy clay loam to loam saprolite.

Ap 0 - 10/16 cm: very dark grey (7.5YR3/1) moist; sandy clay loam; friable moist, non-sticky and non-plastic wet; moderately weak fine and medium subangular blocks; many fine and medium pores; many fine and common medium roots; clear wavy boundary to

C1 10/16 - 66/80 cm: dark greyish brown (10YR4/2) moist; sandy clay loam; very friable moist, non-sticky and non-plastic wet; structureless massive; many fine and few medium pores; common fine and medium roots; clear wavy boundary to

C2 66/80 - 180 cm: white (7.5YR8/1) moist; sandy loam; very friable moist, nonsticky and non-plastic wet; structureless massive; many fine and medium pores; medium and few very fine roots

SOIL CLASSIFICATION:

World Reference Base WRB (FAO,1998): Hapli-Orthieutric Regosols USDA Soil Taxonomy (Soil Survey Staff, 1998): Typic Udorthents

| Horizon                            | Ap      | C1          | C2         |
|------------------------------------|---------|-------------|------------|
| Depth (cm)                         | 0-10/16 | 10/16-66/80 | 66/80-180+ |
| Clay %                             | 26      | 20          | 14         |
| Silt %                             | 15      | 13          | 11         |
| Sand %                             | 59      | 67          | 75         |
| Texture class                      | SCL     | SCL         | SL         |
| Bulk density g/cc                  | 1.3     | 1.7         | 1.8        |
| AWC mm/m                           | nd      | nd          | 90.9       |
| pH H <sub>2</sub> O 1:2.5          | 6.2     | 6.7         | 7.2        |
| pH KCl 1:2.5                       | 4.4     | 4.2         | 4.0        |
| EC 1:2.5 mS/cm                     | nd      | nd          | 0.01       |
| Organic C %                        | 2.53    | 0.71        | 0.32       |
| Total N %                          | 0.15    | 0.04        | 0.01       |
| C/N                                | 17.5    | 19.6        | 37.7       |
| Avail. P Bray-1 mg/kg              | 5.7     | 0.07        | 2.3        |
| Avail. P Olsen mg/kg               | nd      | nd          | 1.3        |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 12.6    | 9.52        | 3.4        |
| Exch. Ca cmol(+)/kg                | 7.8     | 8.5         | 9.5        |
| Exch. Mg cmol(+)/g                 | 1.6     | 1.2         | 1.3        |
| Exch. K cmol(+)/kg                 | 0.5     | 0.4         | 0.06       |
| Exch. Na cmol(+)/kg                | 0.09    | 0.09        | 0.13       |
| Exch. H cmol(+)/kg                 | nd      | nd          | nd         |
| Exch. Al cmol(+)/kg                | nd      | nd          | nd         |
| TEB cmol(+)/kg                     | 10.0    | 10.1        | 10.9       |
| Al saturation %                    | nd      | nd          | nd         |
| Exch. acidity cmol(+)/kg           | nd      | nd          | nd         |
| Base saturation %                  | 79.6    | 106.5       | 321.9      |
| CEC clay cmol(+)/kg                | 14.6    | 34.6        | 16.0       |
| Cu mg/kg                           | 0.27    | 0.17        | 0.17       |
| Fe mg/kg                           | 36.3    | 8.9         | 6.3        |
| Mn mg/kg                           | 9.4     | 1.5         | 2.1        |
| Zn mg/kg                           | 0.06    | 0.03        | 0.04       |
| B mg/kg                            | 0.04    | 0.04        | 0.01       |

 Profile number : MGP-14
 Mapping unit: V1
 Agro-ecol. zone:

 Region
 : Morogoro:
 District
 : Morogoro rural

 Map sheet no. : 201/1
 Co-ordinates
 : 37° 35' 20.0" E/ 7° 5' 36.6" S

 Location
 : Kilumba village along mbakana river

 Elevation
 : 1540 m asl. Parent material: unconsolidated mixed material. Landform: mountain; hilly. Slope: 35 %; concave

 Surface characteristics : Outcrops: 5 % Stones: 2 % Erosion: . Deposition:cm

 Natural drainage class : well drained

Described by S.B. Mwango, D.N. Kimaro, B.M. Msanya and E.P. Kileo on 03/03/00

Soils are very deep, well drained, strong brown to pale yellow clay to sand clay loams, with very thick dark brown sand clay loam topsoils.

Ap 0 - 20/30 cm: dark brown (7.5YR3/2) moist; bouldery sandy clay loam; friable moist, sticky and plastic wet; moderately strong fine and medium subangular blocks; many fine and few medium pores; few medium irregular fresh gneiss fragments; many fine and very fine roots; clear wavy boundary to

Bt 20/30 - 65/75 cm: strong brown (7.5YR5/8) moist; clay; many medium prominent sharp 2.5YR3/6 mottles; firm moist, sticky and plastic wet; moderate medium and coarse subangular blocks; continuous thin clay cutans; few fine and common medium pores; few medium irregular fresh gneiss fragments; medium and common very fine roots; clear irregular boundary to

BC 65/75 - 190 cm: pale yellow (5Y7/3) moist; sandy clay loam; many medium prominent clear 2.5YR4/6 mottles; friable moist, non-sticky and non-plastic wet; weak medium and fine subangular blocks; many fine and few fine pores; frequent small irregular weathered gneiss fragments; medium and very fine roots

C 190cm+: saprolite containing meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro.

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Hapl-Gleyic Phaeozems USDA Soil Taxonomy (Soil Survey Staff, 1998): Aquic Argiudolls

#### ANALYTICAL DATA FOR PROFILE MGP-14

| Horizon                   | Ар      | Bt     | BC        |
|---------------------------|---------|--------|-----------|
| Depth (cm)                | 0-20/30 | 20/30- | 65/75-190 |
|                           |         | 65/75  |           |
| Clay %                    | 32      | 44     | 24        |
| Silt %                    | 19      | 23     | 15        |
| Sand %                    | 49      | 33     | 61        |
| Texture class             | SCL     | С      | SCL       |
| Bulk density g/cc         | 1.4     | 1.4    | 1.6       |
| AWC mm/m                  | nd      | nd     | 96.5      |
| pH H <sub>2</sub> O 1:2.5 | 6.1     | 6.4    | 6.9       |
| pH KCl 1:2.5              | 4.7     | 4.9    | 4.6       |
| EC 1:2.5 mS/cm            | nd      | nd     | 0.03      |
| Organic C %               | 2.97    | 0.79   | 0.52      |
| Total N %                 | 0.22    | 0.04   | 0.02      |
| C/N                       | 13.6    | 18.3   | 23.0      |
| Avail. P Bray-1 mg/kg     | 24.2    | 4.6    | 27.7      |
| Avail. P Olsen mg/kg      | nd      | nd     | 27.8      |
| CEC NH4OAc cmol(+)/kg     | 16.4    | 10.6   | 4.3       |
| Exch. Ca cmol(+)/kg       | 7.1     | 4.8    | 5.2       |
| Exch. Mg cmol(+)/g        | 2.3     | 1.8    | 2.5       |
| Exch. K cmol(+)/kg        | 1.2     | 0.3    | 0.2       |
| Exch. Na cmol(+)/kg       | 0.2     | 0.3    | 0.2       |
| Exch. H cmol(+)/kg        | nd      | nd     | nd        |
| Exch. Al cmol(+)/kg       | nd      | nd     | nd        |
| TEB cmol(+)/kg            | 10.8    | 7.0    | 8.1       |
| Exch. acidity cmol(+)/kg  | nd      | nd     | nd        |
| Base saturation %         | 65.7    | 66.5   | 188.0     |
| CEC clay cmol(+)/kg       | 19.0    | 17.7   | 10.1      |
| Cu mg/kg                  | 1.13    | 0.62   | 0.26      |
| Fe mg/kg                  | 128.9   | 40.9   | 35.4      |
| Mn mg/kg                  | 92.4    | 4.0    | 6.5       |
| Zn mg/kg                  | 0.70    | 0.24   | 0.14      |
| B mg/kg                   | 0.06    | 0.02   | 0.01      |

 Profile number : MGP-15
 Mapping unit: Cgk1
 Agro-ecol. zone:

 Region
 : Morogoro:
 District
 : Morogoro rural

 Map sheet no.
 : 201/1

 Co-ordinates
 : 37° 35' 26.9" E/ 7° 5' 41.6" S

 Location
 : Lokongolo about 3km from Nyandira along the road to Tchenzema

 Elevation
 : 1690 m asl. Parent material: colluvium derived from banded pyroxene

 granulites, in places kaolinitic clays

 Landform: mountain; hilly. Slope: 45 %; straight

 Surface characteristics : Erosion: . Deposition: none.

 Natural drainage class : well drained

Described by D.N. Kimaro, E.P. Kileo, B.M. Msanya and S.B. Mwango on 03/03/00

Soils are very deep, well drained, brown clays to clay loams, with very thick black clay loam topsoils.

Ap 0 - 40/50 cm: dark brown (7.5YR3/2) dry, black (7.5YR2.5/1) moist; clay loam; soft dry, friable moist, slightly sticky and slightly plastic wet; strong fine and very fine subangular blocks; many medium and few fine pores; very few medium irregular fresh gneiss fragments; many fine and very fine roots; clear wavy boundary to

Bt 40/50 - 130/150 cm: dark brown (7.5YR3/4) dry, brown (7.5YR4/3) moist; clay; slightly hard dry, friable moist, sticky and plastic wet; moderate medium and fine subangular blocks; continuous thin clay cutans; common medium and few fine pores; few medium irregular slightly weathered gneiss fragments; many fine and few medium roots; diffuse irregular boundary to

BC 130/150 - 200 cm: brown (7.5YR4/4) moist; clay loam; friable moist, sticky and plastic wet; moderate medium and fine subangular blocks; few fine and common medium pores; frequent small irregular weathered gneiss fragments; few fine and common very fine roots

SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Hapli-Pachic Phaeozems USDA Soil Taxonomy (Soil Survey Staff, 1998): Fluventic Hapludolls

#### ANALYTICAL DATA FOR PROFILE MGP-15

| Horizon                            | Ар      | Bt            | BC          |
|------------------------------------|---------|---------------|-------------|
| Depth (cm)                         | 0-40/50 | 40/50-130/150 | 130/150-200 |
| Clay %                             | 36      | 56            | 38          |
| Silt %                             | 22      | 20            | 19          |
| Sand %                             | 42      | 24            | 43          |
| Texture class                      | CL      | С             | CL          |
| Bulk density g/cc                  | 1.0     | 1.8           | 1.3         |
| AWC mm/m                           | nd      | 136.4         | nd          |
| pH H <sub>2</sub> O 1:2.5          | 6.5     | 6.5           | 6.8         |
| pH KCl 1:2.5                       | 5.3     | 4.9           | 4.7         |
| EC 1:2.5 mS/cm                     | nd      | nd            | nd          |
| Organic C %                        | 7.84    | 1.43          | 0.27        |
| Total N %                          | 0.46    | 0.13          | 0.03        |
| C/N                                | 16.9    | 10.9          | 9.4         |
| Avail. P Bray-1 mg/kg              | 5.0     | 0.6           | 19.4        |
| Avail. P Olsen mg/kg               | nd      | nd            | nd          |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 30.4    | 8.8           | 10.4        |
| Exch. Ca cmol(+)/kg                | 24.1    | 8.1           | 9.0         |
| Exch. Mg cmol(+)/g                 | 4.1     | 2.9           | 3.5         |
| Exch. K cmol(+)/kg                 | 0.34    | 0.06          | 0.04        |
| Exch. Na cmol(+)/kg                | 0.10    | 0.09          | 0.15        |
| Exch. H cmol(+)/kg                 | nd      | nd            | nd          |
| Exch. Al cmol(+)/kg                | nd      | nd            | nd          |
| TEB cmol(+)/kg                     | 28.6    | 11.2          | 12.6        |
| Exch. acidity cmol(+)/kg           | nd      | nd            | nd          |
| Base saturation %                  | 94.1    | 127.4         | 121.1       |
| CEC clay cmol(+)/kg                | 9.2     | 6.9           | 24.6        |
| Cu mg/kg                           | 1.1     | 0.6           | 0.6         |
| Fe mg/kg                           | 79.8    | 38.7          | 27.5        |
| Mn mg/kg                           | 113.5   | 8.1           | 11.1        |
| Zn mg/kg                           | 4.7     | 0.6           | 0.6         |
| B mg/kg                            | 0.20    | 0.04          | 0.02        |

70

 Profile number : MGP-16
 Mapping unit: G12
 Agro-ecol. zone:

 Region
 : Morogoro

 District
 : Morogoro rural

 Map sheet no.
 : 201/1

 Co-ordinates
 : 37° 36' 0.0" E/ 7° 7' 0.1" S

 Location
 : 4 km east of Tchenzema mission

 Elevation
 : 1880 m asl. Parent material: banded pyroxene granulites.

 Landform: mountain; hilly. Slope: 40 %; straight

 Surface characteristics : Outcrops: 10 % Erosion: moderate. Deposition: none.

 Natural drainage class : well drained

Described by E.P. Kileo, D.N. Kimaro, B.M. Msanya and S.B. Mwango on 04/03/00

Soils are deep, well drained, yellowish brown to dark yellowish brown loams, with thin dark greyish brown topsoils.

Ah 0 - 5 cm: brown (10YR5/3) dry, dark greyish brown (10YR4/2) moist; stony loam; soft dry, friable moist, slightly sticky and slightly plastic wet; weak fine subangular blocks and granular; many fine pores; many fine roots; clear smooth boundary to

AB 5 - 45 cm: dark yellowish brown (10YR3/6) dry, dark yellowish brown (10YR3/4) moist; loam; soft dry, friable moist, slightly sticky and slightly plastic wet; moderate fine and medium subangular blocks; many fine and few medium pores; many fine and common medium roots; clear smooth boundary to

Bw 45 - 70 cm: dark yellowish brown (10YR4/6) moist; loam; soft dry, friable moist, slightly sticky and slightly plastic wet; moderate fine and medium subangular blocks; many fine pores; few fine roots; clear smooth boundary to

BC 70 - 120 cm: yellowish brown (10YR5/6) moist; loam; soft dry, friable moist, non-sticky and non-plastic wet; weak fine and medium subangular blocks; many very fine pores; few fine roots; clear smooth boundary to

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Hapli-Orthidystric Cambisols USDA Soil Taxonomy (Soil Survey Staff, 1998): Typic Dystrudepts

#### ANALYTICAL DATA FOR PROFILE MGP-16

| Horizon                            | Ah    | AB    | Bw    | BC     |
|------------------------------------|-------|-------|-------|--------|
| Depth (cm)                         | 0-5   | 5-45  | 45-70 | 70-120 |
| Clay %                             | 13    | 15    | 18    | 16     |
| Silt %                             | 37    | 39    | 42    | 47     |
| Sand %                             | 50    | 46    | 40    | 37     |
| Texture class                      | L     | L     | L     | L      |
| Bulk density g/cc                  | 1.2   | 1.2   | 1.5   | 1.7    |
| AWC mm/m                           | nd    | nd    | nd    | 81     |
| pH H <sub>2</sub> O 1:2.5          | 4.5   | 4.7   | 5.9   | 5.0    |
| pH KCl 1:2.5                       | 3.7   | 3.8   | 3.8   | 3.6    |
| EC 1:2.5 mS/cm                     | nd    | nd    | nd    | nd     |
| Organic C %                        | 6.1   | 2.9   | 1.9   | 0.3    |
| Total N %                          | 0.23  | 0.11  | 0.06  | 0.01   |
| C/N                                | 26.5  | 26.4  | 31.7  | 30     |
| Avail. P Bray-1 mg/kg              | 54    | 56    | 57    | 78.9   |
| Avail. P Olsen mg/kg               | nd    | nd    | nd    | nd     |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 34.2  | 29.9  | 22.0  | 11.6   |
| Exch. Ca cmol(+)/kg                | 3.2   | 2.7   | 1.51  | 0.42   |
| Exch. Mg cmol(+)/g                 | 4.1   | 3.51  | 1.04  | 0.42   |
| Exch. K cmol(+)/kg                 | 0.09  | 0.07  | 0.06  | 0.15   |
| Exch. Na cmol(+)/kg                | 0.02  | 0.03  | 0.08  | 0.03   |
| Exch. H cmol(+)/kg                 | 0.8   | 0.5   | 0.2   | 0.06   |
| Exch. Al cmol(+)/kg                | 1.2   | 1.4   | 1.1   | 0.9    |
| TEB cmol(+)/kg                     | 7.4   | 6.3   | 2.69  | 1.02   |
| Al saturation %                    | 14.0  | 18.2  | 29.0  | 46.9   |
| Exch. acidity cmol(+)/kg           | 2.0   | 1.9   | 1.3   | 0.96   |
| Base saturation %                  | 21.7  | 21.0  | 12.2  | 8.7    |
| CEC clay cmol(+)/kg                | 101.3 | 134.9 | 84.04 | 66.0   |
| Cu mg/kg                           | 0.45  | 0.21  | 0.16  | 0.11   |
| Fe mg/kg                           | 75.3  | 31.6  | 8.5   | 3.7    |
| Mn mg/kg                           | 0.95  | 0.64  | 0.18  | 0.07   |
| Zn mg/kg                           | 0.14  | 0.09  | 0.03  | 0.01   |
| B mg/kg                            | 0.11  | 0.09  | 0.05  | 0.02   |

Region

gabbro.

Profile number : MGP-17 Mapping unit: Cgm1 Agro-ecol. zone: : Morogoro: District : Morogoro rural: Map sheet no. : 201/1:Co-ordinates : 37° 34' 59.9" E/ 7° 7' 0.1" S Location : 1km west of Tchenzema mission : 1640 m asl. Parent material: colluvium derived from banded pyroxene Elevation granulites, in places meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic Landform: mountain: hilly. Slope: 45 %: straight

Surface characteristics : Erosion: . Deposition: none.

Natural drainage class : well drained

Described by B.M. Msanya, S.B. Mwango, D.N. Kimaro and E.P. Kileo on 07/03/00

Soils are very deep, well drained, dark brown sandy loam to very dark greyish brown and very dark grey loam sands, with very thick dark yellowish brown sandy loam topsoils.

0 - 40 cm: brown (10YR5/3) dry, dark yellowish brown (10YR4/4) moist; sandy Ap loam; soft dry, friable moist, non-sticky and non-plastic wet; weak fine granular; many fine and common medium pores; few medium irregular fresh gneiss fragments; many fine and common medium roots; gradual smooth boundary to

Bw1 40 - 65 cm: dark brown (7.5YR3/4) dry, dark brown (7.5YR3/2) moist; sandy loam; soft dry, friable moist, slightly sticky and slightly plastic wet; moderate fine and medium subangular blocks; many fine and medium pores; frequent medium irregular fresh gneiss fragments; many fine and common medium roots; gradual smooth boundary to

Bw2 65 - 115 cm: brown (7.5YR4/4) dry, dark brown (7.5YR3/4) moist; sandy loam; hard dry, friable moist, slightly sticky and slightly plastic wet; moderate fine and medium subangular blocks; many fine and medium pores; few medium irregular slightly weathered gneiss fragments; many fine and common medium roots; gradual smooth boundary to

115 - 185 cm: very dark greyish brown (10YR3/2) moist; sandy loam to loam BC sand; soft dry, friable moist, slightly sticky and slightly plastic wet; weak fine and medium subangular blocks; many fine and few very fine pores; few medium irregular weathered gneiss fragments; many fine and common medium roots; gradual smooth boundary to

2Ab 185 - 200 cm: very dark grey (10YR3/1) moist; loam sand; soft dry, friable moist, sticky and plastic wet; weak fine and medium subangular blocks; many fine pores; few medium irregular fresh gneiss fragments; few fine roots

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Hapli-Orthidystric Cambisols USDA Soil Taxonomy (Soil Survey Staff, 1998): Typic Dystrudepts

#### ANALYTICAL DATA FOR PROFILE MGP-17

| Horizon                            | Ар    | Bw1   | Bw2    | BC      | 2Ab      |
|------------------------------------|-------|-------|--------|---------|----------|
| Depth (cm)                         | 0-40  | 40-65 | 65-115 | 115-185 | 185-200+ |
| Clay %                             | 8     | 12    | 9      | 7       | 7        |
| Silt %                             | 22    | 17    | 17     | 16      | 7        |
| Sand %                             | 70    | 71    | 74     | 77      | 86       |
| Texture class                      | SL    | SL    | SL     | SL-LS   | LS       |
| Bulk density g/cc                  | 1.2   | 1.3   | 1.3    | 1.5     | 1.4      |
| AWC mm/m                           | nd    | nd    | 129.5  | nd      | nd       |
| pH H <sub>2</sub> O 1:2.5          | 4.4   | 5.0   | 5.1    | 5.2     | 5.3      |
| pH KCl 1:2.5                       | 3.7   | 4.1   | 4.0    | 4.3     | 4.4      |
| Organic C %                        | 4.33  | 1.20  | 0.40   | 0.09    | 0.90     |
| Total N %                          | 0.62  | 0.2   | 0.03   | 0.007   | 0.04     |
| C/N                                | 7.0   | 6.0   | 13.3   | 12.9    | 22.5     |
| Avail. P Bray-1 mg/kg              | 11.7  | 61.9  | 26.2   | 40.8    | 74.6     |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 49.7  | 49.2  | 39.3   | 47.9    | 44.6     |
| Exch. Ca cmol(+)/kg                | 0.33  | 5.10  | 2.28   | 0.33    | 0.15     |
| Exch. Mg cmol(+)/g                 | 0.00  | 1.22  | 0.00   | 0.00    | 0.00     |
| Exch. K cmol(+)/kg                 | 0.05  | 0.05  | 0.07   | 0.02    | 0.05     |
| Exch. Na cmol(+)/kg                | 0.05  | 0.08  | 0.22   | 0.11    | 0.10     |
| Exch. H cmol(+)/kg                 | 0.3   | 0.2   | 0.1    | 0.07    | 0.05     |
| Exch. Al cmol(+)/kg                | 1.2   | 1.2   | 1.1    | 0.7     | 0.5      |
| TEB cmol(+)/kg                     | 0.43  | 6.45  | 2.57   | 0.46    | 0.3      |
| Al saturation %                    | 73.6  | 15.7  | 30.0   | 60.3    | 62.5     |
| Exch. acidity cmol(+)/kg           | 1.5   | 1.4   | 1.2    | 0.77    | 0.55     |
| Base saturation %                  | 0.86  | 13.1  | 6.5    | 0.95    | 0.67     |
| CEC clay cmol(+)/kg                | 434.9 | 375.5 | 421.3  | 680.7   | 592.4    |
| Cu mg/kg                           | 1.1   | 0.6   | 0.6    | 0.53    | 0.17     |
| Fe mg/kg                           | 72.4  | 36.1  | 30.6   | 25.8    | 15.3     |
| Mn mg/kg                           | 93.6  | 40.3  | 32.7   | 51.7    | 18.4     |
| Zn mg/kg                           | 2.7   | 0.9   | 0.6    | 0.7     | 0.3      |
| B mg/kg                            | 0.13  | 0.5   | 0.04   | 0.022   | 0.02     |
|                                    |       |       |        |         |          |

72

Profile number : MGP-18 Mapping unit: Cgm1 Agro-ecol. zone: Region : Morogoro District : Morogoro rural: Map sheet no. : 201/1Co-ordinates : 37° 34' 0.1" E/ 7° 7' 0.1" S Location : Horticultural unit of Tchenzema mission Elevation : 1600 m asl. Parent material: colluvium derived from banded pyroxene granulites, in places meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro. Landform: mountain; hilly. Slope: 45 %; straight Surface characteristics : Erosion: . Deposition: none. Natural drainage class : well drained

Described by S.B. Mwango, B.M. Msanya, D.N. Kimaro and E.P. Kileo on 09/03/00

Soils are shallow, well drained, very dark greyish brown sandy loams with thick very dark grey sandy loam topsoils.

Ap 0 - 12 cm: very dark grey (10YR3/1) moist; sandy loam; friable moist, slightly sticky and slightly plastic wet; weak fine and medium subangular blocks; many fine and few medium pores; many fine and very fine roots; clear smooth boundary to

Bw 12 - 26 cm: very dark greyish brown (10YR3/2) moist; sandy loam; friable moist, sticky and plastic wet; moderate fine and medium subangular blocks; many fine and few medium pores; few fine and common medium roots; clear smooth boundary to

C 26 cm+: saprolite containing meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro.

SOIL CLASSIFICATION:

World Reference Baes WRB (FAO, 1998): Hapli-Orthieutric Cambisols USDA Soil Taxonomy (Soil Survey Staff, 1998): Dystric Eutrudepts

#### ANALYTICAL DATA FOR PROFILE MGP-18

| Horizon                            | Ap    | Bw    |
|------------------------------------|-------|-------|
| Depth (cm)                         | 0-12  | 12-26 |
| Clay %                             | 17    | 16    |
| Silt %                             | 23    | 25    |
| Sand %                             | 60    | 59    |
| Texture class                      | SL    | SL    |
| Bulk density g/cc                  | 1.3   | 1.4   |
| AWC mm/26 cm                       | nd    | 28.2  |
| pH H <sub>2</sub> O 1:2.5          | 5.4   | 5.8   |
| pH KCl 1:2.5                       | 5.1   | 5.2   |
| EC 1:2.5 mS/cm                     | nd    | nd    |
| Organic C %                        | 1.53  | 4.56  |
| Total N %                          | 0.12  | 0.39  |
| C/N                                | 12.8  | 11.7  |
| Avail. P Bray-1 mg/kg              | 105.4 | 102.8 |
| Avail. P Olsen mg/kg               | nd    | nd    |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 39.77 | 37.18 |
| Exch. Ca cmol(+)/kg                | 17.3  | 16.9  |
| Exch. Mg cmol(+)/g                 | 3.3   | 3.1   |
| Exch. K cmol(+)/kg                 | 0.98  | 1.00  |
| Exch. Na cmol(+)/kg                | 0.18  | 0.14  |
| Exch. H cmol(+)/kg                 | 0.3   | 0.15  |
| Exch. Al cmol(+)/kg                | 0.9   | 0.5   |
| TEB cmol(+)/kg                     | 21.8  | 21.1  |
| Al saturation %                    | 4.0   | 2.3   |
| Exch. acidity cmol(+)/kg           | 1.2   | 0.65  |
| Base saturation %                  | 54.7  | 56.9  |
| CEC clay cmol(+)/kg                | 202.9 | 134.1 |
| Cu mg/kg                           | 1.2   | 0.6   |
| Fe mg/kg                           | 102.4 | 36.3  |
| Mn mg/kg                           | 83.2  | 7.3   |
| Zn mg/kg                           | 0.6   | 0.18  |
| B mg/kg                            | 0.05  | 0.02  |

73

 Profile number : MGP-19
 Mapping unit: Cm1
 Agro-ecol. zone:

 Region
 : Morogoro: District
 : Morogoro rural

 Map sheet no.
 : 201/1

 Co-ordinates
 : 37° 34' 30.0" E/ 7° 2' 46.0" S

 Location
 : Mgeta Kibaoni (about 1.5km from Mgeta along the road to Langali

 Elevation
 : 1060 m asl. Parent material: colluvium derived from meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro.

 Landform: mountain; hilly. Slope: 55 %; straight

 Surface characteristics : Outcrops: 40 % Stones: 15 % Erosion: . Deposition: none.

 Natural drainage class : well drained

Described by B.M. Msanya, S.B. Mwango, D.N. Kimaro and E.P. Kileo on 10/03/00

Soil: Soils are shallow, well drained, black strong stractured gravelly sandy clay loam over black moderate stractured gravelly sandy clay loam on slightly weathered bedrock

Ah 0 - 15 cm: black (10YR2/1) moist; stony sandy clay loam; friable moist, slightly sticky and slightly plastic wet; strong fine and medium subangular blocks; many fine and common medium pores; few small irregular slightly weathered fragments; many fine and common medium roots; clear smooth boundary to

AB 15 - 50/60 cm: black (10YR2/1) dry, black (10YR2/1) moist; sandy clay loam; slightly hard dry, friable moist, slightly sticky and slightly plastic wet; moderate medium subangular blocks; many fine and few medium pores; few small irregular slightly weathered fragments; many fine and common medium roots; clear wavy boundary to

CR 50/60cm+ : meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro saprolite, slightly weathered, with original rock structure.

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Humi-Endoleptic Regosols (Hypereutric) USDA Soil Taxonomy (Soil Survey Staff, 1998): Typic Udorthents

#### ANALYTICAL DATA FOR PROFILE MGP-19

| Horizon                            | Ah   | AB       |
|------------------------------------|------|----------|
| Depth (cm)                         | 0-15 | 15-50/60 |
| Clay %                             | 24   | 26       |
| Silt %                             | 12   | 14       |
| Sand %                             | 64   | 60       |
| Texture class                      | SCL  | SCL      |
| Bulk density g/cc                  | 1.3  | 1.6      |
| AWC mm/60cm                        | nd   | 69       |
| pH H <sub>2</sub> O 1:2.5          | 6.2  | 6.2      |
| pH KCl 1:2.5                       | 5.1  | 4.9      |
| EC 1:2.5 mS/cm                     | nd   | nd       |
| Organic C %                        | 2.4  | 1.98     |
| Total N %                          | 0.18 | 0.13     |
| C/N                                | 13.7 | 14.7     |
| Avail. P Bray-1 mg/kg              | 52.7 | 25.9     |
| Avail. P Olsen mg/kg               | nd   | nd       |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 14.4 | 12.4     |
| Exch. Ca cmol(+)/kg                | 8.1  | 6.7      |
| Exch. Mg cmol(+)/g                 | 3.8  | 3.1      |
| Exch. K cmol(+)/kg                 | 0.45 | 0.27     |
| Exch. Na cmol(+)/kg                | 0.09 | 0.14     |
| Exch. H cmol(+)/kg                 | nd   | nd       |
| Exch. Al cmol(+)/kg                | nd   | nd       |
| TEB cmol(+)/kg                     | 12.5 | 10.2     |
| Al saturation %                    | nd   | nd       |
| Exch. acidity cmol(+)/kg           | nd   | nd       |
| Base saturation %                  | 86.7 | 82.6     |
| CEC clay cmol(+)/kg                | 25.3 | 21.4     |
| Cu mg/kg                           | 0.7  | 0.8      |
| Fe mg/kg                           | 71.7 | 101.2    |
| Mn mg/kg                           | 30.1 | 14.1     |
| Zn mg/kg                           | 0.3  | 0.1      |
| B mg/kg                            | 0.06 | 0.04     |

Profile number : MGP-20 Mapping unit: G11 Agro-ecol. zone: Region : Morogoro: District : Morogoro rural Map sheet no. : 201/1 Co-ordinates : 37° 37' 13.32" E/ 7° 6' 50" S Location : Lukwangule plateau Elevation : 2600 m asl. Parent material: banded pyroxene granulites. Landform: plateau; rolling. Slope: 25 %; concave Surface characteristics : Stones: none Erosion: severe. Deposition: none. Natural drainage class : well drained

Described by B.M. Msanya, E.P. Kileo, D.N. Kimaro and S.B. Mwango on 19/12/99

Soils are moderately deep, well drained, dark brown sandy loams, with very thick black sandy clay loam topsoils.

Ah 0 - 35/40 cm: black (5YR2.5/1) moist; sandy clay loam; friable moist, slightlysticky and slightly-plastic wet; moderate coarse subangular blocks and medium angular blocks; many fine and very fine pores; few medium spherical weathered feldspar fragments; many fine and few coarse roots; clear wavy boundary to

Bw 35/40 - 70 cm: dark brown (7.5YR3/4) moist; sandy loam; friable moist; slightly-sticky and slightly-plastic wet; weak; fine and medium subangular blocks; many fine and very fine pores; few medium irregular slightly weathered feldspar fragments; few fine roots clear smooth boundary to

 $CR \qquad 70 \ cm+:$  banded pyroxene granulites saprolite, slightly weathered, with original rock structure.

#### SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Hyperferrali-Humic Umbrisols (Haplic) USDA Soil Taxonomy (Soil Survey Staff, 1998): Humic Dystrudepts

#### ANALYTICAL DATA FOR PROFILE MGP-20

| Horizon                   | Ah      | Bw       |
|---------------------------|---------|----------|
| Depth (cm)                | 0-35/40 | 35/40-70 |
| Clay %                    | 25      | 18       |
| Silt %                    | 20      | 22       |
| Sand %                    | 55      | 60       |
| Texture class             | SCL     | SL       |
| Bulk density g/cc         | 1.1     | nd       |
| AWC mm/70cm               | nd      | 48.9     |
| pH H <sub>2</sub> O 1:2.5 | 4.3     | 4.6      |
| pH KCl 1:2.5              | 3.9     | 4.1      |
| EC 1:2.5 mS/cm            | 0.16    | 0.14     |
| Organic C %               | 9.1     | 1.2      |
| Total N %                 | 0.65    | 0.06     |
| C/N                       | 20.1    | 24.0     |
| Avail. P Bray-1 mg/kg     | 1.4     | 0.3      |
| Avail. P Olsen mg/kg      | nd      | nd       |
| CEC NH4OAc cmol(+)/kg     | 32.5    | 8.5      |
| Exch. Ca cmol(+)/kg       | 0.25    | 0.12     |
| Exch. Mg cmol(+)/g        | 0.22    | 0.09     |
| Exch. K cmol(+)/kg        | 0.39    | 0.13     |
| Exch. Na cmol(+)/kg       | 0.56    | 0.47     |
| Exch. H cmol(+)/kg        | 0.17    | 0.11     |
| Exch. Al cmol(+)/kg       | 1.94    | 1.6      |
| TEB cmol(+)/kg            | 1.42    | 0.81     |
| Al saturation %           | 57.7    | 66.4     |
| Exch. acidity cmol(+)/kg  | 2.1     | 1.7      |
| Base saturation %         | 4.4     | 9.5      |
| CEC clay cmol(+)/kg       | 4.4     | 24.2     |
| Cu mg/kg                  | 0.15    | 0.07     |
| Fe mg/kg                  | 206     | 38.4     |
| Mn mg/kg                  | 0.18    | 0.11     |
| Zn mg/kg                  | 0.13    | 0.08     |
| B mg/kg                   | 0.04    | 0.03     |

Profile number : MGP- 21 Mapping unit: G11 Agro-ecol. zone: Region : Morogoro District : Morogoro rural Map sheet no. : 201/1Co-ordinates : 37° 37' 10" E/ 7° 6' 57" S Location : Lukwangule plateau Elevation : 2650 m asl. Parent material: banded pyroxene granulites. Landform: plateau; rolling. Slope: 10 %: convex Surface characteristics : Rock outcrops: 5% Stones: 20 % Erosion: severe. Deposition: none. Natural drainage class: somewhat excessively drained.

Described by S. B. Mwango, B.M. Msanya, E.P. Kileo, D.N. Kimaro 19/12/99

Soils are very shallow, somewhat excessively drained, dark brown sandy clay loams over hard rock.

Ah 0 - 12/18 cm: dark brown (7.5YR3/4) moist; stony sandy clay loam; friable moist, non-sticky and non-plastic wet; weak coarse subangular blocks and medium angular blocks; many fine and very fine pores; few medium spherical weathered feldspar fragments; many fine and few coarse roots; clear wavy boundary to

banded pyroxene granulites hard rock. R

SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Dystri-Lithic Leptosols (Haplic) USDA Soil Taxonomy (Soil Survey Staff, 1998): Lithic Udorthents

| Horizon                   | Ah      |
|---------------------------|---------|
| Depth (cm)                | 0-12/18 |
| Clay %                    | 19      |
| Silt %                    | 19      |
| Sand %                    | 62      |
| Texture class             | SCL     |
| Bulk density g/cc         | 1.3     |
| AWC mm/18cm               | 12      |
| pH H <sub>2</sub> O 1:2.5 | 5.0     |
| pH KCl 1:2.5              | 4.2     |
| Organic C %               | 6.2     |
| Total N %                 | 0.28    |
|                           |         |

ANALYTICAL DATA FOR PROFILE MGP-21

| Texture class                      | SCL  |
|------------------------------------|------|
| Bulk density g/cc                  | 1.3  |
| AWC mm/18cm                        | 12   |
| pH H <sub>2</sub> O 1:2.5          | 5.0  |
| pH KCl 1:2.5                       | 4.2  |
| Organic C %                        | 6.2  |
| Total N %                          | 0.28 |
| C/N                                | 22.1 |
| Avail. P Bray-1 mg/kg              | 0.76 |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 31.5 |
| Exch. Ca cmol(+)/kg                | 0.12 |
| Exch. Mg cmol(+)/g                 | 0.22 |
| Exch. K cmol(+)/kg                 | 0.11 |
| Exch. Na cmol(+)/kg                | 0.05 |
| Exch. H cmol(+)/kg                 | 0.17 |
| Exch. Al cmol(+)/kg                | 1.77 |
| TEB cmol(+)/kg                     | 0.5  |
| Al saturation %                    | 78   |
| Exch. acidity cmol(+)/kg           | 1.94 |
| Base saturation %                  | 1.59 |
| CEC clay cmol(+)/kg                | 53.3 |
| Cu mg/kg                           | 1.3  |
| Fe mg/kg                           | 30.2 |
| Mn mg/kg                           | 0.31 |
| Zn mg/kg                           | 0.22 |
| B mg/kg                            | 0.09 |

Profile number : MGP-22 Mapping unit: G22 Agro-ecol. zone: Region : Morogoro District : Morogoro rural Map sheet no. : 201/1 Co-ordinates : 37° 34' 1" E/ 7° 00' 49" S Location : Peko Msegese, east of the main road to Mgeta Elevation : 1050 m asl. Parent material: banded pyroxene granulites. Landform: mountain; hilly. Slope: 55 %; straight Surface characteristics : Rock outcrops: 50% Stones: 10 % Erosion: .Deposition: none. Natural drainage class : somewhat excessively drained

Described by S.B. Mwango, E.P. Kileo, B.M. Msanya and D.N. Kimaro on 04/03/00

Soils are shallow, somewhat excessively drained, dark brown sandy clay loams over hard rock.

Ap 0 - 20/28 cm: dark brown (7.5YR3/2) dry, dark brown (7.5YR4/2) moist; slightly stony sandy clay loam; slightly hard dry, friable moist, sticky and plastic wet; strong fine and medium crumby; many fine and few medium pores; few small irregular fresh feldspar fragments; many fine and medium roots; clear wavy boundary to

R banded pyroxene granulites hard rock.

SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Eutri-Lithic Leptosols (Haplic) USDA Soil Taxonomy (Soil Survey Staff, 1998): Lithic Ustorthents

#### ANALYTICAL DATA FOR PROFILE MGP -22

| Horizon                            | Ар      |
|------------------------------------|---------|
| Depth (cm)                         | 0-20/28 |
| Clay %                             | 37      |
| Silt %                             | 18      |
| Sand %                             | 45      |
| Texture class                      | SCL     |
| Bulk density g/cc                  | 1.3     |
| AWC mm/28cm                        | 18.3    |
| pH H <sub>2</sub> O 1:2.5          | 6.5     |
| pH KCl 1:2.5                       | 4.6     |
| EC 1:2.5 mS/cm                     | nd      |
| Organic C %                        | 1.69    |
| Total N %                          | 0.12    |
| C/N                                | 14.1    |
| Avail. P Bray-1 mg/kg              | 3.4     |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 16.5    |
| Exch. Ca cmol(+)/kg                | 9.0     |
| Exch. Mg cmol(+)/g                 | 4.7     |
| Exch. K cmol(+)/kg                 | 1.3     |
| Exch. Na cmol(+)/kg                | 0.15    |
| Exch. H cmol(+)/kg                 | nd      |
| Exch. Al cmol(+)/kg                | nd      |
| TEB cmol(+)/kg                     | 15.5    |
| Exch. acidity cmol(+)/kg           | nd      |
| Base saturation %                  | 94      |
| CEC clay cmol(+)/kg                | 28.8    |
| Cu mg/kg                           | 1.1     |
| Fe mg/kg                           | 51.2    |
| Mn mg/kg                           | 9.5     |
| Zn mg/kg                           | 0.31    |
| B mg/kg                            | 0.07    |

 Profile number : MGP-23
 Mapping unit: G21
 Agro-ecol. zone:

 Region
 : Morogoro

 District
 : Morogoro rural

 Map sheet no.
 : 201/1

 Co-ordinates
 : 37° 32' 33" E/ 7° 01' 50" S

 Location
 : Peko Msegese, west of the road to Mgeta

 Elevation
 : 1260 m asl. Parent material: banded pyroxene granulites.

 Landform: mountain; steeply dissected. Slope: 5 %; straight

 Surface characteristics : Rock outcrops: 10% stones: 15% Erosion: Deposition: none.

 Natural drainage class : somewhat excessively drained

Described by S.B. Mwango, E.P. Kileo, B.M. Msanya and D.N. Kimaro on 04/03/00

Soils are shallow, somewhat excessively drained, dark brown to brown sandy clay loams over hard rock.

Ah 0 - 20/26 cm: dark brown (7.5YR3/2) moist; sandy clay loam; friable moist, nonsticky and non-plastic wet; moderate medium and fine subangular blocks; many fine and medium pores; many fine and common medium roots; clear wavy boundary to

R banded pyroxene granulites hard rock.

SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Dystri-Lithic Leptosols (Haplic) USDA Soil Taxonomy (Soil Survey Staff, 1998): Lithic Ustorthents

#### ANALYTICAL DATA FOR PROFILE MGP -23 Horizon Ah 0-20/26 Depth (cm) 25 Clay % Silt % 6 Sand % 69 Texture class SCL Bulk density g/cc 1.3 AWC mm / 22 cm 13.6

| nu c mm/ 22 cm                     | 15.0 |
|------------------------------------|------|
| pH H <sub>2</sub> O 1:2.5          | 6.1  |
| pH KCl 1:2.5                       | 4.4  |
| EC 1:2.5 mS/cm                     | nd   |
| Organic C %                        | 1.8  |
| Total N %                          | 0.11 |
| C/N                                | 16.4 |
| Avail. P Bray-1 mg/kg              | 1.5  |
| Avail. P Olsen mg/kg               | nd   |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 11.4 |
| Exch. Ca cmol(+)/kg                | 3.0  |
| Exch. Mg cmol(+)/g                 | 1.1  |
| Exch. K cmol(+)/kg                 | 0.3  |
| Exch. Na cmol(+)/kg                | 0.05 |
| Exch. H cmol(+)/kg                 | nd   |
| Exch. Al cmol(+)/kg                | nd   |
| TEB cmol(+)/kg                     | 4.45 |
| Base saturation %                  | 39   |
| CEC clay cmol(+)/kg                | 20.8 |
| Cu mg/kg                           | 0.8  |
| Fe mg/kg                           | 60.2 |
| Mn mg/kg                           | 7.6  |
| Zn mg/kg                           | 0.09 |
| B mg/kg                            | 0.05 |

 Profile number : MGP-24
 Mapping unit: M11
 Agro-ecol. zone:

 Region
 : Morogoro

 District
 : Morogoro rural

 Map sheet no.
 : 201/1

 Co-ordinates
 : 37° 31' 50" E/ 7° 6' 7" S

 Location
 : about 2 km south west of Mwarazi village

 Elevation
 : 1450 m asl. Parent material: meta-anorthosite, meta-gabbroic anorthosite

 and meta-anorthositic gabbro.
 Landform: mountain; steeply dissected. Slope: 5 %; concave

 Surface characteristics : Rock outcrops: 5% Stones: 2% Erosion: . Deposition: none.

 Natural drainage class : well drained

Described by D.N. Kimaro, E.P. Kileo, S.B. Mwango and B.M. Msanya on 05/03/00

Soils are shallow, somewhat excessively drained, black clay loams over hard rock.

Ap 0 - 20/25 cm: dark grey (7.5YR4/1) dry, black (7.5YR2.5/1) moist; clay loam; hard dry, friable moist, slightly sticky and slightly plastic wet; moderately strong fine and medium subangular blocks; few fine and medium pores; few medium irregular fresh quartz fragments; many fine and common medium roots; clear wavy boundary to

R meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro hard rock.

SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Eutri-Lithic Leptosols (Haplic) USDA Soil Taxonomy (Soil Survey Staff, 1998): Lithic Udorthents

## ANALYTICAL DATA FOR PROFILE MGP-24 Horizon Ap

| Horizon                            | Ар      |
|------------------------------------|---------|
| Depth (cm)                         | 0-20/25 |
| Clay %                             | 38      |
| Silt %                             | 18      |
| Sand %                             | 44      |
| Texture class                      | CL      |
| Bulk density g/cc                  | 1.1     |
| AWC mm/25cm                        | 16.4    |
| pH H <sub>2</sub> O 1:2.5          | 5.4     |
| pH KCl 1:2.5                       | 4.1     |
| Organic C %                        | 3.15    |
| Total N %                          | 0.17    |
| C/N                                | 18.5    |
| Avail. P Bray-1 mg/kg              | 6.1     |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 17.1    |
| Exch. Ca cmol(+)/kg                | 8.6     |
| Exch. Mg cmol(+)/g                 | 1.2     |
| Exch. K cmol(+)/kg                 | 0.42    |
| Exch. Na cmol(+)/kg                | 0.11    |
| Exch. H cmol(+)/kg                 | 0.25    |
| Exch. Al cmol(+)/kg                | 1.12    |
| TEB cmol(+)/kg                     | 10.33   |
| Al saturation %                    | 9.8     |
| Exch. acidity cmol(+)/kg           | 1.37    |
| Base saturation %                  | 60.4    |
| CEC clay cmol(+)/kg                | 16.4    |
| Cu mg/kg                           | 0.54    |
| Fe mg/kg                           | 55.3    |
| Mn mg/kg                           | 1.4     |
| Zn mg/kg                           | 0.09    |
| B mg/kg                            | 0.03    |

 Profile number : MGP-25
 Mapping unit: M12
 Agro-ecol. zone:

 Region
 : Morogoro

 District
 : Morogoro rural

 Map sheet no. : 201/1
 Co-ordinates
 : 37° 31' 50" E/ 7° 44' 15" S

 Location
 : about 1.5 km south west of Mwarazi village

 Elevation
 : 1400 m asl. Parent material: meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro.

 Landform: mountain; steeply dissected. Slope: 54 %; straight

 Surface characteristics : Stones: 2 % Erosion: . Deposition: none.

 Natural drainage class : well drained

Described by S.B. Mwango, B.M. Msanya, E.P. Kileo and D.N. Kimaro on 05/03/00

Soils are shallow, well drained, very dark grey clays over very pale brown clay loam to loam saprolite from meta-anorthosite, meta-gabbroic anorthosite and meta-anorthositic gabbro rocks.

Ap 0 - 26/30 cm: very dark grey (5YR3/1) moist; clay; friable moist, slightly sticky and slightly plastic wet; moderate coarse and medium subangular blocks; many fine and few medium pores; few small spherical fresh quartz fragments; many fine and very fine roots; clear wavy boundary to

C1 26/30 - 85/100 cm: yellowish brown (10YR5/4) moist; clay loam; friable moist, slightly sticky and slightly plastic wet; structureless massive; many very fine and fine pores; very few small spherical fresh quartz fragments; few fine and very fine roots; clear wavy boundary to

C2 85/100 - 120 cm: very pale brown (10YR8/3) moist; loam; friable moist, nonsticky and non-plastic wet; structureless massive; many very fine pores; few fine and very fine roots.

# ANALYTICAL DATA FOR PROFILE MGP-25 Horizon Ap C1 Depth (cm) 0-26/30 26/30-85/100 Clay % 50 30 Site 0 27 44

| 1 1 1                              |      |       |       |
|------------------------------------|------|-------|-------|
| Clay %                             | 50   | 30    | 16    |
| Silt %                             | 27   | 44    | 41    |
| Sand %                             | 23   | 26    | 43    |
| Texture class                      | С    | CL    | L     |
| Bulk density g/cc                  | 1.1  | 1.2   | 1.2   |
| AWC mm/m                           | nd   | nd    | 108.2 |
| pH H <sub>2</sub> O 1:2.5          | 5.6  | 5.6   | 6.1   |
| pH KCl 1:2.5                       | 4.6  | 4.2   | 4.3   |
| Organic C %                        | 3.2  | 0.21  | 0.15  |
| Total N %                          | 0.16 | 0.02  | 0.01  |
| C/N                                | 20   | 10.5  | 15.0  |
| Avail. P Bray-1 mg/kg              | 3.8  | 0.91  | 1.2   |
| Avail. P Olsen mg/kg               | nd   | nd    | nd    |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 16.8 | 9.4   | 8.7   |
| Exch. Ca cmol(+)/kg                | 4.1  | 2.4   | 3.1   |
| Exch. Mg cmol(+)/g                 | 1.8  | 1.1   | 1.1   |
| Exch. K cmol(+)/kg                 | 0.5  | 0.05  | 0.06  |
| Exch. Na cmol(+)/kg                | 0.11 | 0.15  | 0.20  |
| Exch. H cmol(+)/kg                 | 0.07 | 0.14  | 0.09  |
| Exch. Al cmol(+)/kg                | 0.07 | 0.54  | 0.14  |
| TEB cmol(+)/kg                     | 6.51 | 3.7   | 4.46  |
| Al saturation %                    | 1.06 | 12.74 | 3.04  |
| Exch. acidity cmol(+)/kg           | 0.14 | 0.68  | 0.23  |
| Base saturation %                  | 38.8 | 39.4  | 51.3  |
| CEC clay cmol(+)/kg                | 11.5 | 28.9  | 51.1  |
| Cu mg/kg                           | 0.6  | 0.51  | 0.12  |
| Fe mg/kg                           | 30.0 | 5.3   | 3.6   |
| Mn mg/kg                           | 38.6 | 1.1   | 0.6   |
| Zn mg/kg                           | 0.1  | 0.05  | 0.005 |
| B mg/kg                            | 0.06 | 0.05  | 0.01  |

C2

85/100-120+

nd= not determined

SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Hapli-Anthric Umbrisols USDA Soil Taxonomy (Soil Survey Staff, 1998): Typic Udorthents

 Profile number : MGP-26
 Mapping unit: K12
 Agro-ecol. zone:

 Region
 : Morogoro:
 District
 : Morogoro rural

 Map sheet no.
 : 201/1

 Co-ordinates
 : 37° 35' 9" E/ 7° 5' 29" S

 Location
 : Lukweme, along the Nyandira-Tchenzema road

 Elevation
 : 1650 m asl. Parent material: kaolinitic clays

 Landform: mountain; hilly. Slope: 45 %; straight

 Surface characteristics :
 Erosini : Deposition: none.

 Natural drainage class : well drained

 Described by D.N. Kimaro, E.P. Kileo, B.M. Msanya and S.B. Mwango on 05/03/00

Soils are very deep, well drained, brown clays to clay loams, with very thick black clay loam topsoils.

Ap 0 - 40/50 cm: dark brown (7.5YR3/2) dry, black (7.5YR2.5/1) moist; clay loam; soft dry, friable moist, slightly sticky and slightly plastic wet; very strong fine and very fine subangular blocks; many medium and few fine pores; very few medium irregular fresh gneiss fragments; many fine and very fine roots; clear wavy boundary to

Bt 40/50 - 135/150 cm: strong brown (7.5YR5/8) dry, brown (7.5YR4/4) moist; clay; slightly hard dry, friable moist, sticky and plastic wet; moderate medium and fine subangular blocks; continuous thin clay cutans; common medium and few fine pores; few medium irregular slightly weathered gneiss fragments; many fine and few medium roots; diffuse irregular boundary to

BC 135/150 - 190 cm: brown (7.5YR4/4) moist; clay loam; friable moist, sticky and plastic wet; moderate medium and fine subangular blocks; few fine and common medium pores; frequent small irregular weathered gneiss fragments; few fine and common very fine roots

SOIL CLASSIFICATION:

World Reference Base WRB (FAO, 1998): Hapli-Chromic Phaeozems USDA Soil Taxonomy (Soil Survey Staff, 1998): Typic Argiudolls

#### ANALYTICAL DATA FOR PROFILE MGP-26

| Horizon                            | Ар      | Bt            | BC          |
|------------------------------------|---------|---------------|-------------|
| Depth (cm)                         | 0-40/50 | 40/50-135/150 | 135/150-190 |
| Clay %                             | 37      | 53            | 39          |
| Silt %                             | 21      | 21            | 19          |
| Sand %                             | 42      | 26            | 42          |
| Texture class                      | CL      | С             | CL          |
| Bulk density g/cc                  | 1.0     | 1.3           | 1.3         |
| AWC mm/m                           | nd      | 127.3         | nd          |
| pH H <sub>2</sub> O 1:2.5          | 6.1     | 6.4           | 6.8         |
| pH KCl 1:2.5                       | 4.3     | 4.6           | 4.8         |
| EC 1:2.5 mS/cm                     | nd      | nd            | nd          |
| Organic C %                        | 6.3     | 0.66          | 0.31        |
| Total N %                          | 0.25    | 0.08          | 0.03        |
| C/N                                | 25.2    | 8.3           | 10.3        |
| Avail. P Bray-1 mg/kg              | 3.3     | 1.6           | 35.2        |
| Avail. P Olsen mg/kg               | nd      | nd            | nd          |
| CEC NH <sub>4</sub> OAc cmol(+)/kg | 28.6    | 12.5          | 11.1        |
| Exch. Ca cmol(+)/kg                | 9.5     | 5.1           | 5.0         |
| Exch. Mg cmol(+)/g                 | 5.2     | 2.0           | 1.9         |
| Exch. K cmol(+)/kg                 | 0.21    | 0.05          | 0.03        |
| Exch. Na cmol(+)/kg                | 0.10    | 0.08          | 0.11        |
| Exch. H cmol(+)/kg                 | nd      | nd            | nd          |
| Exch. Al cmol(+)/kg                | nd      | nd            | nd          |
| TEB cmol(+)/kg                     | 15.01   | 7.23          | 7.04        |
| Base saturation %                  | 52.5    | 57.8          | 63.4        |
| CEC clay cmol(+)/kg                | 18.6    | 19.3          | 25.7        |
| Cu mg/kg                           | 0.9     | 0.6           | 0.6         |
| Fe mg/kg                           | 62.1    | 35.6          | 20.1        |
| Mn mg/kg                           | 110.2   | 9.0           | 10.3        |
| Zn mg/kg                           | 1.8     | 0.4           | 0.4         |
| B mg/kg                            | 0.19    | 0.04          | 0.02        |

| Land quality           | Diagnostic factor       | Unit                  |                                                          | Factor          | rating                  |              |
|------------------------|-------------------------|-----------------------|----------------------------------------------------------|-----------------|-------------------------|--------------|
| ¥ ¥                    | 0                       |                       | Highly                                                   | Moderately      | Marginaly               | Not          |
|                        |                         |                       | suitable (S1)                                            | suitable (S2)   | suitable (S3)           | suitable (n) |
| Moisture               | precipitation of        | mm                    | 350-800                                                  | 800-1000        | >1000                   |              |
| availability           | growing period          |                       |                                                          | 300-350         | 250-300                 | <250         |
| Temperature            | mean temp. of the       | °C                    | 13-24                                                    | 24-30           | 30-35                   | >35          |
| regime                 | growing cycle           |                       |                                                          | 10-13           | 5-10                    | <5           |
|                        | temp. difference        | °C                    | 8-14                                                     | 14-16           | 16-18                   | >18          |
|                        | day/night               |                       |                                                          | 8-4             | 4-2                     | <2           |
| Erosion hazard         | terraced slope gradient | %                     | < 30                                                     | 30-60           | 60-80                   | >80          |
|                        | surface soil texture    | -                     | S, LS, SL                                                | L, SCL,<br>SiL, | SiCL, CL SC             | Si, SiC, C   |
| Oxygen<br>availability | soil drainage           | drainage<br>class     | moderate<br>well,<br>somewhat<br>excessive,<br>excessive | imperfect,      | poor                    | very poor    |
| Rooting                | effective soil          | cm                    | >60                                                      | 60-50           | 50-20                   | <20          |
| condition              | depth                   |                       |                                                          |                 |                         |              |
|                        | Texture                 | -                     | L, SCL, SiC,                                             | C, LS, SiCL,    |                         |              |
|                        |                         |                       | SL, SC, CL                                               | SiL             | S, Si                   | -            |
| Nutrient               | soil reaction           | pH (H <sub>2</sub> O) | 6.0-7.5                                                  | 7.5-8.0         | 8.0-8.5                 | >8.5         |
| availability           |                         | -                     |                                                          | 5.5 - 6.0       | 5.0 - 5.5               | <5.5         |
|                        | organic carbon          | %                     | >0.8                                                     | <0.8            | -                       | -            |
|                        | total nitrogen          | %                     | > 0.23                                                   | 0.23 - 0.15     | 0.15 - 0.1              | < 0.1        |
|                        | available               | mg p/kg               | > 47                                                     | 47 - 10         | 10 - 4                  | < 4          |
|                        | phosphorus              |                       |                                                          |                 |                         |              |
|                        | potassium content       | cmol                  | > 3.8                                                    | 3.8 - 1.2       | 1.2 - 0.5               | <0.5         |
|                        |                         | (+)/kg                |                                                          |                 |                         |              |
| Nutrient<br>retention  | apparent CEC            | cmol(+)/k<br>g clay   | >16                                                      | <16 (+)         | -                       | -            |
| capacity               | sum of basic            | $cmol(+)/l_{r}$       | >3.5                                                     | 350             | ~7                      |              |
|                        | cations                 | g soil                | >3.3                                                     | 5.5-2           | $\smallsetminus \angle$ | -            |
|                        | base saturation         | %                     | >35                                                      | 35-20           | <20                     | -            |
|                        | base saturation         | %                     | >35                                                      | 35-20           | <20                     | -            |

## Appendix 2. Rating of land use requirements for smallholder improved low input rainfed cabbage cultivation system (growing period 100 - 150 days)

Moisture

availability

| potatoes cultivation system (growing period 90-120 days) |                      |                      |                          |                         |  |  |  |
|----------------------------------------------------------|----------------------|----------------------|--------------------------|-------------------------|--|--|--|
| Diagnostic factor                                        | agnostic factor Unit |                      |                          | Factor rating           |  |  |  |
|                                                          |                      | Highly suitable (S1) | Moderately suitable (S2) | Marginaly suitable (S3) |  |  |  |
| precipitation of<br>growing period (first<br>4 months}   | mm                   | > 450                | 250 - 160<br>450-800     | 160 - 120<br>800-1000   |  |  |  |
| mean temp. of the growing cycle                          | °C                   | 13 - 24              | 24 - 27<br>13 - 10       | 27 - 30<br>10 - 8       |  |  |  |
| average. temp.<br>difference between                     | °C                   | > 5                  | < 5                      | -                       |  |  |  |

## Appendix 3. Rating of land use requirements for smallholder improved low input rainfed Land quality

Not suitable (n)

< 120

>1000

|                | 4 months}            |                    |              |            |             |            |
|----------------|----------------------|--------------------|--------------|------------|-------------|------------|
| Temperature    | mean temp. of the    | °C                 | 13 - 24      | 24 - 27    | 27 - 30     | > 30       |
| regime         | growing cycle        |                    |              | 13 - 10    | 10 - 8      | < 8        |
|                | average. temp.       | °C                 | > 5          | < 5        | -           | -          |
|                | difference between   |                    |              |            |             |            |
|                | day/night            |                    |              |            |             |            |
| Erosion hazard | terraced slope       | %                  | > 30         | 30-60      | 60-80       | > 80       |
|                | gradient             |                    |              |            |             |            |
|                | surface soil texture | -                  | S, LS, SL    | L, SCL,    | SiCL, CL SC | Si, SiC, C |
|                |                      |                    |              | SiL,       |             |            |
| Oxygen         | soil drainage        | drainage           | moderate,    | imperfect, | poor        | very poor  |
| availability   |                      | class              | well,        |            |             |            |
| -              |                      |                    | excessive,   |            |             |            |
|                |                      |                    | somewhat     |            |             |            |
|                |                      |                    | excessive    |            |             |            |
| Tuber          | effective soil depth | cm                 | > 60         | 60 - 40    | 40 - 20     | < 20       |
| expansion and  |                      |                    |              |            |             |            |
| harvesting     |                      |                    |              |            |             |            |
|                | texture              | -                  | L, SCL, SiL, | C, SiCL    | LS, SiC, Si | S          |
|                |                      |                    | CL, SC,      |            |             |            |
|                |                      |                    | SL,          |            |             |            |
| Nutrient       | soil reaction        | pН                 | 5.6 - 7.0    | 7.0 - 8.0  | 8.0 - 8.2   | > 8.2      |
| availability   |                      | (H <sub>2</sub> O) |              | 5.2 - 5.6  | 5.2 - 4.8   | <4.8       |
|                | organic carbon       | %                  | > 0.8        | 0.8-1.2    | < 0.8       | -          |
|                | total nitrogen       | %                  | > 0.1        | 0.1 - 0.02 | 0.02-0.01   | < 0.01     |
|                | available            | mg p/kg            | > 36         | 36 - 8     | 8 - 1       | < 1        |
|                | phosphorus           |                    |              |            |             |            |
|                | potassium content    | cmol               | > 3          | 3 -0.5     | 0.5 -0.1    | < 0.1      |
|                |                      | (+)/kg             |              |            |             |            |
| Nutrient       | apparent CEC         | cmol(+)/           | >16          | < 16 (+)   | -           | -          |
| retention      |                      | kg clay            |              |            |             |            |
| capacity       |                      |                    |              |            |             |            |
|                | sum of basic cations | cmol(+)/           | > 3.5        | 3.5 - 2    | < 2         | -          |
|                |                      | kg soil            |              |            |             |            |
|                | base saturation      | %                  | 35 - 100     | < 35       | -           | -          |
|                |                      |                    |              |            |             |            |

| Land quality | Diagnostic factor | Unit                  |            | Factor      | rating     |            |
|--------------|-------------------|-----------------------|------------|-------------|------------|------------|
|              |                   |                       | Highly     | Moderately  | Marginally | Not        |
|              |                   |                       | suitable   | suitable    | suitable   | suitable   |
|              |                   |                       | (S1)       | (S2)        | (S3)       | (n)        |
| Moisture     | Annual            | mm                    | 1200 -     | 1800 -      | > 2000     | < 800      |
| availability | precipitation     |                       | 1800       | 2000        | 800 - 1000 |            |
| 2            |                   |                       |            | 1000 -      |            |            |
|              |                   |                       |            | 1200        |            |            |
|              | Length dry        | Months                | 1 - 4      | 4 - 5       | 5 - 6      | > 6        |
|              | season (months:   |                       |            | 0 - 1       |            |            |
|              | P < 1/2PET)       |                       |            |             |            |            |
| Temperature  | Mean annual       | °C                    | 22 - 28    | 28 - 30     | 30 - 32    | > 32       |
| regime       | max. temperature  |                       |            | 22 - 20     | 20 - 18    | < 18       |
| 0            | Mean monthly      | °C                    | 10 - 19    | 19 - 21     | 21 - 23    | >23        |
|              | min. temp. of     | -                     |            | 10 - 7      | 7 - 4      | < 4        |
|              | coldest month     |                       |            |             |            |            |
|              | mean annual       | °C                    | 16 - 22    | 22 - 24     | 24 - 26    | >26        |
|              | temp.             |                       |            | 16 - 15     | 15 - 14    | < 14       |
| Erosion      | terraced slope    | %                     | < 30       | 30-60       | 60-80      | >80        |
| hazard       | gradient          |                       |            |             |            |            |
|              | surface soil      | _                     | S. LS. SL  | L. SCL.     | SiCL, CL   | Si, SiC, C |
|              | texture           |                       | ~, _~, ~_  | _,,<br>SiL. | SC         | ,, .       |
| Oxygen       | soil drainage     | drainage              | well,      | moderately  | imperfect  | poor, very |
| availability | e                 | class                 | excessive, | well        | 1          | poor       |
| 5            |                   |                       | somewhat   |             |            | 1          |
|              |                   |                       | excessive  |             |            |            |
| Rooting      | effective soil    | cm                    | > 150      | 150 - 100   | 100 - 50   | < 50       |
| condition    | depth             |                       |            |             |            |            |
|              | soil texture      | -                     | SiCL, CL,  | C, SC       | SL, SiL    | SiC, LS,   |
|              |                   |                       | SCL, L     |             | ,          | S, Si      |
| Nutrient     | soil reaction     | pH (H <sub>2</sub> O) | 5.6 - 6.6  | 6.6 - 7.4   | 7.4 - 7.8  | > 7.8      |
| availability |                   | 1 (2)                 |            | 5.6 - 5.4   | 5.4 - 5.2  | < 5.2      |
| 5            | organic carbon    | %                     | > 1.2      | 1.2 - 0.8   | < 0.8      | -          |
|              | total nitrogen    | %                     | > 0.2      | 0.2 - 0.1   | 0.1 -0.05  | < 0.05     |
|              | available         | mg p/kg               | >26        | 26 - 5      | 5 - 2      | < 2        |
|              | phosphorus        | 81 8                  |            |             | -          |            |
|              | potassium         | cmol                  | > 4.2      | 4.2 - 1.4   | 1.4 - 0.2  | < 0.2      |
|              | content           | (+)/kg                |            |             |            |            |
| Nutrient     | apparent CEC      | cmol(+)/k             | > 16       | < 16 (+)    | _          | _          |
| retention    |                   | g clav                |            |             |            |            |
| capacity     |                   | <u> </u>              |            |             |            |            |
|              | sum of basic      | cmol(+)/k             | >4         | 4 - 2.8     | 2.8 - 1.6  | < 1.6      |
|              | cations           | g soil                |            |             |            |            |
|              | base saturation   | %                     | > 50       | 50 - 35     | 35 - 20    | < 20       |

## Appendix 4. Rating of land use requirements for smallholder low input rainfed arabica coffee cultivation system

## Appendix 5. Guide to general evaluation of some soil chemical and physical

**properties** [Compiled from ILACO (1991), London (1991), Baize (1993) and Msanya *et al.* (1996)].

| 1. Organic matter and total nitrogen |  |
|--------------------------------------|--|
|--------------------------------------|--|

|                  | Very low | Low       | Medium    | High      | Very high |
|------------------|----------|-----------|-----------|-----------|-----------|
| Organic matter % | < 1.0    | 1.0-2.0   | 2.1-4.2   | 4.3-6.0   | > 6       |
| Organic carbon % | < 0.60   | 0.60-1.25 | 1.26-2.50 | 2.51-3.50 | > 3.5     |
| Total N %        | < 0.10   | 0.10-0.20 | 0.21-0.50 | > 0.50    |           |

C/N ratios give an indication of the quality of the organic matter:

C/N ratio 8 - 13: good quality

C/N ratio 14 - 20: moderate quality

C/N ratio > 20: poor quality

## 2. Soil reaction

| Extremely acid     | pH <4.5       | Neutral                | pH 6.6 to 7.3 |
|--------------------|---------------|------------------------|---------------|
| Very strongly acid | pH 4.5 to 5.0 | mildly alkaline        | pH 7.4 to 7.8 |
| Strongly acid      | pH 5.1 to 5.5 | moderate alkaline      | pH 7.9 to 8.4 |
| Medium acid        | pH 5.6 to 6.0 | strongly alkaline      | pH 8.5 to 9.0 |
| Slightly acid      | pH 6.1 to 6.5 | very strongly alkaline | pH > 9.0      |

## 3. Available phosphorus

| mg p/kg soil               | Low | Medium | High |  |
|----------------------------|-----|--------|------|--|
| Available p (Bray-Kurtz 1) | < 7 | 7 - 20 | > 20 |  |
| Available p (Olsen)        | < 5 | 5 - 10 | > 10 |  |

Available phosphorus is determined by the Bray-Kurtz 1 method if the pH  $H_2O$  of the soil is less than 7.0. In soils with a pH  $H_2O$  of more than 7.0 the Olsen method is used.

## 4. Cation exchange capacity (CEC)

| cmol (+)/kg soil | Very low | Low        | Medium      | High        | Very high |
|------------------|----------|------------|-------------|-------------|-----------|
| CEC              | < 6.0    | 6.0 - 12.0 | 12.1 - 25.0 | 25.0 - 40.0 | >40.0     |
|                  |          |            |             |             |           |

CEC is determined using 1M ammonium acetate in soils with pH less than 7.5. In soils with pH greater than 7.5 CEC is determined using 1M sodium acetate.

## 5. Exchangeable calcium

| cmol (+)/kg soil   | Very low | Low       | Medium     | High        | Very high |
|--------------------|----------|-----------|------------|-------------|-----------|
| Ca (clayey soils   |          |           |            |             |           |
| rich in 2:1 clays) | < 2.0    | 2.0 - 5.0 | 5.1 - 10.0 | 10.1 - 20.0 | > 20.0    |
| Ca (loamy soils)   | < 0.5    | 0.5 - 2.0 | 2.1 - 4.0  | 4.1 - 6.0   | >6.0      |
| Ca (kaolinitic and |          |           |            |             |           |
| sandy soils)       | < 0.2    | 0.2 - 0.5 | 0.6 - 2.5  | 2.6 - 5.0   | >5.0      |
|                    |          |           |            |             |           |

## 6. Exchangeable magnesium

| cmol (+)/kg soil  | Very low | Low         | Medium     | High      | Very high |
|-------------------|----------|-------------|------------|-----------|-----------|
| Mg (clayey soils) | < 0.3    | 0.3 - 1.0   | 1.1 - 3.0  | 3.1 - 6.0 | > 6.0     |
| Mg (loamy soils)  | < 0.25   | 0.25 - 0.75 | 0.75 - 2.0 | 2.1 - 4.0 | > 4.1     |
| Mg (sandy soils)  | < 0.2    | 0.2 - 0.5   | 0.5 - 1.0  | 1.1 - 2.0 | > 2.0     |

The desired saturation level of exchangeable Mg is 10 to 15 percent; for sandy and kaolinitic soils 6 to 8 percent Mg saturation is still sufficient.

Ca/Mg ratios of 2 to 4 are favourable.

| 7. Exchangeable p | Jussium  |             |             |             |           |
|-------------------|----------|-------------|-------------|-------------|-----------|
| cmol (+)/kg soil  | Very low | Low         | Medium      | High        | Very high |
| k (clayey soils)  | < 0.20   | 0.20 - 0.40 | 0.41 - 1.20 | 1.21 - 2.00 | > 2.00    |
| k (loamy soils)   | < 0.13   | 0.13 - 0.25 | 0.26 - 0.80 | 0.81 - 1.35 | >1.35     |
| k (sandy soils)   | < 0.05   | 0.05 - 0.10 | 0.11 - 0.40 | 0.41 - 0.70 | >0.70     |

7. Exchangeable potassium

The desired saturation level of exchangeable k is 2 to 7 percent.

Favourable Mg/k ratios for most crops are in the range of 1 to 4.

## 8. Exchangeable sodium

| cmol (+)/kg soil     | Very low | Low         | Medium            | High                | Very high          |
|----------------------|----------|-------------|-------------------|---------------------|--------------------|
| Na                   | < 0.10   | 0.10 - 0.30 | 0.31 - 0.70       | 0.71 - 2.00         | > 2.00             |
| Mana inco antont the |          |             | hla Na ia tha ana | han an abla an dire | m manageta an (ECD |

More important than the absolute level of exchangeable Na is the exchangeable sodium percentage (ESP) calculated by dividing exchangeable Na by CEC (\* 100). ESP values are a measure of the sodicity of the soil.

#### 9. Soil sodicity

|                                                                                | Non sodic | Slightly sodic | Moderately sodic | Strongly sodic | Very<br>strongly<br>sodic | Extremely sodic |
|--------------------------------------------------------------------------------|-----------|----------------|------------------|----------------|---------------------------|-----------------|
| ESP %                                                                          | < 6       | 6 - 10         | 11 - 15          | 16 - 25        | 26 - 35                   | > 35            |
| ESP < 15 %: up to 50 percent yield reduction of sensitive crops (maize, beans) |           |                |                  |                |                           |                 |

ESP 16 - 25 %: up to 50 percent yield reduction of semi-tolerant crops (rice, wheat, sorghum, sugarcane) ESP 35 %: up to 50 percent yield reduction of tolerant crops (barley, cotton)

## 10. Basic infiltration rate (IR)

| IR < 0.1 cm/h       | extremely slow   |
|---------------------|------------------|
| IR 0.1 - 0.3 cm/h   | very slow        |
| IR 0.3 -0.5 cm/h    | slow             |
| IR 0.5 - 2.0 cm/h   | moderately slow  |
| IR 2.0 - 6.5 cm/h   | moderate         |
| IR 6.5 - 12.5 cm/h  | moderately rapid |
| IR 12.5 - 25.0 cm/h | rapid            |
| IR > 25.0  cm/h     | very rapid       |

Basic infiltration rate is the constant rate at which water enters the (pre-wetted) soil and which develops after 3 to 5 hours of infiltration.

| 11. Available water capacity (AWC) |                |               |  |  |  |
|------------------------------------|----------------|---------------|--|--|--|
| AWC                                | < 25 mm/m      | extremely low |  |  |  |
| AWC                                | 25 - 50 mm/m   | very low      |  |  |  |
| AWC                                | 50 - 100 mm/m  | low           |  |  |  |
| AWC                                | 100 - 150 mm/m | medium        |  |  |  |
| AWC                                | 150 - 200 mm/m | high          |  |  |  |
| AWC                                | > 200 mm/m     | very high     |  |  |  |

Available water capacity is the capacity of the soil to store water that is readily available for uptake by plant roots; usually expressed in millimetres of water per meter depth of soils; technically the difference between the percentage of soil water at field capacity (normally taken as the water content at pF 2.2) and the percentage at wilting point (taken as the water content at pF 4.2).

#### 12. Aluminium saturation

|                 | very low | low     | medium  | high    | very high |
|-----------------|----------|---------|---------|---------|-----------|
| Al saturation % | < 10     | 10 - 30 | 31 - 50 | 51 - 80 | > 80      |

Aluminium saturation as a measure of toxicity is calculated by dividing exchangeable Al by the sum of exchangeable bases and exchangeable Al.