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Abstract  

Climate change is currently a serious threat for agriculture development and food security in sub-Saharan Africa. 

With the Intergovernmental Panel on Climate Change (IPCC) climate outlook for the 21st century, the future of 

maize production in Tanzania remains under threat due to more intense and frequent droughts, and more erratic 

rainfall patterns. Effective adaptation to these ongoing changes in climatic condition is key to securing food 

production and livelihoods for millions of poor people. This paper analyzes factors that facilitate or impede the 

probability and level of adoption of sustainable farm technologies and farm households in response to climate 

shocks. A multivariate probit model was applied to the model the adoption decisions by farm households facing 

multiple farm technologies which can be adopted in various combinations. The analysis shows that both the 

probability and the level of decisions to adopt farm technologies influenced by rainfall and plot-level 

disturbances, household wealth, institutional factors, distance to the farm plot and input market. The results 

further show that there were complementarities between farm technologies which are not yet sufficiently 

exploited. In the light of these findings, government policies, and strategic investment plans should ensure the 

provision of improved farmer education to generate greater awareness about the multiple benefits of sustainable 

agricultural practices in the fight against climate change and variability.  
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1. Introduction 

1.1 Background Information 

Climate change and more extreme weather patterns are already being experienced as it is evident in in the form 

of severe negative impacts on food production, food security and natural resources all over the globe (IPCC, 

2013). Sub-Saharan Africa has been portrayed as the most vulnerable region towards the impacts of global 

climate change because of its reliance on agriculture which is highly sensitive to weather and climate variables 

such as temperature, precipitation and extreme events. Africa also has low capacity for adaptation (Hertel et al., 

2010).Tanzania is already affected by climatic variability and extreme weather events. Studies already show dim 

figures indicating continuing failure in agricultural productivity in Tanzania resulting from climate change and 

variability (URT, 2002). These projections raise serious concerns about agricultural development in Tanzania 

which has been a key driver of economic development ensuring food security and generating rural incomes as 

well as foreign exchange earnings. Noticeable effects of climate change have been observed Pangani river basin 

that is located in the Northeastern part of Tanzania. Incidences of crop failures in the basin occur quite frequently 

due to erratic rainfall leading to low agricultural productivity (Mtalo et al., 2010). 

Declining agricultural productivity and volatility associated with climate change, deepens the risk of 

food insecurity in Tanzania. Given the limited scope for land expansion in the basin (IUCN, 2009), productivity-

led growth is the only feasible option for improving production of food crops in the long run especially maize 

which is the main staple crop but also the main source of cash income for most small holder farmers. Increasing 

maize productivity will ensure long-term food security and greater contribution to poverty reduction. Given that 

agricultural production remains the main source of income for most rural communities, adaptation of the 

agricultural sector to the adverse effects of climate change is imperative for protecting and improving the 

livelihoods of the rural poor in Pangani River Basin.  

Various organizations such as Food and Agricultural Organization (FAO) policies and other 

development partners are promoting sustainable agricultural practices as a means of adapting to and mitigating 

climate change. These practices broadly defined include legume intercropping, improved crop varieties, the use 

of animal manure, use of inorganic fertilizers, and soil and water conservation (Kassie et al., 2010; Wollni et al., 

2010). Notwithstanding their benefits, the adoption rate of these technologies and practices is still low in rural 

areas of developing countries (Kassie et al., 2009), despite a number of national and international initiatives to 

encourage farmers to invest in them. The same is true in Tanzania, where, despite accelerated crop failures and 
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considerable efforts to promote various farm production technologies, the adoption of many recommended 

measures is minimal (Nkonya et al, 1997; Esfaw et al., 2010). One question that arises is whether these practices 

are actually effective adaptation strategies in the specific circumstances of Tanzanian farmers. A second question 

is how household and system-level adaptive capacity, or lack thereof, affects the selection of farm practices. In 

an attempt to answer these questions the objectives of the paper are: to analyze the adoption pattern of 

sustainable agricultural practices in different hydrological conditions in the Pangani River Basin; to find out the 

important factors influencing adoption; and to test the hypotheses that spread of sustainable farm management 

practices is equal across the basin. 

 

2. Theoretical Framework 

When it comes to the adoption of a new technology, farmers are faced with choices and tradeoffs. Differences in 

adoption decisions are often due to the fact that farmers have different cultures, different resource endowments, 

different objectives, different preferences, and different socio-economic backgrounds (De Janvry et al., 2010). It 

follows that some farmers adopt the new technology while others do not. In such a context, farmers’ decisions 

regarding the adoption of farm technology can be explained using the theory of maximizing the expected utility 

function subject to budget, access to information, credit and the availability of both the technology and other 

inputs. Following this theory, farmers adopt a given new technology if the expected utility obtained from the 

technology exceeds that of the old one (Kahneman and Tversky, 1979; Smale et al., 1994). Farmers are also 

more likely to adopt a mix of measures to deal with a multitude of agricultural production constraints than 

adopting a single practice (Knowler, and Bradshaw, 2007).  In this context, recent empirical studies of 

technology adoption decisions assume that farmers consider a set of possible technologies and choose the 

particular technology bundle that maximizes the expected utility accounting for interdependent and simultaneous 

adoption decisions (Teklewold et al., 2013; Asfaw et al., 2014). 

The main shortcoming of most of the previous studies of farm technology adoption  is that they assume 

a single technology without considering the possible correlation or interdependence between different 

technologies (Yu et al., 2008), thereby masking the reality that decision makers are often faced by a set of 

choices. Recent empirical studies (Kassie et al., 2009; 2013) argued that farmers in Sub-Saharan Africa usually 

consider a set of possible technologies and select the combination they assume will have the best results. In 

general, when technologies are correlated, univariate modeling excludes useful information contained in the 

interdependence and adoption decision analysis (De Janvry et al., 2010). Univariate models ignore the potential 

correlation among unobserved disturbances in the adoption equations (Wooldridge, 2002; Greene, 2003). In this 

context, the current study employs a multivariate probit (MVP) econometric technique, which simultaneously 

models the influence of the set of explanatory variables on each of the different practices, while allowing the 

unobserved and unmeasured factors (error terms) to be freely correlated (Lin et al., 2005).  

 

3.0 Methodology 

3.1 Study Area and Sampling Procedure 

The study was conducted in Pangani River Basin, located in the North Eastern part of Tanzania. The basin has a 

total catchment area of about 43,650 square kilometer with about 8%the area lying in Kenya (IUCN, 2003). In 

Tanzania the basin falls under four administrative Regions of Manyara, Arusha, Kilimanjaro and Tanga (PBWO, 

2010).The basin is currently home to about 6.8 million inhabitants (URT, 2013). Ninety percent of this 

population lives in the highlands where the population density is up to 300 people per sq. km, compared to 65 

people per square kilometer in the lowlands (IUCN, 2009). The national aggregate population is 51 people per 

square kilometer (URT, 2013). Such rapid population growth and high population density in Pangani river basin, 

coupled with climate change is posing pressure to the basin’s natural resources. The basin has been divided into 

three rainfall patterns namely: high rainfall (>1200), moderate rainfall (700-1200mm) and low rainfall (<700 

mm) (Ndomba, 2010). Most of the food and cash crops are produced under rain fed agriculture (Mtalo et al., 

2010). Maize is the most common crop grown by most small holder farmers throughout the Basin (IUCN, 2009). 

Erratic and significantly delayed short and long rains have affected production of maize in the basin, resulting 

into food shortages (Welling et al., 2011). 

 

3.2 Analytical Model 

In the case of adopting farm technology induced by climate change shock, farmers are faced with choices and 

tradeoffs. Differences in adoption decisions are often due to the fact that farmers have different adaptive capacity, 

different objectives, preferences, and different socio-economic and biophysical characteristics (Yu et al., 2008). 

In such a context, farmers’ decisions regarding the adoption of innovations can be explained using the theory 

which guides maximization of expected utility. Following this theory, a farmer will adopt a given new 

technology if the expected utility obtained from the technology exceeds that of the old one.In the first step, a 

shock-affected household decides whether or not to take any action to adapt to the climate shock. The adaptation 
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decision at this initial step for each type of shock can be solved by standard probit regression estimating the 

relationship between a latent discrete binary decision dependent variable iy
 (adapt:

1=iA
; not adapt

0=iA
) 

and a set of explanatory variables ( ijx
) and error term  

  
In the second step, after the decision to adapt an adapting household will select a particular adaptation strategy 

from among the available options that may be used simultaneously as complements or substitutes. For this 

purpose, the standard binary (univariate) probit model in the first Step  was expanded to multivariate probit 

regression (MVP) with a standard normal distribution to assess factors influencing the selection of various 

adaptation strategies. The MVP was specified as: 

  
Where: i1=inorganic fertilizer, i2=improved seeds, i3= legume intercropping, i4=soil and water Conservation and 

i5= animal manure. The multivariate probit model was specified as 

iiij Dxy εβββ ++++= 10110 ..........
……………………………………………. (3) 

Where ix
 = independent variables defined as follows: x1 is farm plot size,  x2 is distance from the farm plot, x3 is 

education of household, x4 is experience, x5is distance to the input market, x6 is extension service, x7 is 

Household asset index, X8 is coefficient of rainfall variation, x9 is rainfall satisfaction index,  is access to 

government subsidy. β0 is constant, β1 − β10 are regression coefficients, and e is error term. The error terms in 

equation (3) jointly follow a multivariate normal (MVN) distribution, with zero conditional mean and variance 

normalized to unity. Of particular interest are the off-diagonal elements in the covariance matrix, which 

represent the unobserved correlation between the stochastic components of the different types of farm 

technology. This assumption means that equation (3) gives a MVP model that jointly represents decisions to 

adopt a particular farming practice. This specification with non-zero off-diagonal elements allows for correlation 

across the error terms of several latent equations, which represent unobserved characteristics that affect the 

choice of alternative technologies. 

 

3.3 Data Collection 

The sampling frame for the study included all smallholder farmers in Pangani basin which was about 747,641 

(URT, 2012). Using Yamane (1973) the sample size was calculated to approximately 420. A multistage 

sampling technique was used to select the farmers. The first stage involved selection of agricultural /ecological 

zones based on the rainfall pattern. These classifications of high, Moderate and low rainfall were meant to obtain 

the actual range of adaptation measures which have been adopted by farmers under different rainfall patterns. 

The second stage involved selection of the districts from each zone (Table 1). The selection of villages 

constituted the third stage; two villages were chosen from each of the selected district making a total of 12 

villages in the sample. The villages were purposefully selected with the assistance of staff from District 

Agricultural Information and Cooperative Officers (DAICO) within Pangani basin as well as staff from Pangani 

Basin Water Board Authority (PBWA). The last stage involved the selection of farmers from the selected 

villages. In each village, 35 households were randomly from the village household register giving a total of 420 

respondents.  
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Table 1. Distribution of Sample Villages 

Region  District  Name of 

 village 

Rainfall  

category 

Number of respondents 

Male  Female  Total  

Arusha Arumeru  Samaria Low  29 6 35 

Mareu High  27 8 35 

Kilimanjaro Hai  Kimashuku High  28 7 35 

Mijongweni Low  30 5 35 

Moshi Rural Sambarai High  28 7 35 

Ghona  Moderate  26 9 35 

Same Njoro Low  27 8 35 

Mabilioni Low  30 5 35 

Tanga Korogwe Mafuleta Moderate  31 4 35 

Kwagunda Moderate  27 8 35 

Pangani  Boza  Moderate  32 3 35 

Kigurusimba  Moderate  30 5 35 

A structured questionnaire was employed to collect information from the smallholder farmers. The 

questionnaire contained a wide range of information from the household’s understanding of climate change, 

households’ production activities and plot specific characteristics, including adoption of sustainable agricultural 

practices for each household. Other information collected at the plot level was tenure status of plots, crops grown, 

crop production estimates, labor inputs associated with each type of agricultural activity, fertilizer usage, and 

seed types. Key socioeconomic elements collected about the household include age, gender, education level, 

family size, asset ownerships, participation in extension and training services, membership in farmers’ 

organizations, and distance from the household to the input and output markets and availability of extension 

officers. Rainfall data were analyzed using Instat statistical package while the remaining data were analyzed 

using Excel and STATA statistical packages. 

 

4.0 Results  

4.1 Descriptive Statistics 

Table 2 shows descriptive statistics for the variables that we use to explain technology adoption in Pangani River 

Basin. As explained in the previous section, farmers may adopt certain technologies on some of their plots but 

not on others. Therefore the analysis was carried out at the plot level, with farm and household level variables 

referring to the farms and households that operate the respective plots. The mean values of variables which were 

used to explain variation in technology adoption among farmers are shown in Table 2. Plot level specific 

attributes included plot: altitude, size, soil fertility, slope, tenure status and the distance from the plot to the 

farmer’s home (walking distance in minutes). Accordingly, the descriptive statistics show that on average, 

landowners operate on 1.65 plots each, and these plots were spatially adjacent (as far as 15 minute walking time 

away on average). The variable distance to the plot is an important determinant of the technology adoption 

because of increased transaction costs on the farthest plot, particularly the cost of transporting bulky 

materials/inputs (Teklewold et al., 2013).  

Table 2. Descriptive summary of selected variables 

Variable name Mean  Std dev  Minimum  Maximum 

Plot size (in acres) 1.651 1.607 0.25 6.0 

Total number of maize farm plots  1.51 0.70 1.00 4.00 

Distance to the farm plot in walking minutes 9.517 2.889 5 25 

Age of household head (years) 47.53 10.35 82 31 

Household head highest level of education (years) 7.67 2.280 0 18 

Household size in adult equivalent 4.12 1.230 1.6 8.56 

Experience in maize farming (years) 18.74 8.96 5 48 

Coefficient of variation of rainfall (1983-2013) 0.23 0.05 0.14 0.36 

Number of maize plots observation =682     

Number of household observation=420     

Household characteristics included household head´s education level, age, and experience in maize 

farming. Other variables were family size measured in adult equivalent, and household asset.   The wealth index 

was computed based on ownership of durable goods and the condition of the house. This index was used as a 

proxy for Household capital. The assumption was that that households that own more capital are wealthier and 

more likely to take risks associated with the adoption of new technologies. Institutional factors considered in this 

study included distance to the factor market measured in kilometers, access to extension services and 

membership to financial organization. Distance to the factor market and poor access to transportation services 
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can negatively influence the smallholder’s decision to adopt some technology if they have to travel and incur 

significant transport costs. Further Pertaining to climatic variables, the historical data on rainfall patterns mean 

rainfall and the coefficient of variation (CV), for the respective periods: 1983-2013 was used to capture farmer 

expectations about climate at the beginning of the season when they make decisions on use of inputs. The 

rainfall subjective index of farmer’s perception of rainfall trend and occurrence was 0.33 which indicates that 

during the growing season the rainfall situation was not desirable. In this study farm technologies considered 

included inorganic fertilizer, improved maize seed varieties, maize-legume intercropping, SWC and use of 

manure that are considered to help reduce exposure to climate shocks and at the same time also help as 

adaptation strategies. Table 2 presents the proportion of households that implemented the aforementioned 

agricultural practices on their plots disaggregated by rainfall pattern.  

Use of improved maize seeds including hybrids and Open Pollinated Varieties (OPVs) seeds. The plot 

planted with improved maize varieties is about 53.8%. Looking across the different rainfall pattern, there seems 

to be no significant differences in the use of inorganic fertilizers. Mineral fertilizers were adopted on 42.2%. 

Maize legume intercropping was practiced on about 37.10% of the plots during the cropping season. This 

technology can help increase crop productivity through nitrogen fixation and therefore contributes to maintain 

productivity in a changing climate. Soil and Water Conservation (SWC) investment existed on nearly 37.98% of 

the total plots of sampled households. The dominant SWC practices considered in this study were; terracing, live 

plants or tree belts/barriers, and contour bunds built either earth or stones. The SWC structures provide multiple 

on-farm benefits such as increased and more stable yields by reducing water erosion, improving water quality, 

and promoting the formation of natural terraces over time (Asfaw et al., 2014).  However animal manure was 

used on about 18.07% of the sample maize plots.  

Table 3. Descriptive summary of adoption of adaptation practices 
 High rainfall 

(N=181) 

Moderate rainfall 

(N=295) 

Low rainfall 

(N=203) 

Total 

(N=682) 

Sig diff 

 Frequency % Frequency % Frequency % Frequency %  
Inorganic fertilizer 112 62.43 101 33.56 79 38.92 292 42.82 11.04**

* 

Improved maize 
seeds 

132 72.93 121 40.60 114 56.16 367 53.81 6.145** 

Legume 

Intercropping 

105 58.01 88 29.53 60 29.56 253 37.10 23.73**

* 
Soil water 

conservation 

68 37.57 109 36.58 82 40.39 259 37.98 2.643 

Manure 31 17.12 49 16.61 47 23.15 127 18.07 3.001 

 

4.2 Regression Analysis 

Table 4 presents the results of the Multivariate Probit (MVP) adoption model. The p-value of the Wald test 

statistic for the overall significance of the model was highly significant (P=0.000) indicating that the multivariate 

probit regression model adequately fits the data well. The likelihood ratio test “rho” was highly significant 

(p<0.000) implying that the covariance of the error terms across equations are not correlated thus justifying the 

use of the MVP over single-equation probit models. This is supported by the correlation between error terms of 

the adoption equations reported in table (4). The estimated correlation coefficients were statistically significant 

and different from zero in seven of the ten pair cases, where one coefficient was negative and the remaining six, 

were positive suggesting that farmers technology adoption equations are not independent of each other, and 

hence a multivariate probit approach is appropriate in this case. Furthermore, the positive and significant 

correlation coefficients of the error terms indicate that there is complementarity (positive correlation) between 

different farm technologies being used by farmers, which supports the assumption of interdependence between 

the different technology options. From table (5), the use of inorganic fertilizer was complementary to the use of 

improved seed but substitutable with manure. The positive correlation coefficient between inorganic fertilizer 

and improved seed was the highest among all (26.4%) implying that productivity potential of high yielding 

varieties is highly dependent on a farmer using inorganic fertilizer. The cross-technology correlation may have 

an important policy implication in that a policy change that affects one farm technology can have spillover 

effects to other farm technologies. 

The MVP results reported in Table 5 show that the adoption decisions of different farm technologies are 

quite distinct and to a larger extent the factors governing the adoption decision of each of them are also different 

suggesting the heterogeneity in adoption of farm technologies. The MVP coefficient estimates show the 

importance of climatic variables that is coefficient of rainfall variation in explaining the probability of farm 

households’ decision to adopt different agricultural practices. According to this results, greater variability in 

rainfall captured by the coefficient of rainfall variation increased the probability of a farmer using improved 

seeds and adopting SWC measures. Closely related to this was the value of Rainfall satisfaction index which was 

positively associated with adoption of inorganic fertilizer and SWC practices. That means, the probability of a 
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farmer adopting inorganic fertilizer and SWC practices was high in areas where rainfall was more reliable in 

terms of timing, amount and distribution. These findings suggest that farmers are responding to climate patterns, 

as represented by their adaptation strategies. Hence information on climate variability should be an integral part 

of extension activities. 

Table 4. Covariance matrix of the regression equations between adopted farm technologies using the MVP 

joint estimation model 

  Inorganic 

fertilizer 

Improved 

seeds 

Legume 

intercropping 

Soil-water 

conservation 

Improved seeds 0.264**       

Legume intercropping 0.198** 0.152**     

Soil-water conservation 0.026* 0.088* 0.043   

Manure -0.168** 0.065 0.124** 0.035 

Adjusted LR 
2χ (10) =65.47 

Prob >
2χ = 0.0000 

    

*,** and *** indicate statistical significance at 10, 5 and 1% respectively 

Wealth measured by the value of durable household assets had positive influence on the adoption of 

inorganic fertilizer, improved seeds and intercropping. This is probably because wealthier farmers may have the 

capacity to purchase external inputs and may be more able to take risks. Plot distance to the input market had a 

significant negative effect on the adoption of inorganic fertilizer which reflects the difficulty of remote 

households to assess and adopt new technologies indicating that distance to major markets constitutes a time 

Constraint on the ability of farmers to access information and inputs. Similarly plot distance to residence, have a 

negative impact on application of soil water conservation and use of animal manure. 

Better access, apart from influencing availability of technology, can influence the use of output and 

input markets, and the availability of information and support organizations as well as the opportunity costs of 

labor (Wollni et al., 2010). The fertility level of the plots also influences the type of technology practiced; good 

soil fertility positively influences adoption of improved seed varieties and inorganic fertilizer. Use of improved 

seed and inorganic fertilizer is a high investment technology thus farmers are more likely practice it in more 

fertile plots so as to ensure maximum returns on their investment. Similar to these findings, Kassie et al., (2010) 

also found that farmers farming on a fertile plots are more likely to use improved seeds and inorganic fertilizer 

compared to farming in less fertile plots. 

Table 5. Multivariate Probit Results 

 Inorganic fertilizer Improved seeds Legume intercropping SWC Manure 

Variables Coeff Coeff Coeff Coeff Coeff 

Plot size (in acres) 0.048 -0.084 0.436 0.32 -0.441 

Distance to the farm plot in 

walking minutes 

-0.155 0.198 -0.105 0.317* -1.393*** 

Irrigation use (=1 if yes) 0.55* -0.06 -0.28 0.08 0.19 

Household head education (years) 0.004 0.015 0.023 -0.062* -0.003 

Household size in adult equivalent 0.53 1.456* -0.5915* -1.141 0.076 

Experience in maize farming 

(years) 

-0.027 -0.145 0.081* 0.128 0.043 

Distance to the input market (km) -0.03 -0.027 0.018 -0.060* 0.129 

Access to extension services (=1 if 

yes) 

0.744** 0.376 -0.088 0.469* 0.316 

Access of government subsidy in 

2013 (=1 if yes) 

0.756*** 0.668*** -0.025 0.096 -0.107 

Household asset index 0.19* 0.49** 0.14* -0.06 -0.03 

Coefficient of variation of rainfall 

(1983-2013) 

-2.17 1.92* -0.78 2.23* -1.27 

Rainfall satisfaction index 0.04* -0.11 -0.26 0.32* -0.28 

Constant  -0.59 -6.07*** -5.395** 2.474** -1.208 

Log-Likelihood=-335.643           

LR test of rho chi2 (10) =26.349            

Wald chi2=0.0033           

Number of observations (plot) 682           

*,** and *** indicate statistical significance at 10, 5 and 1% respectively 

 

5.0 Conclusion and Policy Implication 

Research and adoption of technologies are crucial in increasing agricultural productivity and lowering the 
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poverty levels in developing countries. However, there are some disagreements about which type of technologies 

are most appropriate for the developing countries. In reality there is no single approach that will work in each 

situation and the suitability of these technologies varies with different conditions. This study seeks to determine 

conditions under which each of these technologies are adopted using data collected from all the maize growing 

areas in Pangani river basin in Tanzania with the focus being on small holder farmers. In addition, the paper 

seeks to find out what the combination of technologies farmers mostly adopt. The study establish that there is an 

interdependence between farm technologies that are adopted by farmers for climate change adaptation implying 

that the adoption decision of a specific technology is correlated with the adoption of another technology. 

Findings further suggest that different conditions ranging from plot level attributed to rainfall variation influence 

the type of technology adopted by the farmers. Therefore, these factors should be considered when planning, 

implementing and evaluating extension programs for dissemination of each of these technologies. 
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