Occurrence of Rice Yellow Mottle Virus in Tanzania

··· . ··· ···

1 31.5

1 2 7 2 7 A . A T

¹Luzi-Kihupi¹A¹, M.R.S. Mlozi², R.B. Mabagala¹, D.M.K. Mushobozy¹, S. Nchimbi-Msolla¹

¹ Department of Crop Science and Production, Sokoine University of Agriculture P.O. Box 3008, Morogoro, Tanzania ²Department Agricultural Education and Extension. Sokoine University of Agriculture, P.O.Box'3002. S CORRO STALL -13 14 181 201 10 1 M . The A. 10. 11 Morogoro, Tanzania

63 Abstract

1000

1 Same

. Rice vellow mottle virus (RYMV) which was first recorded in Kenya in 1966, is now considered one of the most important diseases in tropical Africa. Surveys were conducted in rice growing areas in Tanzania to determine the incidence, severity and distribution of RYMV in the country. The virus was found in all rice growing areas surveyed. The incidence and severity of RYMV varied depending on the cultivar grown. In another study, one hundred and twenty varieties and introduced rice material were screened for resistance to RYMV. Thirty eight cultivars showed resistance to the disease in the field and of these, only sixteen cultivarswere highly resistant to RYMV, Reduction in grain yield in susceptible varieties ranged from .25 to 100% ... Some rice, test plants which, were not inoculated with the virus showed symptoms of RYMV while other symptomatic plants recorded no yield. High yielding and phenotypically acceptable cutivars, such as IR 53234-27-1, CT6948-7-4-2; CABACU and IR 47686-15-5-1 can be used as short-term replacement of the existing susceptible varieties in areas severely affected by RYMV.

11

Keywords: Disease, Oryza sativa, rice yellow mottle virus, yield loss.

Introduction

levels of importance.

, the decine of the state of

Let a d'an a start of the

tungro; grassy stunt and ragged stunt are the ma-- jor viruses in South and South-east Asia; hoja Rice (Oryza' sativa L.) is one of the most im- blanca virus in Latin America and rice yellow portant cereal crops in Tanzania and is con-me mottle virus in Africa.

sumed by about 60% of the population (IRRI, _____ Rice yellow mottle virus (RYMV) was first 1994). Tanzania ranks the second, after Madagas-199 reported in 1966 at Otonglo near lake Victoria in car, as a major rice producer in Eastern, Central .: Kenya (Bakker, 1970, 1971, 1974). Since then, and Southern Africa (IRRI, 1994). The crop is :2, the disease has been subsequently reported in grown in all regions of the country with varying ... various African countries, including Sierra Le-, ... one (Raymundo and Buddenhagen, 1976). Cote Several bacterial. fungal and viral pathogens, d'Ivoire (Fauquet and Thouvenel, 1977); Nigeare known to cause diseases in rice. About 70 ma-main (Rossel et al., 1982); Niger, Burkina Faso and jor and minor diseases of rice have been reported ... Mali (John et al.: 1984); Zanzibar, Tanzania (Ali in Asia and Africa (Ou, 1985). Virus diseases of and Abubakar, 1995). In Tanzania, the first incirice have become increasingly important in the sidence of RYMV was reported at Mkindo irrigatropics since the 1960s after rice cultivation was tion scheme near Morogoro in 1993, (Kanyeka, intensified. There are about 14 rice virus diseases ., et al., 1996). The increasing importance of RYMV in East and West Africa has been attribknown in the world (Ou, 1985). Among the ten fice virus diseases which occur in the tropics, the uted to the cultivation of highly susceptible ex-

٠S

otic rice varieties from Asia and the availability of irrigation water which allows for sequential planting and maintenance of high crop intensity even during the dry season (IITA, 1981; Rossel *et al.*, 1982).

Symptoms of RYMV susceptible rice cultivars include yellowing and mottling of leaves,. Severely infested plants may wilt and dry or may not flower at all. Other symptoms include stunting, reduced tillering, and panicles malformation. The disease is systemic and is widely spread in rainfed lowlands and irrigated rice growing environments (Feakin, 1976). The severity of the disease depends upon the variety and the age of plant at the time of infection. If the infection occurs in the early stages of plant growth, fewer tillers are produced than when infection occur in the late stages of plant growth.

The virus is environmentally stable and is transmitted mechanically within the rice plants (Bakker, 1970; Fauquet and Thouvenel, 1977) and by chrysomelid beetles (Bakker 1971, 1974). Dicladispa gesini Chap., has been identified as the main vector of RYMV in Madagascar (Reckhaus and Andriamasintseheno, 1995) and in Zanzibar (Ali and Abubakar, 1995). The long-horned grasshopper (Conocephalus merumontanus Sjostedt) and mites from the families Eriophydidae and Tarsonemidae have been indicated as possible vectors of RYMV in Kenya (Bakker, 1974). Recent studies by Reckhaus and Andriamasintsehano (1997) indicated that Oxyla sp., a grasshopper commonly found in rice fields was capable of transmitting the RYMV. The virus has also been demonstrated to be transmitted through guttation fluid., irrigation water and farm implements such as sickles which are used in trimming shoots of rice seedlings during transplanting and harvesting (Tsuboi et al., 1995). Soil of previous infested fields containing wide composed infected plant material is also infectious (Reckhaus and Adamou, 1989). The location of RYMV in the rice o seed is known to be in the husk (seed coat) and no transmission of RYMV in the rice seed has been. demonstrated, possibly due to inability of the virus to remain in the embryo (Abo et al., 1998).

Indigenous African Oryza species such as O. glabberrina Steud: O. longstaminata Chev et Rodir and O. barthii Chev et al as well as traditional upland rice variéties such as OS 6, are highly immune, tolerant, or resistant. Fomba (1986) reported yield losses of 19.6% in cultivar Angkatta and 95-98% in ROK 5 at Rokupr. Sierra Leone. Reckhaus and Adamou (1986) reported yield losses ranging from 58-68% in Niger Republic. Taylor (1989) reported losses of 54% in EAC 23 and 84-97% in RN 623 in Sierra Leone. A study of yield losses from inoculated and naturally infected rice plants demonstrated losses of 84%, 67, and 4% in cultivars/lines Bouake 189, BG 90-2 and Moroberekan, respectively. (Sy et al., 1993).

It is therefore imperative that awareness about this devastating disease is created and stern control measures taken to avoid further spread of the virus. This study was undertaken to determine the incidence, severity and distribution of the RYMV in Tanzania. It also aimed at screening and identifying resistant genotypes from rice germplasm currently available in the National Agricultural research system. Identified resistant genotypes could be used as new varieties or serve as donors of resistance genes to RYMV in breeding programmes.

Materials and Methods

Diagnostic surveys

RYMV diagnostic surveys were done in April and May, 1998 in farmers fields in Kyela district, Mbeya region. Turiani Division. Dakawa, Kilombero and in Kilosa District in Morogoro region. During the survey, farmers were interviewed about the presence of RYMV. when the disease was first observed, time of disease occurrence, its effect on yield and susceptibility of varieties grown. A check list was used to elicit farmers opinions. Interviews were also conducted with extension workers and researchers. In addition, RYMV diseased plants were identified based on symptomatology. Samples of such plants were collected and presence of RYMV was confirmed in the screenhouse. In order to confirm symptomatology, diseased samples collected were macerated individually, in a sterile blender containing sterile 0.1 M phosphate buffer (pH 7.4). The resulting inoculum suspensions were used to inoculate healthy plants by cutting rice leaves using a pair of scissors dipped in the suspensions. Sterile phosphate

buffer (0.1M, pH 7.4) and a known RYMV isolate, perature ranging from 24-30°C and observed for (Kyela-strain) were included as negative and positive controls, respectively. Each experiment was replicated three times and repeated twice.

The state of the state of the state Screening for resistance to RYMV

One hundred and twenty five rice varieties consisting of local, exotic and improved cultivars were screened for resistance or susceptibility to RYMV under upland conditions in the crop museum at Sokoine University of Agriculture (SUA). Each variety was planted in 5m rows, seeds were dibbled at a spacing of 20 cm between rows and between plants. The seedlings were thinned four weeks after planting, leaving one seedling per hill. Nitrogen fertilizer was applied at the rate of 100 kg N/ha split twice and phosphorus at 50 kg P2O5 per ha.

Inoculation -

i'm

Leaves from naturally infected plants collected from Kyela, Mbeya region were blended in a sterile 0.1M phosphate buffer (pH 7.4), the resulting suspensions were used to inoculate healthy plants. Test plants were inoculated by dipping a pair of scissors into the suspensions followed by cutting leaves of ten rice plants in each row using viral contaminated scissors. For each line, ten plants served as a control and were cut using scissors dipped in sterile phosphate buffer. A known RYMV isolate (Kyela strain) was used as a positive control. Inoculated plants were observed for RYMV symptom development for up to 21 days. Rice plants were scored three times for RYMV at 7 days interval. Inoculated plants were left until ' maturity to assess other parameters such as reduction in plant height, days to 50% flowering and grain yield as compared to uninoculated control plants.

Screenhouse experiment

Lines and cultivars which were found to be resistant in the field were planted in the screenhouse to confirm their resistance to RYMV. Four seedlings of each variety were planted in one 4-litre pot. The potted rice plants were inoculated with suspensions at 35 days after seeding using the same procedure described above. Inoculated plants were incubated in the screenhouse at a tem-

development. Rice plants were scored three times for RYMV symptoms at 7 days interval using a scale of 1-9 where 1 = Resistant and 9 =highly susceptible (IRRI, 1985). Inoculated plants were left until maturity to assess reduction in plant height, days to 50% flowering and grain vield as compared to uninoculated control plants,

Data analysis

- Data were subjected to the t-test using MSTAT-C (Michigan State Univ., 1990) in order to compare the reaction of inoculated and uninoculated control plants.

· · · · · · · ·

Results

Diagnostic surveys

Results of the RYMV diagnostic surveys conducted during April and May, 1998 indicated that all areas visited including Kyela District in Mbeya, Morogoro and Kilombero districts in Morogoro region had high incidence and severity of RYMV. Findings from discussions with farmers during the diagnostic surveys indicate that the disease has been on the increase in farmers' fields since 1994. In Kyela district, farmers reported that about 450 ha of rice were affected in 1994 while more than 950 ha were affected in 1997; yield reduction ranged from 40 to 100%.

In the various fields visited, especially in Kyela and Kilombero districts, the predominant insects found were species of grasshoppers. Farmers and extension workers who were interviewed correlated the presence of such grasshoppers and RYMV disease. They indicated that in the years when there were many grasshoppers in rice fields; there were also high incidences of RYMV disease. The surveys in Kilosa district revealed that there was no serious outbreak of RYMV disease in 1998 cropping season. Neither the disease nor vectors of the virus were observed in the areas which were previously known to be affected. The farming system research (FSR) scientist at Ilonga Agricultural Institute also correlated the presence of grasshoppers in the field with the occurrence of RYMV

disease. Farmers in the surveyed areas claimed that the incidence of the RYMV disease increased after hand weeding or rogueing of the diseased plants had occurred. All the varieties currently grown by the farmers such as Zambia Kilombero, Faya, Supa and Shingo ya Mwali were susceptible

to the disease.

Screening for resistance to RYMV

Field experiment

The reaction of rice varieties/lines screened is shown in Table 1. In susceptible rice varieties/lines, a significant reduction ($P \le 0.05$) in plant height and grain yield was observed. The average RYMV disease severity rating ranged from 7 to 9. The highest reduction in plant height was observed in IR 32, mutant No. 9 and Nylon, while the least reduction in plant height was observed in Kibibi (Table 1). The reduction in grain yield ranged from 25 to 100%; however, in IR8, mutant No. 13 and IR54 no yield was recorded.

Grain losses of 100% were recorded for inoculated and uninoculated plants in varieties

Mbawa Mbili, IR32; IR 6023-10-1-1 and Nylon; significant differences in plant height and grain yield between inoculated and uninoculated rice plants were observed (t = 6.19 at = 0.05).

The varieties which were resistant to RYMV disease are shown in Table 2. of 125 rice varieties tested, 30% were resistant to the disease. Varieties IR 55739-2-3-1, IRAT 156, FARO 11, WABIS 18, CT6948-1-1-P, FARO 300, TGR 78, 11 ITA 305 and Mafunira yielded more than 12g of grain per plant (Table 2). In varieties CT6947-7-1-4-2, FARO 29 and IR 47686-15-5-1 plant height was not affected by RYMV disease. Varieties LAC 23,-BG 380-2 and Supa were the latest to flower among all the varieties tested. There was no significant correlation between plant height, and grain yield and between grain yield and day to 50% flowering. Significant correlation was however, observed between plant height and days to 50% flowering (r=0.67).

the state of the s

(average disea	se score 7 & 9).	,	.e [.] •	Sec. 2	
	1 . 1		۰ دور ۱۹۹۶ - ۲۰	1	
Variety .	Source Classe	• -	Perecent Reduction in		
.·	1 5		Plant height		Grain yield
Kibibi	Local		19.1	. 4	62.4
Faya mzinga	Local		11.4	· · ·	53.9 ⁻
Mbawa mbili	Local		9.2	4 P	100
Faya mafuta	Local		15.5	•	36.2
Rufiji	Local		9.4		94.7
Katrin -	Local		20.8	• .	85.0
Mwarabu (Local		22.7		90.9
Kaling'anaula	Local	•;	9.7		25.6
Rangimbili	Local	,	6.2		63.4
Mwanza	Local		10.8	1	82.2
Mutant No.9	Local (Improved)		32.1		35.6
Mutant No.13	Local (Improved)		9.8		No yield
Kivuli	Local		12.6	*	84.4
Nylon	Local (-	5	32.9	•*	100.0
Kioo	Local	+ -	10.7	· ·	92.0
Supa (Susceptible check)	Local		9.6	• •	89.3
IR 54	IRR ,		25.2	1997 - 1944 1	No yield
IR53722 - B-3-6-2	IDD		6.8	1 1 QUE	73.1
Chianung sen Yu	China		13.1	5.3	81.5
ML 214	Zanzibar		9.1	÷	83.2
Subarmanti		L	13.6	91 <u>- 1</u> -	64.6
IR8	IRR		15.5	Ţ 74.1	No yield
IRI 13429 - 2 -1-3	· .IRR		25.5 .		58.3
IR 32	IND		39.9	•	100.0
ITA 173			21 .1	10 M.	38.3
IR 6023 - 10 - 1 - 1	V	`	23.2	1 V	100.0
BKN 3036 A \therefore			23.2 24.0	فيتدون	64.0
Colombia	Zanzibar <u>-</u> ; Zanzibar	1	24.0 8.0	÷. •	87.7
	IRRI		8.0 9.1	· -	87.2 c
IR 56	1KKI		7.1	.•	07.2
	<u> </u>		· r		

Table 1. Varieties which showed significant reduction in plant height and grain yield

Reproduced by Sabinet Gateway under licence granted by the Publisher (dated 2012)

Table 2. Varieties which s Variety	Source	Plant			· · · · ·	
			Days to	Grain Yied/	Score ²	
		Height	50%			
Dakawa 83			Flowering	gplant (g)		
Afaa Kikangaga	Local (Impoved		84	4.9	`5	
Jaribu 220		125.4	92	15.5	5	
TXD 276-4-5-11	Local (Improved	1) 107.0	93	10.2	7	
Limota	Local (Improved	-	84	1.1		
Kula na Bwana	Local	137 -	93	1.2	np	
Usiniguse	Local	129	89	4.3	np 5	
Afaa Mwanza 1/59	Local	128.8	88		5	
IR 53234-27-1	Local	123.0	93	10.0	3 7	
IR 55740-B-5-4-2-2-1	IRRI	112.2	73	- 7.4		
IR 55739-9-3-3-1	IRRI	84.6	81	10.8	1	
IR 6771 - 8 - 14 1- 2 - 1	IRRI	88.6	78	12.5	3	
IR 53466-B - 12 - 1-B-B-17	IRRI	92.2	82	11.5	5	
CT 6515-18-1-3-1-2	IRRI	96.4	78	7.2	3	
Pishori	CIAT	107.2	77		np	
	Local	128.2	85	10.9	3 ~	
Colombia 25592	Zanzibar	107.6	93	6.7	9	
BG 380-2	Sri Lanka	108	97	3.8	5 /	
Koshinikari	Bagamoyo	56.2	51	7.2	5	
Mangutsumochi	Bagamoyo	51.4	51	2.3	np	
CT 6947-7-1-4-2	CIAT	137.6	51 94	- 1.9	np	
RAT 161	IRAT	116		2.9	1 %	
ARO 29	Nigeria	126.4	91	3:5	1	
R 47686-15-5-1 (Resista	int IRRI	133.6	88	10.5	1 - *	
neck)		155.0	86	9.1	1 '' '	
RAT 156	IRAT	110.8		•		
ARO II	Nigeria	137.6	80	16.2	1 · 1 · C4++	
ABIS 18	WARDA		83	⁻ 12.4	1	
T 6948-1-2-1-P	CIAT	141.0	89	14.1	1 -	
RAT 133	IRAT	126.0	84		1 I - 1	
ARO 300	Nigeria	117	75	['] 15.3	1	
GR 78 .	тŬ	145.0	82	15.1	1	
A 305	UTA	122.6	79	· 13.9	1	
AC 23	IIT A	118.8	84	17.1	I	
ABACU	7. 1	123.4	106	6.1		
afunira	M. 1	132.2	93	10.9	np 1	
AT 302	ID AT	117.2	79	16.0	1	
ABIS 844	MILLIN D. L.	117.2	93	11:0	-	
1165		130.4	91	11.5	1 /	
a (Susceptible check)		89.8	77	10.8	1	
	Local 1	16	98	Nil	5 7	

np=not planted, 1=resistant, 9= Very susceptible

۰. p ١,

Screenhouse experiment

The results from screenhouse experiments revealed that varieties Jaribu 220, Afaa Mwanza and Pishori were very susceptible to RYMV while Dakawa 83, Afaa Kikangaga, Kula na Bwana, Usiniguse, Colombia 25592, BG 380-2 and BG 1165 were moderately susceptible (Table 2). On the other hand, IR 55740-B-5-4-2-1, IR 6771-8-14-1 and CT 6515-18-1-3-1-2 were moderately resistant. Sixteen varieties were rated as highly resistant (score = 1). These included those from West Africa (13 varieties), two from IRRI (IR 53234-27-1 and IR 47686-15-5-1) and one from Zanzibar (Cabacu) (Table 2).

Discussion

The frequency of RYMV disease in rice growing areas of Tanzania is causing great concern to rice producers and researchers. RYMV was reported in Tanzania mainland in 1993 but farmers insist that it existed since the late 1980s. In 1995, the Kilimanjaro Agricultural Training Centre (KATC) conducted a survey across the country and reported that RYMV is widely distributed in all rice growing regions in Tanzania (Yamamoto, et al., 1997). Results from the current study support the previous findings. In Kyela plains, the disease is considered as the most important disease (Mwalvego, F. Pers. Comm.). In 1998 cropping season, some farmers could not harvest any crop while others had abandoned their fields altogether.

The current field surveys revealed that the severity of RYMV varies greatly from year to year. In 1998 growing season, for example, the damage due to the disease in Kilosa district was minimal while in the previous year the damage was more severe (Chilagane, A. Per. Comm.). Such findings may be due to variation in vector population and changes in environmental conditions that favour disease development and vector multiplication.

Yields losses estimated using susceptible varieties in this study ranged from 25% to 100%. This is an alarming situation taking into consideration that some of the susceptible local varieties are popular such as Supa, Rangi Mbili and Katrin. The variety IR54 which is grown in some irrigation schemes in Tanzania showed high levels of yield losses ranging from 70 to 100%. Varieties LAC 23, IRAT 161, IR 47686-15-5-5-1, IRAT 156, WABIS 18, FARO 300 and ITA 305 which were resistant to RYMV in this study, were also reported to be resistant by WARDA (WARDA 1992, 1994) The varieties, IRAT 161, IRAT 156 and ITA 305 were also reported to be resistant by Awoderu (1991). Such findings confirm that these rice varieties can be used in breeding programmes

as sources of resistance to RYMV. Some varieties did not produce any yield for both inoculated and uninoculated rice plants, indicating that the virus might have been transmitted by insect vectors or mechanically to uninoculated rice plants. There were differences in reaction of some cultivars between field and screenhouse experiments. Such observed differences may be due to differences in the environmental conditions. That is why it is important to conduct screening trials both in the field and screen house.

Work conducted at KATRIN Agricultural Research Institute, Ifakara indicated that LAC 23, FARO 11, ITA 235, IRAT 133, ITA 156 and Moroberekan were resistant to RYMV (Kanyeka, *et al.*, 1996). However, in the current study Moroberekan was found to be susceptible under Morogoro conditions. High yielding and phenotypically acceptable cutivars, such as IR 53234-27-1, CT6948-7-4-2, CABACU and IR 47686-15-5-1 can be used as short-term replacement of the existing susceptible varieties in areas severely affected by RYMV.

Management of RYMV requires an integrated approach that will involve the use of resistant varieties and various cultural control methods. Early planting to escape high levels of vector population, destruction of stubbles, removal of alternate hosts by slashing and proper weeding of bunds are methods that can be used to manage RYMV. The use of chemicals to reduce vector populations during the growing season is limited by high cost, which is unaffordable for rice producers.

Conclusion

Results of this study indicate that RYMV is important disease in Tanzania and it has spread to many rice growing areas in the country. A number of local and introduced rice varieties were found to be resistant to RYMV under Morogoro conditions. Such varieties will be useful to the breeding programmes and may replace the prevailing susceptible varieties grown in the country, especially in areas where RYMV is a serious constraint to rice production. An integrated approach is needed in order to effectively manage RYMV disease.

Acknowledgement

The authors sincerely thank the Sokoine University of Agriculture/NORAD programme TAN 091 for financial assistance. We acknowledge the contribution of Ms. F. Mwalyego and Mr. M. Mwaipopo during the field surveys in Kyela; Mr. J. Zakayo during the field visit at Dakawa, Mkindo and Kilosa and Dr. J. Mbapila and Mr. Mkuya for assistance during the field visit in Ifakara. Also, we thank the rice farmers in the survey areas for their kindness in giving opinions about the occurrence of RYMV in their fields.

References

- Abo, M.E., Sy, A.A. and Alegbejo, M.D. (1998). Rice Yellow Mottle Virus (RYMV) in Africa: Evolution, Distribution, Economic significance on sustainable Rice production and management strategies. Journal of Sustainable Agriculture1:8111.
- Ali, F.H. and Abubakar, Z.M. 1995. Incidence of RYMV in Zanzibar. Paper presented at the 1st International symposium on rice yellow mottle virus (RYMV), 18-22 September, 1995. Mbe, WARDA/IDRAO, Bouake,Coted Ivoire.
- Awoderu, V.A. 1991. The rice yellow mottle situations in West Africa Journal of Basic Microbiology31(2):9-99.
- Bakker, W. 1970. Rice yellow mottle, a mechanically transmissible virus disease of rice in Kenya. Netherlands Journal of Plant Pathology76:53-63.
- Bakker, W. 1971. Three new beetle vectors of rice yellow mottle virus in Kenya. Netherlands Journal of Plant Pathology 77: 2206.
- Bakker, W. 1974. Characterization and ecological aspects of rice yellow mottle virus in Kenya. Agricultural Research, Doctoral Thesis. University of Wageningen, The Neth152pp.
- Fauquet, C.M. and Thouvenel, J.C. 1977. Isolation of rice yellow mottle virus in Ivory Coast. Plant Disease Reporter 61: 44-446.

Feakin, S.D. 1976. Pest control in rice, Paus .3.

- Fomba, S.N. 1986. Crop losses and other effects of attack caused by the rice yellow mottle virus on the rice varieties, Rok 5 and Angthata at Rokupr, Sierra Leone, West African Rice Development Association Technical Newsletter 6: 24-25.
- IITA, 1981. Annual Report, Rice Improvement Programme IITA, Ibadan Nigeria pp 12122IRRI, 1994, 1993-1995 Rice Almanac. The International Rice Research Institute, P.O. Box 933, Manila, Philippines, 97-99.
- John, V.T. Thottapilly, G. and Awoderu, V.A. 1984. Occurrence of rice yellow mottle virus in some Sahelian countries in West Africa. FAO Plant Protection Bulletin 32: 887.
- Kanyeka, Z.L. Kibanda, N.J.M. and Mbapila, J. 1996. Rice yellow mottle virus in Tanzania. Paper presented at a seminar on potential and constraints for improvement of rice cultivation in Tanzania held at Kilimanjaro Agricultural Training Centre, Moshi, Tanzania. 11-15March1996.
- Michigan State University, 1990. MSTAT-C. A micro computer programe for the Design, Management and Analysis of Agronomic Research experiments, Michigan State University,EastLansing,MI.
- Ou, 1985. Rice Diseases, 2nd edition, Kew, Commonwealth Mycological Institute, England 368pp
- Raymundo, S.A. and Buddenhagen, I.W. 1976. A rice disease in West Africa. International Rice Commission Newsletter 29: 51-53.
- Reckhaus, P.M. and Adamou, I. 1986. Rice Disease and their economic importance in Niger, FAO Plant Protection Bulletin 34: 7782.
- Reckhaus, P.M. and Adamou, I. 1989. Field observations and field research on RYMV in the Republic of Niger. Paper presented at the IRTP-Africa workshop at ICIPE, Duduville, Kenya, 20-23 March 1989.

 Reckaus, P.M. and Andriamasintscheno, H.E. 1995.
Development of an IPM strategy to fight RYMV and constraints to its implementation in Madagascar. Paper presented at the 1st International symposium on RYMV, 18-22 Sept., 1995.
Mbe. WARDA/ADRAO, Bouake,Coted Ivoire.

- Reckaus, P.M. and Andriamasintseheno, H.F. 1997.
- Rice yellow mottle virus in Madagascar and its epidemiology in the northernwest
- of the Island. Journal of Plant Diseases and Protection. 104(3): 289-295.
- Rossel, H.W., Thottapilly, G. and Buddenhagen, I.W. 1982. Occurrence of rice yellow mottle virus in

two important rice growing areas of Nigeria. FAO Plant Protection Bulletin 137-139

- Sy, A.A. Alluri, K. and Akator, K. 1993. Selection of RYMV resistance and estimation of RYMV induced yield loss under natural and artificial pressure. In: WARDA Annual Report for 1993, WARDA, Bouake, Cote d' Ivoire pp 44-45.
- Tsuboi, T., Goto, A. Boka, B. and Kato, H. 1995. Outbreak of Rice Yellow Mottle Virus in paddy rice in Bandoma basin of Cote d' Ivoire and its epidemiological causes. Paper presented at the 1s^t Inter.Symposium on RYMV from 18-22

Sept. 1995. WARDA, Bouake, Coted'Ivoire.

- Taylor, D.R. 1989. Resistance of upland rice varieties to pale yellow mottle virus (RYMV) disease in Sierra Leone, IRRN 4: 1.
- WARDA, 1994. Annual Report. WARDA, Bouake, Cote d' Ivoire pp 55, 74-75.
- WARDA, 1992. Annual Report, WARDA, Bouake, Cote d' Ivoire pp 20-21.
- Yamamoto, T., Pyuza, A.G., Lusewa, R.C., Harrison, M. and Tomitaka, M. (1995). Rice Diseases in SomeParts of Tanzania. KATC Newsletter1(1):4.