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Nutritional status in citrus plants, which is used as a guide for fertilisation, is normally

determined by chemical analysis of leaves. According to standardised procedures, this is

a destructive method. Leaf analysis detects symptomless detrimental conditions or

confirms the nature of visible toxicity. This study proposes the use of a rapid, non-

destructive, cost-effective technique to predict orange leaves nutritional status utilising

a Vis–NIR (visible–near infrared) portable spectrophotometer and compares its results with

standard chemical analyses. Tree nutritional status was evaluated by foliar analysis per-

formed on 50 leaves. Chemical determinations on leaves detected N, P, K, Ca, Mg, Fe, Zn,

Mn. For spectral acquisition, a ‘pen probe’ was used to measure the spectral reflectance

response on each leaf. Mean reflectance values of all leaves for each treatment were

compared by chemometric multivariate methods (PLS, partial least square) to both: a single

reference chemical value and to all chemical parameters used together. The best model for

single reference chemicals (coefficient of correlation r ¼ 0.995) and the tests (r ¼ 0.991) was

obtained for potassium. Results also showed a high efficiency in the determination of

nitrogen. For all chemical parameters used together, the analysed elements gave correla-

tions in a range from r ¼ 0.883 for Mg to r ¼ 0.481 for P with standard error of prevision

ranging from 0.01 for P to 12.418 for Fe.

ª 2010 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction of high quality fruit (Embleton, Coggins, & Witney, 1996;
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Nomenclature

ALL All the reference chemical values used together

for the chemometric analysis.

LV Latent variables.

PLS Partial least squares.

R2 Coefficient of determination.

RMSE Root mean square error.

RMSEC Root mean square error in calibration.

RMSECV Root mean square error in cross validation.

SEP Standard error of prevision.

SINGLE Single reference chemical value used for the

chemometric analysis.

Vis–NIR Visible – near infrared.
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Nutrients are essential for the proper metabolic func-

tioning of trees and to ensure desirable commercial produc-

tion (Davies & Albrigo, 1994). They vary considerably with

citrus-growing region, soil type, cultural techniques, leaf age

and position on the tree, age of the tree and rootstock/scion

combination. Nitrogen (N), phosphorus (P), potassium (K),

calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), zinc (Zn)

and manganese (Mn) are macro, meso and micronutrients of

citrus leaves associated to growth, yield and quality factors,

with relationships that vary with different elements

(Embleton, Reitz et al., 1973b; Hanlon, Obreza, & Alva, 1995).

Leaf analysis is the most important tool for evaluating

nutrient status of citrus and for guiding its fertilisation.

Although other organs within the plant may act in a similar

manner, the leaf is the most readily available source of tissue

for analysis, it is metabolically very active, being the site of

photosynthesis which determines the primary processes

occurring within the plant, and the leaf is a major site of

carbohydrate and mineral storage (Embleton, Jones,

Labanauskas, & Reuther, 1973a). Analytical evaluations are

performed more frequently, and with different aims, directly

on the fruit as reported by much research (Cayuela, 2008;

Gomez, Yong, & Pereira, 2006; McGlone, Fraser, Jordan, &

Kunnemeyer, 2003; Steuer, Schulz, & Lager, 2001).

Results of the chemical analysis allow interpretation of

plant nutritional status, identification of nutrient disorders

caused by mineral excess or deficiency, and serve as guide for

balanced fertilisation programmes (Ferguson, Davies, Tucker,

Alva, & Wheaton, 1995; Intrigliolo, Tittarelli, Roccuzzo, &

Canali, 1998; Obreza, Alva, Hanlon, & Rouse, 1992). These

analyses are normally compared to well-established standard

values referred to as standard age spring-cycle leaves, taken

from non-fruiting terminals of mature, fruit-bearing citrus

trees. Embleton, Jones et al. (1973b) reported the leaf analysis

standards for mature, fruit-bearing orange trees based on 5–7

month-old spring-cycle leaves from non-fruiting terminals.

The values are within the range varying from deficient to

excess categories as suggested by the guidelines for interpre-

tation of leaf analysis (Intrigliolo, Roccuzzo, Lacertosa,

Rapisarda, & Canali, 1999; Obreza et al., 1992).

The generalised lowering of the costs of the miniaturised

spectrophotometers, provides the possibility of using portable

devices directly in the orchard for monitoring the maturity

state of fruit. Using instruments directly in-field involves

different interferences due to the environmental conditions e.g.

illuminations (type and strength) and temperatures that should

be taken into account during data processing as suggested by

Ventura, De Jager, De Putter, and Roelofs (1998). Walsh, Guthrie,

and Burney (2000) made an interesting comparative study of

the performance of different commercial portable
spectrometers to measure the SSC of rockmelons and found

some differences in terms of spectral resolution, stability,

signal to noise ratio, stability over time and calibration

performance. Although such differences were shown, portable

spectrometers are still currently used in many applications

(Hernandez Sanchez, Lurol, Roger, & Bellon-Maurel, 2003;

Miller and Zude-Sasse, 2004; Saranwong, Sornsrivichai, &

Kawano, 2003a, 2003b; Temma, Hanamatsu, & Shinoki, 2002;

Zude et al., 2006). Another well known and established tech-

niques that must be considered while exploring the nutritional

status of a plot of land, is that based on the SPAD Chlorophyll

Meter (Lee, Searcy, & Kataoka, 1999; Piekielek, Fox, Toth, &

Macneal, 1995; Read, Tarpley, McKinion, & Reddy, 2002), that

has as its principle the determination of leaf chlorophyll and

thus the estimation of nitrogen content; these being well

correlated (Esposti et al., 2003).

Thus, the nutritional status in citrus plants is normally

determined by chemical analysis, but in this study a rapid, non-

destructive, cost-effective technique to predict orange leaves

nutritional status utilising a Vis–NIR (visible–near infrared)

portable spectrophotometer is investigated and its results

compared with results from standard chemical analyses.
2. Materials and methods

2.1. Data collection

The study was conducted on the experimental farm ‘‘Pal-

azzelli’’ of CRA-ACM (Eastern Sicily, 37�170560076 N, 14�500290076

E), in an irrigated Tarocco blood orange orchard [Citrus sinensis

(L) Osbeck], planted in a sandy loam soil. Two different clones

of Tarocco were tested for leaves nutrient content: ‘‘Arcimusa’’

and ‘‘NL Meli’’ both grafted on sour orange [C. aurantium (L.)].

Within the chosen field, using a randomised block design,

the trees received different nitrogen treatments to ensure the

heterogeneous nutritional status of the leaves tested. Five

rates with different nitrogen input levels were applied; 0–

200–400–600–800 g N tree�1 year�1. N was applied as ammo-

nium sulphate; all treatments received the same amount of P

(200 g P2O5 tree�1 as triple super phosphate) and K

(350 g K2O tree�1 as potassium sulphate).

Tree nutritional status was evaluated by foliar analysis

performed on 50 leaves of the index trees, placed in the middle

of the plots. During the month of October, in the external side

of the canopy, 5/7-month-old leaves of the year’s spring flush

were collected from non-fruiting twigs, according to the

procedures of Embleton, Reitz et al. (1973a) adapted to Italian

conditions by Intrigliolo et al. (1999). Thirty leaves of each

sample were analysed at the chemistry laboratory of the
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CRA–ACM (Citriculture and Mediterranean Crops Research

Center of the Agricultural Research Council). The remaining

20 leaves, were analysed at the CRA–ING (Agricultural Engi-

neering Research Unit of the Agricultural Research Council)

Laboratory using spectrophotometric techniques. The acqui-

sition of the raw spectral curve through the spectrophotom-

eter took about 2 s for each leaf.

2.2. Chemical analysis

Chemical analysis from leaves regarded the following elements:

N, P, K, Ca, Mg, Fe, Zn, Mn. The leaves were: i) washed in tap

water by rubbing both sides using cheesecloth, ii) rinsed in

deionised water, iii) oven dried at 65 �C for 72 h, iv) ground and v)

dried at105 �Cfor 4h.The concentration ofN wasdetermined on

1 g of ground leaf tissue using the micro-Kjeldahl method

(Distillation Unit K370, Büchi Analytical Inc., Switzerland).

Another 1 g of ground leaf tissue was ashed in a muffle furnace

at 550 �C for 12 h. After incineration and extraction with nitric

acid (1% v/v) P, K, Ca, Mg, Fe, Zn and Mn were determined using

inductive coupled plasma-optical emission spectrometry (ICP-

OES; OPTIMA 2000DV, Perkin–Elmer, Italy).

Nutrient concentrations were expressed as a percentage or

parts per million (ppm) of the tissue dry matter.

2.3. Spectrophotometric analysis

For the Vis–NIR measurements, a (portable) single channel

spectrophotometer was used (Fig. 1). The system is composed

of five parts: 1) a spectrograph Hamamatsu S 3904 256Q (Hir-

akuchi, Hamakita-ku, Hamamatsu City, Japan) in a special

housing; a customised illumination system realised by a 20 W

halogen lamp and an optical fibre bundle consisting of approx.

30 quartz glass fibres; 2) an optical entrance with input round:

70 mm � 2500 mm and diameter 0.5 mm NA ¼ 0.22 mounted in

SMA-coupling; 3) specific probes with quartz optical fibre

connectors; 4) a transmission device with variable optical

length for transmitted or absorbed light from thin solids or

liquids; 5) a notebook computer equipped with specific soft-

ware to acquire, calibrate and elaborate spectral data. The
Fig. 1 – Performing VIS–NIR spectral measurement on

citrus leaves.
Hamamatsu spectrograph had the following characteristics:

grating: Flat-field, 366 L/mm (centre); spectral range:

310–1100 nm; wavelength accuracy absolute: 0.3 nm;

Temperature-induced drift: <0.02 nm K�1; resolution (Ray-

leigh-criterion): DlRayleigh J 10 nm; sensitivity: J 1013 Counts/

Ws (with 14-Bit-conversion); stray light: <0.8% with halogen

lamp and A/D converter 16 bit.

To acquire spectra, the ‘pen’ probe was used to measure

the spectral reflectance response on each single leaf (spot

area z 10 mm2). The reflectance measure is acquired by an

optical quartz fibre (0.7 mm in diameter) fixed at 45� inside

a circular aperture of 4 mm in diameter. Because the surface of

the leaf was soft it was possible to exclude all extraneousness

light from the probe.

Spectral measurements were performed in laboratory

following a white calibration (small variations in the level of

external light), the instrumental integration time (light acqui-

sition time) and subtracting the background noise (variable

with the instrument temperature) (Fig. 1). A very low Signal/

Noise ratio was observed at the beginning and the end of the

spectral data, affecting the accuracy of measurements, hence

only spectra in the range 400–1000 nm were taken into account

for the analysis. All spectral values were expressed in terms of

relative reflectance. After each 30–35 spectral measurements

a new white calibration was carried out. The power supplied by

the portable batteries of the instrument and the notebook

computer, guaranteed a working period of about 1.5 h.

2.4. Chemometric analysis

Mean reflectance values of all leaves for each treatment were

compared by chemometric multivariate methods to both:

each single reference chemical value (named SINGLE) and to

all chemical parameters used together (named ALL).

The procedure included the following steps: 1) extraction

of raw spectra (X block variables); 2) extraction of measured

values (Y block variables); 3) random separation of dataset

into two subsets, one for the model (75% of the whole dataset,

for the SINGLE and 50% for the ALL) and one for the external

validation test (respectively 25% for the SINGLE and 50% for

the ALL); for the ALL the dataset was randomised 50 times; 4)

application of pre-processing algorithms to both X and Y; 5)

application of the chemometric technique PLS (partial least

square): modelling and testing; 6) calculation of efficiency

parameter of prediction.

To obtain the best prediction test, different X and Y pre-

processing techniques were applied, from the simpler (none,

mean centre, auto scale, median centre, baseline) to the more

specific for spectral data (Savitsky Golay, Multiple Scatter

Correction, Orthogonal Signal correction).

The prediction of the nutrients content of leaves was per-

formed using a PLS regression model, using PLS Toolbox in

MATLAB V7.0 R14 (The Math Works, Natick, USA). The partial

least squares method is a soft-modelling method (Wold,

Sjostrom, & Erikssonn, 2001) for constructing predictive

models when the factors are many and highly collinear. The

model works through a specific algorithm (SIMPLS) on the

whole array variables (input variables, X-block) and on the

observed values (Y variables) after pre-processing treatments.

The model determines the minimum set of the n estimation



Table 1 – Descriptive statistical values of elements
measured on thirty citrus leaves for each treatment
expressed as ppm (parts per million) on dry matter.

N P K Ca Mg Fe Mn Zn

Mean 2.532 0.129 0.747 5.096 0.430 100.228 17.262 9.669

St. dev 0.119 0.013 0.347 0.916 0.098 18.086 6.258 2.650

Min 2.240 0.091 0.346 3.180 0.218 66.900 6.690 6.390

Max 2.800 0.224 1.730 10.300 0.927 198.000 42.300 24.800
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variables (LV, latent variables) by a recursive process. These

variables could be represented in an n-dimensional space and

they are used by PLS to calculate the best regression matrix

between the X and the Y. PLS allows a model to be calculated

that was tested on external samples observing its prediction

ability. The calibration models were also validated using full

cross validation, Venetian blind.

The model includes a calibration phase and a validation

phase calculating for both the residual errors (Root mean

square error in calibration [RMSEC] and in cross validation

[RMSECV]). The prediction ability of the test depends on the

number of the LV used in the model and was performed by

means of statistical parameters such as RMSE (root mean

square error), the SEP (standard error of prevision), the

correlation coefficient (r) between observed and the predicted

values. The values of r were taken into consideration to study

the correlation between the reference data and the spectral

model. Generally, a good model should have high r, with low

RMSE and SEP values. Therefore, the model was chosen with

the minimum number of LV that determines the highest value

of correlation between predicted and measured which pres-

ents the minimum SEP value. For the analysis that used the

ALL chemical values, the pre-processing used on the X and Y

block replicated for the 50 cycles of randomisation performed,

produced over 50000 models in total. To choose among such

a large number of models, the 50 randomisation were aver-

aged and the model with the best performance was selected.
Table 2 – Results of PLS prediction of the SINGLE chemical para

Singl

Parameters N P K Ca

Model

N�LV 15 9 15 7

Pre-processing

X-Block

Baseline Normalise Baseline Osc

Pre-processing

Y-Block

Median

centre

Mean

centre

Mean

centre

Mea

cen

RMSEC 0.039 0.003 0.039 0.0

RMSECV 0.129 0.010 0.144 6.7

r (observed vs

predicted)

0.945 0.915 0.995 0.9

SEP 0.039 0.004 0.039 0.0

RMSE 0.039 0.003 0.039 0.0

Test

r (observed vs

predicted)

0.909 0.429 0.991 0.9

SEP 0.049 0.018 0.058 0.3

RMSE 0.051 0.019 0.057 0.6
3. Results

Table 1 reports the descriptive statistical data of elemental

composition of citrus leaves. The values were in the optimum

categories for almost all nutrients, except for K, Mn and Zn

that were in the low category.

Table 2 shows the values and results of the PLS

prediction of the SINGLE chemical values predicted. The

best model (r ¼ 0.995) and the test (r ¼ 0.991) were obtained

for K with a baseline for the X-Block pre-processing algo-

rithm and a mean centre pre-processing for the Y-Block.

The prediction ability of such a model was shown to be

high with low values for the errors, having SEP ¼ 0.039 and

RMSE ¼ 0.039. Finally, the correlation between predicted

values and the observed chemical values reported highly

significant values with a coefficient of determination (R2)

of 0.9821 (Fig. 2). Also the values and results of PLS

prediction of calcium content in leaves were very high.

The model gave an r value of 0.995 and the test of an r

value of 0.947.

The results also showed a high efficiency in the estimation

of nitrogen leaf content. Both, the model and test PLS prediction

showed a high value of r (0.945 and 0.909 respectively) (Table 2).

The model of this parameter also had low values of SEP (0.039)

and RMSE (0.039). Fig. 3 shows the correlation between pre-

dicted values and the observed chemical values (N ) with a high

value of R2 (0.8265). The lowest values and results of PLS

prediction were found for phosphorus (r ¼ 0.429). Also, the

correlation between measured and predicted values was the

lowest (R2 ¼ 0.1839; Fig. 4).

Table 3 shows different results for the ALL elements pre-

dicted. Indeed the analysed elements showed r values in

a range 0.883 (Mg)–0.481 (P) with SEP ranging from 0.01 (P) to

12.418 (Fe). For the construction of the model a large number

of LV (19) was used, normalise pre-processing of the X-block

and auto scaling for the Y-block.
meters.

e

Mg Fe Mn Zn

13 10 5 8

Baseline Gls weighting Normalise Baseline

n

tre

Median

centre

Median

centre

Median

centre

Mean

centre

85 0.020 4.348 3.042 1.099

09 0.101 9.675 3.449 2.873

95 0.982 0.946 0.840 0.905

85 0.020 4.380 3.064 1.107

85 0.020 4.348 3.042 1.099

47 0.944 0.917 0.925 0.889

04 0.048 6.054 1.637 0.972

14 0.048 6.413 1.683 0.986



Fig. 2 – Correlation between measured and predicted

values of K.

Fig. 4 – Correlation between measured and predicted

values of P.
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4. Discussion and conclusion

Citrus trees require large quantities of mineral nutrients to

attain adequate growth and yield; the needs of these varying

with soil fertility and type (Koo et al., 1984). Although the

mineral nutrition of citrus trees has been studied intensively,

additional information has been frequently published, espe-

cially after the introduction of new fertigation technologies

and innovative fertilisers (Alva, Fares, & Dou, 2003). The

results of this study showed that a system based on a portable

spectrophotometer can provide better knowledge of nutri-

tional status of Tarocco orange bearing plants, achieving more

detailed and focused information, in a shorter period and over

wider areas. The autonomy of the instrument, taking into

account the time needed to move from one leaf to the other,

allows date acquisitions to perform on about 1200–1300

leaves. Thus, the use of the spectrophotometer, coupled with

the multivariate statistical techniques used here gives the
Fig. 3 – Correlation between measured and predicted

values of N.
possibility to map intensively and precisely large parcel of

land, thereby maintaining highly representative samples.

This makes the proposed methods suitable for use in preci-

sion farming (Alchanatis, Schmilovitch, & Meron, 2005).

Furthermore, the possibility of acquiring more detailed

information, varying either in space and time, when

compared with the standard chemical analysis, should prove

to be a useful tool to increase fruit quality and to optimise the

use of fertilisers, especially in organic farming systems.

Esposti et al. (2003) reported that although the SPAD Chlo-

rophyll Meter proved to be efficient in estimation the N

content in leaves, it could not reveal the content of other

chemical compounds which the multi-parametric methods

proposed here successfully estimated. Moreover, the spec-

trophotometric technique presented here provided higher

levels of correlations for both the model (r ¼ 0.95) and the test

(r ¼ 0.91). Furthermore, such a technique could be able to

provide a detailed analytical view of nutrient content, leading

to more efficient fertigation planning in citrus orchards.

Indeed, satisfactory results were found for the prediction of

the SINGLE parameters, often with r > 0.9. While some

elements scored high values of r, such as N, K, Ca and Mg,

others such as P and Zn showed low values probably due to

their extremely low concentrations in the leaves, as previ-

ously reported in the literature (Embleton, 1973a, 1973b).

Many researchers have successfully used spectral systems

to evaluate the N status of different crops (Sui, Wilkerson,

Hart, & Howard, 1998; Tumbo, Wagner, & Heinenann, 2002a,

2002b, 2002c). However, even if N can be considered a key

nutrient to monitor, the nutritional status of a crop is complex

and is given by several parameters. At the beginning of the

study numerous standard chemical analysis were carried out,

allowing a multiple correlation with the spectral data. This led

to the possibility to develop a proper fertilisation strategy to

improve the plant nutritional status and reduce the impact on

the environment. Moreover the monitoring of different

nutrients is essential due to the relationships existing among

them. Even if the ALL model (Table 3), showed inferior



Table 3 – Results of PLS prediction of the ALL chemical parameters.

All

Parameters N P K Ca Mg Fe Mn Zn

Model

N�LV 19

Pre–processing X-Block Normalize

Pre–processing Y-Block Autoscale

RMSEC 0.191

RMSECV 0.534

r (observed vs predicted) 0.943 0.957 0.955 0.967 0.976 0.966 0.987 0.950

SEP 0.035 0.003 0.094 0.193 0.019 3.866 0.932 0.669

RMSE 0.035 0.003 0.093 0.191 0.018 3.824 0.922 0.661

Test

r (observed vs predicted) 0.600 0.481 0.817 0.751 0.772 0.694 0.883 0.506

SEP 0.102 0.010 0.203 0.559 0.062 12.408 2.803 2.255

RMSE 0.103 0.011 0.205 0.566 0.063 12.590 2.849 2.289
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performance compared with the SINGLE models (Table 2), it

could be an interesting application particularly if rapid

measurements are needed.
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