
ASABE 2018 Annual International Meeting Page 1

An ASABE Meeting Presentation
DOI: https://doi.org/10.13031/aim.201800831
Paper Number: 1800831

Deep Learning based Real-time GPU-accelerated Tracking and
Counting of Cotton Bolls under Field Conditions using a Moving Camera

Kadeghe Fue1,2, Wesley Porter2, Glen Rains1,2
1College of Engineering, University of Georgia, Athens, GA

2College of Agriculture and Environmental Sciences, University of Georgia, Tifton, GA
Written for presentation at the

2018 ASABE Annual International Meeting
Sponsored by ASABE
Detroit, Michigan

July 29-August 1, 2018

ABSTRACT. Robotic harvesting involves navigation and environmental perception as first operations before harvesting
of the bolls can commence. Navigation is the distance required for a harvester’s arm to reach the cotton boll while
perception is the position of the boll relative to surrounding environment. These two operations give a 3D position of the
cotton boll for picking and can only be achieved by detection and tracking of the cotton bolls in real-time. It means
detection, tracking and counting of cotton bolls using a moving camera allows the robotic machine to harvest easily.
GPU-accelerated deep neural networks were used to train the convolution networks for detection of cotton bolls. It was
achieved by using pretrained tiny yolo weights and DarkFlow, a framework which translates YOLOv2 darknet neural
networks to TensorFlow. A method to connect tracklets using vectors that are predicted using Lucas-Kanade algorithm
and optimized using robust L-estimators and homography transformation is proposed. The system was tested in defoliated
cotton plants during the spring of 2018. Using three video treatments, the counting performance accuracy was around
93% with standard deviation 6%. The system average processing speed was 21 fps in desktop computer and 3.9 fps in
embedded system. Detection of the system achieved an accuracy and sensitivity of 93% while precision was 99.9% and
F1 score was 1. The Tukey’s test showed that the system accuracy and sensitivity was the same when the plants were
rearranged. This performance is crucial for real-time robot decisions that also measure yield while harvesting.
Keywords. Boll counting, CNN, Cotton Bolls, Cotton counting, Cotton harvesting, DarkFlow, Darknet, Deep learning, GPU,
machine vision, TensorFlow, YOLO.

Introduction
Cotton is a very important crop in the United States that utilizes large and expensive machines to harvest in a once-

through system at a time when many of the bolls have been open for several weeks. Consequently, farmers suffer losses in
quantity and quality because of the indeterminate ripening of the cotton fruit (boll) (UGA Cotton Team, 2017). It is
imperative for United States to adopt new modern technologies and improve harvesting capacities. Current technologies
which are heavy, expensive and difficult to maintain can be unprofitable as the current harvest system can cost over $600k
(Fue et al., 2018). However, harvesters are expensive because of the heavy mechanical equipment used to make them; and
they work only in defoliated cotton plants hence early harvesting is almost impossible (UGA Cotton Team, 2017). New
harvesting technologies maypave a way to more effective and cost-efficient methods. Also, any technology to be invented
needs to be able to harvest as the bolls open to reduce current losses and preserve cotton quality (UGA Cotton Team, 2017;
Fue et al., 2018). However, for a machine to harvest bolls as they open requires smaller machines that do not increase
compaction, destroy plant branches carrying bolls that open later and that can discriminate bolls ready to pick from cotton

The authors are solely responsible for the content of this meeting presentation. The presentation does not necessarily reflect the official
position of the American Society of Agricultural and Biological Engineers (ASABE), and its printing and distribution does not
constitute an endorsement of views which may be expressed. Meeting presentations are not subject to the formal peer review process
by ASABE editorial committees; therefore, they are not to be presented as refereed publications. Publish your paper in our journal after
successfully completing the peer review process. See www.asabe.org/JournalSubmission for details. Citation of this work should
state that it is from an ASABE meeting paper. EXAMPLE: Author’s Last Name, Initials. 2018. Title of presentation. ASABE Paper
No. ---. St. Joseph, MI.: ASABE. For information about securing permission to reprint or reproduce a meeting presentation, please
contact ASABE at www.asabe.org/permissions (2950 Niles Road, St. Joseph, MI 49085-9659 USA).1

http://www.asabe.org/JournalSubmission
http://www.asabe.org/permissions

ASABE 2018 Annual International Meeting Page 2

canopy early in the season. A possible approach is to develop small but effective robots that can be deployed as an “army of
bots” to harvest on a continuous basis as bolls open. These robots could be developed such that they are also able to harvest
a diverse number of crops and remain active for longer periods of the year. The need to selectively collect cotton bolls in
space with a robotic system requires very effective research on machine vision algorithms that will guide the end effector of
the robotic arm (Bloch et al., 2017). Machines need to “perceive” stereoscopically the depth of field to an object so that the
horizontal and vertical distances can be dynamically determined in real-time. This characteristic is essentially important for
machine vision systems to locate the bolls and store 3D locations while directing a robotic arm to their location for removal.
Previously, Fue et al. (2018) used color segmentation to determine the boll locations in real-time.

Color segmentation is challenging in field conditions with heavily changing illumination and dense occlusion while using
a moving camera. Color space techniques like changing the obtained RGB images to Cyan-magenta-Yellow (CMY),
Luminance YUV, Hue Luminance Saturation (HLS) and grey images would be effective enough if illumination and
occlusion were limited (Li et al., 2017, Cheng et al., 2001 & Gauch and Hsia, 1992). This makes color selection a very
difficult task (Gauch and Hsia, 1992). Also, image noise can be corrected and improved by increasing the image smoothness
and brightness using equalization techniques that can be effective under certain conditions (Cheng et al., 2001). Also, some
statistical and machine learning methods exist that are used to classify objects in images such as naïve Bayes classifier,
logistic regression and conventional artificial neural networks (Choi et al, 2015 and Choi et al., 2016). All these techniques
can improve image detection and classification, but they are limited in discriminative power and cannot differentiate bolls
whenever the color appears similar or occluded by each other which is a common occurrence in the field (Fue et al., 2018,
Choi et al, 2015 and Choi et al., 2016). So, it is imperative to investigate alternative methods for detection such as deep
neural networks which has proved to be very effective, even in challenging lighting conditions (Kamilaris and Prenafeta-
Boldú, 2018).

Deep neural network uses a lot of data to learn detailed representation of features while traditional machine learning uses
just limited data to learn the features. It is an analytical approach developed to mimic the biological nervous system of most
animals (Kamilaris and Prenafeta-Boldú, 2018). Deep learning algorithms have recently been used to solve many machine
vision problems. One key to this surge is the ease with which the algorithms can be implemented using open-source deep
learning application frameworks such as TensorFlow, Keras, Theano, Caffe, Torch and others. Deep learning (DL) can be
implemented using various architectures like deep neural networks, recurrent neural networks and deep belief networks. All
these architectures can be learned by supervised, semi-supervisedor unsupervised models (Kamilaris and Prenafeta-Boldú,
2018). These DL networks consist of input and output layers while in between there are several hidden layers (Kamilaris
and Prenafeta-Boldú, 2018). Adding layers can improve model accuracy, but it also slows the processing speed of the model
(Redmon and Farhadi, 2017). This is because the networks are made up of several neurons and each neuron has a learnable
bias and weight. Each neuron receives the inputs, processes it and gives output to the next neuron and may follow non-
linearity. In machine vision applications, DL networks need to be trained using known images. (Redmon and Farhadi, 2017;
Kamilaris and Prenafeta-Boldú, 2018).

In this research, supervised convolution deep learning neural network architecture was deployed to detect and recognize
the cotton bolls using state of art detector, YOLO v2 model (Redmon and Farhadi, 2017; Redmon, 2016 and Redmon et al.,
2016). A similar investigation approach using deep learning to detect cotton bolls was done before (Li et al., 2017) and
proved to outperform most of the existing methods of cotton boll classification. However, the approach used a slower
technique called deep fully convolutional neural network to do semantic segmentation which is not a good candidate for
robotic use. Fortunately, the advancement of graphical processing units (GPUs) to speed up processing in computers
provides a method to implement DL systems.

The current GPU technology allows quick training of the deep learning algorithms and is supported by several
frameworks such as Tensorflow, Keras, Caffe2, NVIDIA Caffe, MXNet and pyTorch . TensorFlow was used to train the DL
network deployed in this study. This was achieved by using the DarkFlow framework which translates the pretrained weights
from darknet to TensorFlow. Darknet is a neural network framework implemented in C and cuda (Redmon et al, 2017).
YOLOv2 classification is based on modified Darknet-19 which has 19 convolutional layers and 5 max pooling layers
(Redmon and Farhadi, 2017). In this research, the deep learning model was retrained using data that was manually annotated
for cotton bolls. And then, color segmentation was used to leverage any missed bolls. Then, the algorithm to track and count
bolls was developed.

Therefore, the main objective of this study was to detect, track and count the cotton bolls under field conditions. The
specific objectives achieved were to;

1. Develop the model to detect cotton bolls in real-time by combining DL techniques, color segmentation, optical
flow and statistical tracking methods.

2. Detect cotton bolls from a mobile camera using model developed in objective 1
3. Count the bolls as they cross the out of scene line (CoSL) of the camera. This is the bottom horizontal line that can

be assumed as the maximum displacement position a cotton-picking end effector could reach.

ASABE 2018 Annual International Meeting Page 3

Materials and Methods

Experimental Set-up (Training Dataset)

An experiment was set up at the University of Georgia (UGA) Tifton campus grounds (N Entomology Dr, Tifton, GA,
31793) at (31°28’N 83°31’W). The chosen location was open to direct sunlight to simulate field conditions. Twelve defoliated
cotton plants were cut from a nearby farm and put in pots. The plants were placed in 2 columns of 6 rows, 91.4 cm between
the center of the stalk and each stalk 61 cm from the next. A moving camera Samsung Galaxy S6 Edge Plus (Samsung
Electronics, Seoul, South Korea) at less than 3 mph and at least 1.5m above the ground took 720p images of the plants facing
downward at the rate of 30 fps. Samsung camera has f/1.9 aperture and has 16 Mega pixels lens. Other training images were
taken using ZED camera (Stereo labs Inc, San Francisco, CA, USA) that is attached to an embedded system (NVIDIA Jetson
TX2 development kit, Nvidia Corp., Santa Clara, CA, USA) that is mounted on a research red rover which is moving at less
than 3 mph (Rains, 2015). ZED camera has f/1.9 aperture and has a 16 Mega pixels lens. The ZED camera was at least 1.5m
above the ground taking 720p images as the rate of 15 fps. Both were tilted (facing downward) at angle less than 900 but
greater than 800 from horizontal Getting variable angles with Samsung was important for the developed algorithm to have a
very robust detection capability. All the images were used to train the deep learning algorithms. It is important to use a
mixture of images from different cameras to enhance the model detection effectiveness.

Experimental Set-up (Testing Dataset)

After training, the 12 cotton plants were replaced. On April 12th, 2018, three test video images (3 treatments) were taken
using a moving Samsung camera. In each of the test videos taken, the 12 plants were randomized and rearranged so that the
model can validate the counting algorithms. In testing the model, 9 parameters were obtained and calculated. Detailed
images were chosen. Since each video has more than 600 images, it was decided to select 20 images from each video for
detailed analysis. Frame numbers in sequence of 50 frames were chosen. Speed of processing images with the embedded
system was measured using frame per second (fps) and average frame per second (afps). The reported bolls counted was
also collected. Using manual methods, true positives (TP), false positives (FP), false negatives (FN) and multiple detections
(MD) were collected (Sokolova, 2006). MD means the true positives are detected twice or more on the same boll. True
negatives were not determined because the system was not made to find true negatives but to ignore them. After that, the
sensitivity or recall, accuracy, precision and the weighted average (F1 score) of the model algorithms were determined as
follows (Sokolova, 2006):

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹

 (1)

𝑝𝑝𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

𝐹𝐹1 𝑠𝑠𝑟𝑟𝑝𝑝𝑟𝑟𝑠𝑠 =
2 ∗ 𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑝𝑝𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠
𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠

Image Processing System and Extraction

From a Samsung Galaxy cell phone, the videos were transferred to a desktop Lenovo Legion Y520 (NVIDIA GeForce
GTX-1050 Ti graphics running an Intel i5 7th generation CPU) with Windows 10 installed. The images obtained using ZED
camera were also transferred to the Lenovo desktop that had the TensorFlow framework installed. Training data and testing
data were both loaded to the Lenovo. Later, the videos were loaded onto the Ubuntu operated Jetson TX2 embedded
computer to compare the speed of processing between the Jetson TX2 and Lenovo Y520. The comparison was studied to
help optimize the performance of the Jetson TX2.

Data Training and Testing using TensorFlow Framework

In this study, convolutional deep learning (CNNs) model YOLO v2 ((Redmon and Farhadi, 2017)) is deployed for boll
detection. Tracking is performed by the OpenCV Lucas-Kanade algorithm (Lucas and Kanade, 1981) and L-estimators and
homography transformation are used to detect outliers of the Lukas-Kanade algorithm.

Twelve plants were used for training and another group of 12 plants were used for testing. Four hundred eighty-six images
with 7498 bolls were used to train the tiny YOLOv2 model. The image taken for training were of different quality from 360p

ASABE 2018 Annual International Meeting Page 4

(31 images), 720p (404 images), to 1080p (51 images). This gives a CNN model a chance to learn different image size
challenges of the images. Also, to improve the model detector, the images were taken at different times of the day. Some of
the images were taken during the morning (212 images), some afternoon (121 images) and some during the evening (97
images). Some images taken during the daylight, sun was occluded to create shadow over the images and create varying
illumination. Unfortunately, most of the images were taken from defoliated plants. Very few images (56 images) from online
were also included on training data. In later stages, when the model will be tested in nondefoliated plants, more samples will
be taken to improve the model.

A program that produces bounding boxes around the cotton boll was developed and used to determine each cotton boll
selection in the images. The program accepts the image and allows the user to create bounding boxes around the objects
(cotton bolls). Then, the program generates an annotation file that gets all the information of the cotton bolls present in that
picture. Using trained weights called “tiny yolo” provided by Darkflow, we were able to retrain the model by modifying the
configurations to accept only one label and reduce the number of filters to 30 with one class and one label. The filters were

modified, labels and configuration file to reflect the one class “cotton_boll”. The trained model “cotton boll” which
recognize only cotton bolls was then tested using 3 different videos. After training, the generated load file and model files
were frozen to form .pb and .meta files to allow easy deployment between desktop and Jetson.

Later, the videos were transferred to Jetson and TensorFlow was installed onto the Jetson TX2. Jetson TX2 was accessed
using secure shell (SSH) instead of High-Definition Multimedia Interface (HDMI) screen so that the GPU usage could be
reduced and restrict RAM for image processing only. However, the Jetson TX2 can be optimized with the TensorRT inference
engine in the future to speed up deep learning inference.

Detection, Redetection and Tracking of Cotton Bolls

After the detection of bolls using TensorFlow, some of the previously missed bolls need to be detected. The color
segmentation algorithm detects the boll by differentiating the color of the bolls to get any missed boll. The cotton boll color
segmentation task involved four steps (Fue et al., 2018 & Gong and Sakauchi,1995):

1. Grab an image frame,
2. Using RGB color threshold, separate each RGB channel of the image. For cotton bolls, the white components

of the image can be masked (All the red, green, and blue channels set above 240).
3. Subtract the image background from original image.
4. Remove all the region where the contours are less than value M. Value M can be determined by estimating the

number of pixels defining the smallest boll (In this research, M was set to 10 pixels).
Then, all the regions that were detected by the deep learning algorithm are subtracted. Figure 1 shows blue bounding

boxes of the bolls missed by YOLOv2 but were detected using color segmentation. YOLOv2 detected bolls are presented
by using other color bounding boxes. You can evidently see how color segmentation cannot be effective in detecting the
whole boll if there is an occlusion or lighting change (e.g. shadows). When using color segmentation alone, it is extremely
difficult to detect nearby bolls which may occlude each other. Also, since bolls are located different distances from the
ground and the camera is above, lower bolls tend to appear when they first appeared in frames and become occluded as the

Figure 1. Detection of the cotton boll using both color segmentation (blue boxes) and deep learning algorithm (other color
boxes). The deep learning can show percentage of detection and only 50% above were considered enough to be boll and

hence shown. All the percentages are above 50%.

ASABE 2018 Annual International Meeting Page 5

camera moves near the bolls. This may become a very difficult task hence when occluded, the system determined and
established a dummy boll to exist together with the upper boll. For multiple detections in YOLOv2 and color segmentation,
non-maximum suppression (NMS) was applied to remove any repetition. NMS uses gradient direction where all pixels or
bounding boxes that are not part of the local maxima are excluded. Figure 2 shows the nearby bolls detected using YOLOv2
and color segmentation. All the bolls are detected, and the bounding boxes predict the right position of the bolls.

Figure 2. Detection of near and occluded cotton bolls. The bounding boxes (light pink, purple, magenta, dark green, sea green) present 5 bolls

occluded over each other and the system is trying to show all of them.

The technique is established that detect the bolls as “dummy” blobs and store them in a vector related to the missed boll.
Figure 3 shows a sky blue bounding box with a feature which disappears in frames before returning. The bounding box
continues to be predicted out of scene. When the boll (tracking feature) reappears then the “dummy” is authenticated as
genuine. This technique provides a method to “remember” out of scene (lost) bolls.

Remembering bolls as they go in and out of the camera scene is achieved by assigning features of the detected boll to a
Lucas-Kanade (LK) algorithm which uses a mathematical technique to predict optical flow of the boll sparse features (Lucas
and Kanade, 1981). Since, Lucas-Kanade cannot accurately provide flow information to the texture-less neighbors of the
selected features, a guided feature detection is proposed that redirects the Lucas-Kanade to the blob detected that gives the
LK a clue of the position of the boll using the nearby detected good features. The nearby detected features were captured
using good features to track algorithm also known as Shi-Tomasi Corner Detector (Shi & Tomasi, 1994) implemented in
OpenCV. Since LK uses displacement of image contents between two frames, then LK determined movement of all these
features. The system only considered features enclosed within the bounding boxes to achieve real-time movement of the
boll features. This reduced the number of points to track and allowed the system to determine occlusion between two bolls.
A tracked boll is connected using a tracklet in each image. A tracklet is a line that tracks and connects the feature
transformation from one image to the next one. In Figure 3, the context diagram shows a clear movement of the feature and
cotton boll. As the feature disappears from the frame scenes, the algorithm can still predict and track in background so that
the bolls positions cannot be lost.

ASABE 2018 Annual International Meeting Page 6

1 2 3 4 5

Figure 3. Image vs Context. Boll tracked with sky-blue bounding box (disappeared and reappeared). The tracklet tracks a feature near the boll.
This feature happens to disappear at image number 2 and reappears at image number 5. This feature was randomly selected using Shi-Tomasi
corner feature detector. In context diagram, the round object is the cotton boll while the sky-blue lines present the bounding box and a feature

tracklet.

Whenever the LK gets the outlier, the algorithm assumes a displacement of points as a Gaussian distribution; hence robust
L-estimator method (Rousseeuw, & Croux, 1992) and homography transformation matrix (Chum et al., 2005) are determined
and used to check if the predicted point is within 99.3% distribution by determining the 1.5 IQR (interquartile range) in
classical boxplots. The homography transformation matrix was obtained by choosing only feature transformations that are
near the detected bolls since many points may heavily affect the system performance. Mathematically for Gaussian
distribution (Eqn. 2), probability density function is defined to be normal when the IQR covers 50% distribution (Central
region) and anything out of the 1.5 IQR is an outlier. Within this technique, we can change the prediction to be within 1.5
IQR. The Figure 3 shows the tracklet of the disappear boll features, were lost due to boll being out of scene but eventually
they were restored when the boll came back.

ASABE 2018 Annual International Meeting Page 7

𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋

𝑠𝑠−
1
2�
𝑥𝑥−𝜇𝜇
𝜎𝜎 �

2

 (2)
In the gaussian equation above, f(x) can be solved if standard deviation (σ) of the feature displacements is found and the

mean (µ) of the displacements.

So, in Eqn. 3, the predicted point x can only be validated if it is not detected as an outlier compared to all other points.

𝑓𝑓(𝑥𝑥) = �
𝑥𝑥, 𝑠𝑠𝑓𝑓 𝑚𝑚𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶) − 1.5 ∗ 𝐼𝐼𝐼𝐼𝐶𝐶 < 𝑥𝑥 < 𝑚𝑚𝑟𝑟𝑥𝑥(𝐶𝐶𝐶𝐶) + 1.5 ∗ 𝐼𝐼𝐼𝐼𝐶𝐶
𝑚𝑚𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶) − 1.5 ∗ 𝐼𝐼𝐼𝐼𝐶𝐶, 𝑠𝑠𝑓𝑓 𝑥𝑥 < 𝑚𝑚𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶) − 1.5 ∗ 𝐼𝐼𝐼𝐼𝐶𝐶
𝑚𝑚𝑟𝑟𝑥𝑥(𝐶𝐶𝐶𝐶) + 1.5 ∗ 𝐼𝐼𝐼𝐼𝐶𝐶, 𝑠𝑠𝑓𝑓 𝑥𝑥 > 𝑚𝑚𝑟𝑟𝑥𝑥(𝐶𝐶𝐶𝐶) + 1.5 ∗ 𝐼𝐼𝐼𝐼𝐶𝐶

 (3)

Tracking and Counting Cotton Bolls

Each image was divided into three parts horizontally (Figure 4). Since images are 720p, the first part are pixels from 0 to
360 (middle of the image [blue line]), the second division (CoSL) is at 700 (green line) that divides each image into two
other parts. The first part is considered as the first appearance of bolls where the system tries to establish the tracklets
accordingly; while after the boll passes the blue line, it considers the established tracklet is valid and the system should force
the tracklet to exist even when the boll is not detected. The third part is 10 centimeters from the camera base were the robotic
arm will be placed. The system counted the bolls when they passed the green horizontal line. Table 1 summarizes the
proposed algorithm using the pseudocode and flowchart of the sequence of events.

Figure 4. Bolls bounding boxes crossing blue line and green line (CoSL). Each boll that is initially detected cannot have a
tracklet, but the previous detected bolls have a tracklet that is terminated inside the bounding box from the first position it
was tracked.

The proposed algorithm (Table 1) can be summarized into 4 parts of processing; input, output, detection and
tracking/counting of cotton bolls. The input is an image received from the camera frame and output is an image that consists
of bounding boxes, boll position and boll counting. In this process, the image It received can be matched with previous
image It-1 using LK algorithm together with homography transformation. The system processed images by predicting the
position of the bolls, determine the missed bolls, remove the multiple detections and determine the disappeared bolls. After
that, using Horizontal line Crossing positions (CoSL), the system counts all the bolls that pass the line.

ASABE 2018 Annual International Meeting Page 8

Table 1. Proposed algorithm pseudocode
Algorithm. Proposed tracking and counting approach: iteration at time t
Input:

Image It

Previous Image It-1

Model prediction of objects in It-1 using LK algorithm, target positions Pt

Current position of objects predicted by YOLOv2, Ct
Output:

Matched positions Mt of Ct and Pt

Missed positions St from Ct and Pt, given as St = Pt - Mt
New positions Nt from Ct
Horizontal line Crossing positions (CoSL) Ht

Current boll detection and tracking:
1: Determine if the predicted image Pt is matched with current image Ct
2: Detect the bolls using deep learning YOLOv2
3: Determine the missed bolls using image segmentation and include them.
4: Perform non-maximum suppression to remove all the bounding boxes that do not have multiple detections
5: Determine if the bolls have the first appearance in the current image Nt and establish a tracklet
6: Determine if the previous boll has crossed the horizontal line Ht or is just outside the scene St
7: Determine if the boll was detected but disappeared using homography transformation matrix obtained by using LK output tracklets.
8: Determine the very short or very long tracklets and modify by using LK algorithm which utilizes the classical boxplots.

Current boll counting:
9: Determine and count the number of the bolls crossing the horizontal line, Ht and log the information

Results and Discussion
In Table 2, several parameters are reported from the experiments. All three treatments with 20 frames each are

investigated. Sixty image frames from 3 videos are chosen and in interval to avoid any biasness. The frames were chosen in
intervals of 50 from frame number 50 and 51 to 500 and 501 respectively. Since the system algorithms refreshes and get
new points using feature detector every 5 frames, frames divisible by 5 will reflect the system speed and performance when
getting new points. Bolls were manually counted, and 131 cotton bolls were found. The general algorithm performance
parameters (Table 2) were recorded for each video. These parameters were loading time of the neural network, neural
network building time, average fps and counting output of each video. Using the counting output, the system performance,
error and accuracy was determined. The system accuracy was around 94% and speed of processing was approximately 21
fps for Lenovo and 4 fps for Jetson TX2.

Table 2. General algorithm performance parameters
 1st Video 2nd Video 3rd Video Average

Loading time (sec) 6.75E-05 1.80E-04 7.01E-05 1.06E-04

Net building time (sec) 3.32 7.60 3.46 4.79

Average FPS (Lenovo) 21.40 22.50 21.10 21.67

Average FPS (Jetson TX2) 3.9 4.0 4.0 3.9

Cotton boll Count 141 135 140 138.67

% Performance in counting 107.63 103.05 106.87 105.85

% Error in counting 7.63 3.05 6.87 5.85

% Accuracy in counting 92.37 96.95 93.13 94.15

Apart from general performance, the system was investigated in detail to compare the manual detection against automated
performance. The frames chosen were checked for true positives (TP), false positives (FP), false negatives (FN) and multiple
detections (MD). Figure 5 shows a worst-case example where multiple detection (MD) of two bolls was made using four
bounding boxes (6,7,8 and 9).

The system sensitivity was 93% with standard deviation of 6% while the accuracy was almost the same because the false
positives are negligible (Table 3). Also, there were no observed differences in the three treatment videos as p-value for
sensitivity and accuracy obtained using Tukey’s test was 0.6087 and 0.6481, respectively.

ASABE 2018 Annual International Meeting Page 9

Figure 5. Multiple detections for boll numbered 6, 7,8 and 9 . This means the system was counting the same boll twice or
trice leading to counter errors. The yellow arrows point to the four bounding box numbers 6,7,8 and 9. There is only two

bolls that are represented by four bounding boxes.

Table 3. Detailed performance measurement using manual inspection over automatic detection

 TP FP FN MD SENSITIVITY (%)
ACCURACY

(%)
PRECISION (%) F1

1st
Video 27.1 (8.05) 0.1 (0.22) 2 (1.62) 1.5 (1.05) 93.4a (5.43) 93.3 a (5.6) 99.8 (0.68) 1 (0.03)
2nd

Video 22.3 (9.78) 0 (0) 1.6 (1.19) 1.2 (0.88) 93 a (6.03) 93 a (6.03) 100 (0) 1 (0.03)
3rd

Video 23 (9.31) 0.1 (0.22) 1.3 (1.42) 0.8 (0.62) 94.8 a (5.9) 94.6 a (5.93) 99.9 (0.64) 1 (0.03)

The system performance speed decreased as the number of bolls increased. From the observation in Figure 6, the system

starts at high speed at around 24 fps and decreases to 19 fps before coming back to 24 fps as it finishes the rows. The same
happened using the Jetson TX2 where the speed started at 4.8 fps and decreased to 4 fps (Figure 6). The system becomes
slow because of the vast number of vectors (more than 5000) created for tracking. Vectors were used to store the tracklets.
They were cleared whenever they reach 50 arrays to increase the performance. This is important especially when the system
is deployed in embedded systems because the GPU and CPU share the RAM system that is also used to store the tracklets
compared to desktop systems that have a dedicated RAM for CPU and a different RAM for GPU.

Figure 6. Comparison between LenovoY520 and Jetson TX2 system

ASABE 2018 Annual International Meeting Page 10

Conclusion
In this study, a machine vision system method that detected, tracked and counted cotton bolls in real time was developed.

The system tracked and counted cotton bolls at 93% detection accuracy and an average processing speed of 21 fps and 4 fps
for Lenovo Y520 and Jetson TX2, respectively. Sensitivity and accuracy were the same for all three tests using the Tukey’s
test. However, for this experiment, precision and F1 score may be misleading the results as they were 99.9% and 1,
respectively. This is because the experiments carried out in this research had negligible false positives and mostly suffered
from false negatives. The system developed used two unified techniques (deep learning methods and color segmentation)
to detect cotton bolls and used three other techniques (Lucas-Kanade algorithms, robust L-estimators and homography
transformations) to track lost tracklets. To increase the system accuracy, alternative deep learning methods and color
segmentation methods may be used to improve false negatives. However, the Jetson TX2 performance may be accelerated
using TensorRT which is a C++ library that can facilitate high performance inference on NVIDIA GPUs. The envisioned
embedded system will use stereo cameras to determine 3D position of the boll. Likely, if a speed of more than 10 fps is
achieved in Jetson, then, the system will be ready for robotic operation and harvesting.

Acknowledgements

The authors are very thankful for project support from Cotton Incorporated, Agency Assignment #17-038. We also thank
Mr. Ricky Fletcher and Mr. Gary Burnham for their helpfulness and technical support in building camera platform and
collection of data.

References
University of Georgia Cotton Team. (2017). Georgia cotton production guide. University of Georgia Cooperative Extension Service.

Retrieved from http://www.ugacotton.com/production-guide/
Bloch, V., Bechar, A., & Degani, A. (2017). Development of an environment characterization methodology for optimal design of an

agricultural robot. Industrial Robot: An International Journal, 44(1), 94-103. https://doi.org/10.1108/IR-03-2016-0113
Chum, O., Pajdla, T., & Sturm, P. (2005). The geometric error for homographies. Computer Vision and Image Understanding, 97(1), 86-

102. https://doi.org/10.1016/j.cviu.2004.03.004
Rains, G., B. Bazemore, K. Ahlin, A. Hu, N. Sadegh, & McMurray, G. (2015). Steps towards an Autonomous Field Scout and Sampling

System. ASABE Paper No. 15219077. St. Joseph, MI: ASABE.
Fue, K., Porter, W., and Rains, G. (2018). Real-Time 3D Measurement of Cotton Boll Positions Using Machine Vision Under Field

Conditions. BWCC Paper No. 18385. Cordova, TN: NCC
Li, Y., Cao, Z., Xiao, Y., & Cremers, A. (2017). DeepCotton: in-field cotton segmentation using deep fully convolutional network. Journal

of Electronic Imaging, 26(5). https://doi.org/10.1117/1.JEI.26.5.053028
Lucas, B. & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th

international joint conference on Artificial intelligence. 2, pp. 674-679. San Francisco, CA: Morgan Kaufmann Publishers Inc.
Gauch, J. M., & Hsia, C. W. (1992). Comparison of three-color image segmentation algorithms in four color spaces. In Visual

Communications and Image Processing Vol. 1818, pp. 1168-1182. Bellingham, Washington: SPIE
Gong, Y., & Sakauchi, M. (1995). Detection of regions matching specified chromatic features. Computer vision and image

understanding, 61(2), pp. 263-269. https://doi.org/10.1006/cviu.1995.1018
Cheng, H. D., Jiang, X. H., Sun, Y., & Wang, J. (2001). Color image segmentation: advances and prospects. Pattern recognition, 34(12),

2259-2281. https://doi.org/10.1016/S0031-3203(00)00149-7
Choi, D., Lee, W., Ehsani, R., Schueller, J., & Roka, F. (2016). Detection of dropped citrus fruit on the ground and evaluation of decay

stages in varying illumination conditions. Computers and Electronics in Agriculture, 127, 109-119.
https://doi.org/10.1016/j.compag.2016.05.020

Choi, D., Lee, W., Ehsani, R., & Roka, F. (2015). A machine vision system for quantification of citrus fruit dropped on the ground under the
canopy. Transactions of the ASABE, 58(4), 933-946. https://doi.org/10.1016/j.compag.2016.05.020

Kamilaris, A., & Prenafeta-Boldú, F. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70-90.
https://doi.org/10.1016/j.compag.2018.02.016

Redmon, J., & A. Farhadi, A. (2017). YOLO9000: better, faster, stronger. arXiv preprint .
Redmon, J. (2016). Darknet: Open source neural networks in c. Pjreddie. com.[Online]. Available: https://pjreddie. com/darknet/. Retrieved

from 21-April-2018
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. CVPR Paper No.

16526932. Piscataway, NJ: IEEE.
Rousseeuw, P. J., & Croux, C. (1992). Explicit scale estimators with high breakdown point. In Book Statistical analysis and related methods

(pp. 77-92). Dodge, Amsterdam: North-Holland. Retrieved from https://feb.kuleuven.be/public/u0017833/PDF-FILES/l11992.pdf
Shi, J., & Tomasi, C. (1994). Good features to track. CVPR Paper No. 4764232. Piscataway, NJ: IEEE.

http://www.ugacotton.com/production-guide/
https://doi.org/10.1016/j.compag.2016.05.020
https://www.google.com/search?num=20&q=Piscataway+New+Jersey&stick=H4sIAAAAAAAAAOPgE-LQz9U3SCvIylICsyoKCou0tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUAjoN9cEIAAAA&sa=X&ved=0ahUKEwjEkoKmqM7bAhXGtVMKHaKHDW8QmxMIlwIoATAe
https://www.google.com/search?num=20&q=Piscataway+New+Jersey&stick=H4sIAAAAAAAAAOPgE-LQz9U3SCvIylICsyoKCou0tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUAjoN9cEIAAAA&sa=X&ved=0ahUKEwjEkoKmqM7bAhXGtVMKHaKHDW8QmxMIlwIoATAe

ASABE 2018 Annual International Meeting Page 11

Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: a family of discriminant measures for
performance evaluation. In Australasian joint conference on artificial intelligence (pp. 1015-1021). Berlin, Heidelberg: Springer.

	2018 Annual Meeting Paper Template for ASABE Authors
	Author 1 (one author only)
	Affiliation for Author 1
	Affiliation for Author 2
	Affiliation
	Paper number and page range
	Written for presentation at the
	2018 ASABE Annual International Meeting
	Detroit, Michigan
	Introduction
	Materials and Methods
	Experimental Set-up (Training Dataset)
	Image Processing System and Extraction
	Data Training and Testing using TensorFlow Framework
	Detection, Redetection and Tracking of Cotton Bolls
	Tracking and Counting Cotton Bolls

	Results and Discussion
	Conclusion
	Acknowledgements

	References

